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Abstract: In order to improve the adhesive and passing performance of agricultural tracked vehicles
under a non-structural environment, a theoretical design method of the structure of a bionic track
pattern is proposed in this article. The Saanen goat is taken as the experimental subject, and the hoof
tips and hoof spheres are taken as the characteristic functional parts, whose pressure is measured
by thin film pressure sensors. The Qualisys Track Manager (QTM) gait analysis system was used
to obtain the gait sequence of goats under multi-slope. The changes in vertical ground reaction
force (GRF) and vertical impulse (VI) of the hoof tips and spheres and adhesion coefficient under
multi-slope were analyzed. The results show that with the increase in slope, the GRF is transferred
from the left hind hoof to the right front hoof, and the right front hoof has the most significant effect.
Under the 10-degree slope, the peak vertical GRF and VI of the inner tip of the right front hoof are
the largest; peak vertical GRF is 146.20 N, and VI is 127.67 N·s. The adhesion coefficient is the largest;
the right front and left hind hoof are in the diagonal two-phase supported state, and µ is 0.3455.
Therefore, the inner tip of the right front hoof is used as a bionic prototype to design the track pattern
architecture. It provides a theoretical basis for the design and optimization of bionic patterns applied
to agricultural tracked vehicles.

Keywords: goat hoof; functional parts; gait; adhesion coefficient; mechanical properties

1. Introduction

Vehicles are prone to skid during driving, climbing, and ditching in unstructured envi-
ronments such as hilly and mountainous areas, which seriously restricts their trafficability.
Tracks or tires are the only components in contact with the ground; their structure and
pattern are closely related to their strong adhesion and high traction [1,2]. Shaikh et al.
explored the influence of the height of the track grouser on the traction performance of
the tracked vehicle under different soil moisture conditions through the soil trough test.
The traction performance of the tracked vehicle was the best when the height of the track
grouser was 45 mm, and the soil moisture content was in the range of 16.7–21.5% [3]. Xue
et al. [4] designed a bionic paddy wheel by extracting the surface curve of the cow hoof as
a bionic prototype, which improved the traction performance of the vehicle in the paddy
field. Zhang et al. [5] designed four bionic walking wheels by imitating the structure and
posture of ostrich hoofs during walking, which effectively reduced the resistance of soil
and the disturbance of sand and improved the traction performance of walking wheels. Cai
et al. [6] analyzed the relationship between the maximum traction force and the structural
parameters of the crawler teeth based on the bionics theory to solve the problem of deep-sea
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collectors slipping on the seabed. Liang et al. [7] simulated and analyzed the influence of
tread patterns on the traction performance of the vehicle and determined the parameters
that had the greatest influence on the traction performance of the tire.

Based on the principle of bionics, it is an important and effective means to improve the
adhesion performance of vehicle soil-engaging parts by applying the biological structure
characteristics of animals to the structural design of vehicle soil-engaging parts [8]. Gan
et al. [9] constructed a mathematical model for the tractive force between the track shoe
and the sand and designed a sandy track shoe based on the mechanism of ostrich feet
traveling on sand, which improved the traction performance of the vehicle. Based on the
characteristics of reindeer foot, Zhang et al. [10] designed the bionic ribbed tread element
and bionic non-ribbed tread element, which had excellent anti-skid properties. He et al. [11]
designed a bionic adaptive low-vibration walking wheel based on ostrich foot locomotion
posture, energy storage, and vibration reduction mechanism of the metatarsophalangeal
joint (MTP). On the premise that the passing-through performance of the bionic wheel
was assured, the wheel center fluctuation of the bionic walking wheel was decreased
significantly. Based on the swing deformation characteristics of cat claw pad–ground
contact, Wang et al. [12] adopted an asymmetric layout on both sides of the groove wall
in the central area of the tire, which reduced the radial excitation force between the tread
and the road surface. Liu et al. [13] designed the crown of a radial tire imitating a cat
paw pad based on the cross-sectional fitting curve of a cat paw pad, which improved the
lateral grip of the tire. Li et al. [14] designed the tire crown based on the cross-section fitting
curve of the third toe pad of the cat, which improved the lateral adhesion of the tire when
turning. Han et al. [15] designed a bionic ostrich foot, simulated its impact process on loose
sand, and analyzed the stress distribution and deformation of the bionic foot. Liu et al. [16]
designed bionic claw spines based on the foot structure of chafers and applied them to
tracked robots, which had good adhesion and desorption properties. Ma [17] designed the
bionic sand crossing tire monomer based on the data of the ostrich plantar mastoid group
in order to study the tire with the function of sand crossing so as to improve the soil thrust
of the wheel surface.

The interaction between animal hoofs and the ground affects its motion stability [18],
and the pressure change in the hoof bottom of the limbs during animal movement is one of
the main factors affecting stability. Liu et al. [19] studied the variation of the vertical GRF of
the limbs of the blue sheep under different slopes and found that the hind limbs bore more
vertical GRF and increased with the increase of the slope, and the difference index of the left
and right sides of the limbs was similar. At the same time, the team [20] divided the hoof of
blue sheep into four quadrants, which were lateral cranial, intracranial, caudal lateral, and
caudal medial. The vertical GRF of blue sheep was transferred from the lateral quadrant to
the medial quadrant and from the caudal quadrant to the cranial quadrant. Li et al. [21]
measured the vertical GRF of reindeer with a Footscan pressure plate and found that the
vertical GRF increased with the increase in motion speed. Rifkin et al. [22] studied the gait
characteristics of goats during walking and found that there were significant differences
between forelimbs and hindlimbs. Among them, the maximum peak force of the forelimbs
was significantly greater than that of the hindlimbs. Fahie et al. [23] studied the changes in
step length and stride length, the proportion of forelimb and hindlimb, and the difference
of forelimb and hindlimb parameters of dogs with different body types in different motion
states. Pitti et al. [24] studied the peak vertical GRF and VI of normal pony and unilateral
limping pony with forelimb and found that there was a significant difference between
healthy pony and limping pony. Oosterlinck et al. [25] studied the balance between the
left and right hoofs, the front and hind hoofs, and the pressure distribution of the hoof
bottom with the limp horse as the test object. Panagiotopoulou et al. [26] selected seven
discrete regions of interest on the plantar pressure contours of adult African elephants and
Asian elephants and analyzed their foot pressure distribution patterns and COP trajectories.
There was no difference in the average peak pressure pattern and COP trajectory between
different species of elephants. Zhang [27] took the goat hoof as a bionic prototype and
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studied the dynamic morphological characteristics by using the size, direction, and area of
plantar pressure during goat movement. The goat’s plantar was divided into six regions
according to the characteristic parts, and the size and distribution characteristics of the
plantar pressure of the goats under different movement modes were analyzed. The research
found that with the increase in speed, the dynamic morphology of goat hoof was improved.
The peak plantar pressure of the goat’s forefoot increased from 57.5% to 92.5% of its body
weight, while the hoof ball pressure of the goat increased from 52% to 78%. Qian et al. [28]
studied the characteristics of foot–ground contact of German Shepherd dogs under different
gaits and found that with the increase of the contact impact force, the main landing area
and main bearing point of the dog’s right forefoot gradually adjusted from the fourth and
fifth fingers of normal walking speed to the third and fourth fingers and palm pad area of
the jumping state.

The preliminary study of the research group [29–31] found that several functional parts
evolved by goats can adapt to the unstructured environment, showing strong adhesion and
passing ability. Therefore, in this article, the goat was used as an experimental object, and
the QTM gait analysis system was used to collect the three-dimensional force changes of the
goat gait and hoof bottom under multi-slope. The pressure of functional parts was collected
by thin film pressure sensors, and the changes in vertical GRF and VI of functional parts
were analyzed to find the most significant functional parts. It will provide a theoretical
basis for the design and optimization of the bionic crawler pattern structure.

2. Materials and Methods
2.1. Acquisition and Analysis of Pressure Cloud Maps of Hoof Sole

Saanen goat was selected as the test subject, which was required to be healthy, able
to walk naturally, with normal lower limb activity, and no history of hoof diseases. The
plantar pressure plate test system (UP18, Podomed, ZIGUN AVOIN Company, Helsinki,
Finland, measuring range 1–120 N/cm2, sampling frequency 200–400 Hz, error ≤ 1%
F.S, lag ≤ 0.1 F.S) was used to collect the dynamic pressure cloud data during the hoof
touchdown of the goat, as shown in Figure 1. Before the test, the weight of the goat was
measured as 26.90 kg by a weighing scale (accuracy 0.01 kg), and the hoofs of the goat were
trimmed, cleaned, and decontaminated to obtain the correct hoof traces.
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It is to be noted that F.S indicates the percentage of the sensor’s indicator relative to
the sensor’s full-scale error.

The dynamic videos of the goat hoof touching the ground were analyzed, and the
key change frames were extracted, as shown in Table 1. The hoof spheres touched the
ground first, and the hoof tips left the ground later. When touching the ground, the inner
hoof flap was stressed first, and the outer hoof flap was stressed later, and the force was
mainly concentrated on the inner hoof spheres. When leaving the ground, the outer hoof
flap left the ground first, the inner hoof flap left the ground later, and the force was mainly
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concentrated on the outer hoof tips. The left front hoof, the left hind hoof, the right front
hoof, and the right hind hoof were labeled as FL, HL, FR, and HR, respectively.

Table 1. The hoof track of the sheep’s hoof touching the ground.

First Touchdown Second Touchdown

Touch the
Ground

Touch the
Ground

Completely

Off the
Ground

Touch the
Ground

Touch the
Ground

Completely

Off the
Ground

HR
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platform, and 3⃝ the three-dimensional biomechanical force measuring table.

Reflective balls were pasted on the joints of the limbs, forearm, and hind femur of
the goat. The position of the reflective balls was captured by the motion capture system
to obtain the hoof movement sequence and the three-dimensional movement posture of
the goat. The position of the reflective balls is shown in Figure 3. By adjusting the angle
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between the six-degree-of-freedom motion platform and the X-axis direction to simulate
different slopes, the goat climbing data were collected with the 0, 5, and 10-degree slopes.
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Figure 3. Marking of the position of the reflective ball.

Before the experiment, the weight of the goat was measured as 38.65 kg by a scale
(accuracy 0.01 kg. The hairs on the surface of the goat hoofs were removed. According to
the touching process of the goat hoof cloud maps, the hoof tips with soil-cutting function
and the hoof spheres with buffer function were selected as the characteristic functional
parts, and the thin film pressure sensors were pasted. Two sets of 8-channel FlexiForce
wireless sensing systems were used to obtain the dynamic pressure change curves of the
front and hind hoofs during the movement at different slopes. The position of the sensor
placement on the hoof is shown in Figure 4, and the sensor is shown in Figure 5. The
experiments were repeated to ensure data accuracy and elimination of abnormal data.
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2.3. Data Processing and Analysis

Analyzing the pressure data of the goat uphill and downhill, a Walk gait of “diagonal
supported—three-phase supported—same side supported—three-phase supported” was
adopted. The leg lifting sequence of “FL-HR-FR-HL” was analyzed as a typical gait cycle
as presented in Table 2, where 0 is the swing phase, and 1 is the support phase.
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Table 2. The leg lifting sequence.

Gait Sequence FL HL FR HR

1⃝ 0 1 1 1
2⃝ 0 1 1 0
3⃝ 1 1 1 0
4⃝ 1 1 0 0
5⃝ 1 1 0 1
6⃝ 1 0 0 1
7⃝ 1 0 1 1
8⃝ 0 0 1 1
9⃝ 0 1 1 1

Goat movement speed and stride length were different, resulting in different goat gait
cycle times. In order to analyze the dynamic change laws of the four hoof pressures, linear
time normalization (LTN) was used for sequence calibration and matching of the gait cycle,
which mapped the data to the interval [0, 1] without changing the original characteristics
of the data. The normalization formula is given as follows:

Frame′ = Framen − Framemin
Framemax − Framemin

(1)

where, Framemin is the smallest frame in the gait cycle, and Framemax is the largest frame in
the gait cycle.

In order to accurately obtain the moving gait, considering that the motion amplitude
of the third point of the limbs was the most significant, the motion trajectory of the third
point along the positive directions of X, Y, and Z under different slopes were observed, as
shown in Figure 6. It is obvious that the goat’s limbs had periodicity in the directions of X
and Z. Therefore, when

|X2 − X1| < 3 mm (2)

|Z2 − Z1| < 1 mm (3)

the leg was considered to be in the supported state, which was the supported phase.
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3. Results and Discussions

Peak vertical GRF and vertical impulse (VI) are the most common methods used to
analyze the laws of foot–ground contact during animal locomotion. Therefore, peak vertical
GRF and VI were selected as the main technical indexes to analyze the vertical GRF of the
goat. Peak vertical GRF is the maximum value in the force–time sequence of the supporting
phase vertical GRF during the whole gait cycle, and its unit is N. VI is the integral value of
the vertical GRF versus the time fitting curve during the touchdown period during the hoof
movement of the goat, as shown in Equation (4), and its unit is N·s. Impulse represents the
increased momentum value perpendicular to the earth of the goat’s limbs due to the action
of the vertical GRF on the limbs of the goat. The vertical datum plane of vertical GRF is
defined as the earth rather than the plane where the 3D force platform is located. Therefore,
the vertical GRF can be used to analyze the motion on the ground and slopes.

I =
∫ t2

t1
Fdt (4)

3.1. Analysis of the Vertical GRF of Characteristic Functional Parts of Goat Hoof under Multi-Slope

The vertical GRF of the characteristic functional parts of the hoof sole under the
0-degree slope was analyzed, as shown in Figure 7. The overall changing trend of the hoof
tips and hoof spheres was the same since both reached the peak force first, that is, the
part was completely touching the ground. Then, it gradually decreased to 0, with the part
completely raised. Analyzing the maximum value of vertical GRF in each part, the hoof
force of FL was mainly concentrated on the inner hoof sphere, with a peak vertical GRF of
68.36 N. The hoof force of FR was mainly concentrated on the outer hoof tip, with a peak
vertical GRF of 115.23 N. The hoof force of HL was mainly concentrated on the outer hoof
tip, with a peak vertical GRF of 131.67 N. The hoof force of HR was mainly concentrated on
the outer hoof tip, with a peak vertical GRF of 62.51 N.
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Next, the vertical GRF of the characteristic functional parts of the hoof sole under
the 5-degree slope was analyzed, as shown in Figure 8. The hoof force of FL was mainly
concentrated on the outer hoof sphere, with the peak vertical GRF of 92.70 N. The hoof
force of FR was mainly concentrated on the outer hoof tip, with a peak vertical GRF of
60.42 N. The hoof force of HL was mainly concentrated on the outer hoof tip, with a peak
vertical GRF of 62.73 N. The hoof force of HR was mainly concentrated on the inner hoof
sphere, with a peak vertical GRF of 60.53 N.
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Lastly, the vertical GRF of the characteristic functional parts of the hoof sole under
the 10-degree slope was analyzed, as shown in Figure 9. The hoof force of FL was mainly
concentrated on the outer hoof sphere, with a peak vertical GRF of 48.62 N. The hoof force
of FR was mainly concentrated on the inner hoof tip, with a peak vertical GRF of 146.20 N.
The hoof force of HL was mainly concentrated on the inner hoof tip, with a peak vertical
GRF of 139.99 N. The hoof force of HR was mainly concentrated on the inner hoof sphere,
with a peak vertical GRF of 49.35 N.
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3.2. Analysis of the VI of Characteristic Functional Parts of Goat Hoofs Bottom under Multi-Slope

The VI of the characteristic functional parts of the hoof sole under the 0-degree slope
was analyzed, as shown in Figure 10. The VI of the inner hoof sphere of FL was 34.22 N·s;
the VI of the outer hoof tip of FR was 71.17 N·s; the VI of the outer hoof tip of HL was
91.17 N·s; and the VI of the outer hoof tip of HR was 32.24 N·s.
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Next, the VI of the characteristic functional parts of the hoof sole under the 5-degree
slope was analyzed, as shown in Figure 11. The VI of the outer hoof sphere of FL was
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62.15 N·s; the VI of the outer hoof tip of FR was 39.23 N·s; the VI of the outer hoof tip of
HL was 69.42 N·s; and the VI of the inner hoof sphere of HR was 40.57 N·s.
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The VI of the characteristic functional parts of the hoof sole under the 10-degree slope
was analyzed, as shown in Figure 12. The VI of the outer hoof sphere of FL was 25.54 N·s;
the VI of the inner hoof tip of FR was 127.67 N·s; the VI of the inner hoof tip of HL was
89.06 N·s; and the VI of the inner hoof sphere of HR was 28.35 N·s.
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3.3. Comparative Analysis of the Vertical GRF and VI of Characteristic Functional Parts of Goat
Hoof under Multi-Slope

The changes of the peak vertical GRF of the characteristic functional parts of the
hoof sole under different slopes were analyzed, as shown in Figure 13 and Table 3. With
the increase of the slope, the peak vertical GRF of FR and HL decreased first and then
increased significantly, and the force was transferred from the outer hoof tips to the inner
hoof tips. The peak vertical GRF of FL increased first and then decreased, and the force
was transferred from the inner hoof sphere to the outer hoof sphere. The peak vertical GRF
of HR decreased all the time, and the force was transferred from the outer hoof tip to the
inner hoof sphere. On the whole, the main bearing force of the goat hoofs was transferred
from HL to FR; the force change of FR was the most significant.

The changes of VI of the characteristic functional parts of the hoof sole under different
slopes were analyzed, as shown in Figure 14 and Table 4. With the increase of the slope, the
VI of FR and HL decreased first and then increased greatly, and the FL and HR increased
first and then decreased. Among them, FR showed a jump trend under the 10-degree slope,
indicating that the tip of the goat hoof played an obvious role in the climbing process, and
the accumulation of force was the most pronounced on FR.
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Table 3. Comparison of the variation of the peak vertical GRF of the characteristic function parts of
the hoof bottom under different slopes.

0◦(N) 5◦(N) 10◦(N) The Variation
from 0◦ to 5◦

The Variation
from 5◦ to 10◦

The Variation
from 0◦ to 10◦

FL 68.36
Inner sphere

92.70
Outer sphere

48.62
Outer sphere +24.34 −44.08 −19.74

FR 115.23
Outer tip

60.42
Outer tip

146.20
Inner tip −54.81 +85.78 +30.97

HL 131.67
Outer tip

63.73
Outer tip

139.99
Inner tip −67.94 +76.26 +8.32

HR 62.51
Outer tip

60.53
Inner sphere

49.35
Inner sphere −1.98 −11.18 −13.16Agriculture 2024, 14, x FOR PEER REVIEW  13  of  19 
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Figure 14. The changes of VI of the characteristic functional parts of the hoof bottom under different
slopes.

Table 4. Comparison of the variation of the VI of the characteristic function parts of the hoof bottom
under different slopes.

0◦(N·s) 5◦(N·s) 10◦(N·s) The Variation
from 0◦ to 5◦

The Variation
from 5◦ to 10◦

The Variation
from 0◦ to 10◦

FL 34.22
Inner sphere

62.15
Outer sphere

25.54
Outer sphere +27.93 −36.61 −8.68

FR 71.17
Outer tip

39.23
Outer tip

127.67
Inner tip −31.94 +88.44 +56.50

HL 91.17
Outer tip

69.42
Outer tip

89.06
Inner tip −21.75 +19.64 −2.11

HR 32.24
Outer tip

40.57
Inner sphere

28.35
Inner sphere +8.33 −12.22 −3.89

3.4. Analysis of Adhesion Coefficient of Goat Hoof Bottom under Multi-Slope

In order to analyze the force of the goat during the climbing process, and then quanti-
tatively describe the adhesion performance of the goat hoofs. Taking the goat body as a
whole, the spatial three-dimensional force was analyzed, and the spatial three-dimensional
force distribution is shown in Figure 15.
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Where, Fx is the spatial lateral force, Fy is the spatial forward driving force, Fz is the
vertical GRF, Fh is the spatial three-dimensional resultant force. Since the spatial three-
dimensional vertical plate is subjected to friction during the goat walking, noise will be
generated, and the data analysis will be affected. The moving, lowess, loess, sgolay, rlowess
and rloess data smoothing methods were used. The signal-to-noise ratio (SNR), root
mean square error (RMSE), and coefficient of determination (R2) were used as evaluation
indicators. Moreover, the optimal data smoothing method was selected as the final pressure
denoising method. Among them, the denoising results of spatial lateral force, spatial
forward driving force, and vertical GRF under the 10-degree slope are shown in Table 5.

Table 5. Denoising results of spatial lateral force, spatial forward driving force, and vertical ground
reaction force under the 10-degree slope.

Index Force Moving Lowess Loess Sgolay Rlowess Rloess

SNR

Fx1 45.6737 47.7935 49.9087 48.6220 46.7867 48.6099
Fx2 34.8124 36.9723 39.6110 37.6773 33.3548 36.3560
Fy1 52.2374 54.6334 57.6871 55.4155 47.6820 54.7717
Fy2 55.0299 57.7477 61.5511 58.8012 52.0127 56.9574
Fz1 57.7372 62.3959 67.0735 65.2911 49.4790 56.9990
Fz2 61.0407 65.5280 70.1179 68.3453 53.7918 63.0567

RMSE

Fx1 0.0196 0.0153 0.0120 0.0139 0.0172 0.0140
Fx2 0.0199 0.0155 0.0115 0.0143 0.0236 0.0167
Fy1 0.0381 0.0289 0.0203 0.0264 0.0644 0.0285
Fy2 0.0383 0.0280 0.0181 0.0248 0.0542 0.0307
Fz1 0.1080 0.0632 0.0369 0.0453 0.2794 0.1176
Fz2 0.1014 0.0605 0.0357 0.0437 0.2337 0.0804

R2

Fx1 0.9756 0.9850 0.9908 0.9876 0.9811 0.9876
Fx2 0.9879 0.9926 0.9960 0.9937 0.9831 0.9915
Fy1 0.9914 0.9951 0.9976 0.9959 0.9755 0.9952
Fy2 0.9952 0.9974 0.9989 0.9980 0.9903 0.9969
Fz1 0.9970 0.9990 0.9996 0.9995 0.9798 0.9964
Fz2 0.9984 0.9994 0.9998 0.9997 0.9917 0.9990

The larger the SNR, the higher the signal credibility. The smaller the RMSE, the smaller
the deviation between the denoised data and the original data. The larger the R2, the
higher the fit between the denoised data and the original data. The comprehensive analysis
revealed that the SNR of the data smoothed by the loess method is the largest, the RMSE is
the smallest, the R2 is the largest, and the denoising effect is the best. The comparison of
force values before and after denoising is shown in Figure 16.
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It can be seen from Figure 16 that the spatial three-dimensional force during goat
movement was mainly manifested as the spatial forward driving force and vertical GRF.
The concept of adhesion coefficient is introduced to quantitatively describe the change in
adhesion during goat movement. The attachment coefficient is calculated as follows:

µ =
Fy

Fz
(5)

where, Fy and Fz were taken as instantaneous state values during goat movement. The
force value with the sampling interval of 0.01 s was retained to accurately analyze the
changes in the adhesion coefficient of the goat hoof bottom under different slopes. Under
the 0-degree slope, the data in a complete gait cycle from 2.615 s (when FL and HR were
diagonally supported in two phases, FR touched the ground completely, and HL swung
alone) to 3.789 s (when FL and HR were diagonally supported in two phases, HL raised
the ground completely, and FR swung alone) were intercepted to analysis. The change
curve of the adhesion coefficient is shown in Figure 17, where the solid line indicates the
three-phase support state, and the dashed line indicates the two-phase support state.
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According to Figure 17, under the 0-degree slope, the change in adhesion coefficient
had obvious regularity. Analyzing the support time of each gait, the three-phase support



Agriculture 2024, 14, 451 15 of 18

state was mostly used, accounting for 65.11% of the whole gait cycle. When the time was
2.647 s in gait 7⃝, FL and HR were diagonally supported in two phases: FR touched the
ground completely and HL swung alone. The adhesion coefficient was the largest, and µ

was 0.2292.
Under the 5-degree slope, the data in a complete gait cycle from 3.660 s (when FL and

HR were diagonally supported in two phases, FR touched the ground completely, and
HL swung alone) to 5.130 s (when FL and HR were diagonally supported in two phases,
HL raised the ground completely, and FR swung alone) were intercepted to analysis. The
change curve of the adhesion coefficient is shown in Figure 18, where the solid line indicates
the three-phase support state, and the dashed line indicates the two-phase support state.
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According to Figure 18, under the 5-degree slope, the change in adhesion coefficient
had obvious regularity; as time changed, the adhesion coefficient reached four peaks, which
were in the three-phase support state. Analyzing the support time of each gait, it is found
that the three-phase support state was mostly used, accounting for 83.78% of the whole gait
cycle. When the time was 3.930 s in gait 7⃝, FL and HR were diagonally supported in two
phases: FR touched the ground completely and HL swung alone. The adhesion coefficient
was the largest, and µ was 0.1868. At the same time, the gait accounted for the longest time
in the whole gait cycle, which was 28.28%.

Under the 10-degree slope, the data in a complete gait cycle from 5.070 s (when FR
and HL were diagonally supported in two phases, FL touched the ground completely, and
HR swung alone) to 6.310 s (when FR and HL were diagonally supported in two phases,
HR raised the ground completely, and FL swung alone) were intercepted to analysis. The
change curve of the adhesion coefficient is shown in Figure 19, where the solid line indicates
the three-phase support state, and the dashed line indicates the two-phase support state.

According to Figure 19, under the 10-degree slope, the change in adhesion coefficient
had obvious regularity, showing an upward trend as a whole, reaching four peaks during
the period, which were all in the two-phase support state. Analyzing the support time of
each gait, the two-phase support state was mostly used, accounting for 68.80% of the whole
gait cycle. When the time was 6.294 s in gait 2⃝, FR and HL were diagonally supported
in two phases: HR raised the ground completely and FL swung alone. The adhesion
coefficient was the largest, and µ was 0.3455. At the same time, the gait accounted for the
longest time in the whole gait cycle, which was 20.80%.

Comparing and analyzing the gait support time under different slopes, the three-
phase support state under the 0 and 5-degree slopes was adopted by a goat, and the
two-phase support state under the 10-degree slope was adopted. Comparing and analyzing
the changes in adhesion coefficient under different slopes, the peak value of adhesion
coefficient was the lowest under the 5-degree slope, and the peak value of adhesion
coefficient was the highest under the 10-degree slope. At this time, FR and the HL were
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diagonally supported in two phases. Combining with the analyses of the vertical GRF and
VI, the inner hoof flap of FR was selected as the bionic prototype, and then the bionic hoof
tip track pattern structure will be designed.
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Figure 19. The change in adhesion coefficient under the 10-degree slope.

In conclusion, hoof tips play a decisive role in goat movement. Under the 10-degree
slope, the adhesion coefficient is optimal when FR and HL are supported diagonally in two
phases, and the inner hoof tip of FR is the significant functional part.

4. Conclusions

To optimize the design of the agricultural track pattern structure, the Saanen goat
was taken as the experimental subject, and the hoof tips and hoof spheres were taken as
the characteristic functional parts. The change laws of pressure distribution and adhesion
coefficient of goat hooves were studied. Specific conclusions are as follows:

With the increase in slope, the GRF is transferred from the HL to FR, and the force
change of FR is the most significant, indicating that the accumulation of force is the most
pronounced on FR.

Under the 10-degree slope, the peak vertical GRF and VI of the inner tip of FR are the
largest, indicating that the tip of the goat hoof plays an obvious role in the climbing process.

Under the 10-degree slope, the adhesion coefficient of FR and HL in the diagonal
two-phase supported state is the largest.

Therefore, the inner hoof tip of FR is selected as the bionic prototype to design the
bionic track pattern structure.

At present, this study only analyzed the vertical GRF and VI under the 0, 5, and
10-degree slopes by combining the two functional parts of the goat hoof tips and hoof
spheres. The movement characteristics of the functional parts of the goat hoof bottom
under a larger slope and the role of other functional parts in goat climbing remain to
be studied.
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