
Citation: Cetinkaya, C.P.; Gunacti,

M.C. Meteorological and Agricultural

Drought Risk Assessment via

Kaplan–Meier Survivability Estimator.

Agriculture 2024, 14, 503. https://

doi.org/10.3390/agriculture14030503

Academic Editor: Robert J. Lascano

Received: 19 February 2024

Revised: 9 March 2024

Accepted: 19 March 2024

Published: 20 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Meteorological and Agricultural Drought Risk Assessment
via Kaplan–Meier Survivability Estimator
Cem Polat Cetinkaya * and Mert Can Gunacti

Department of Civil Engineering, Faculty of Engineering, Tinaztepe Campus, Dokuz Eylül University, Buca,
Izmir 35220, Turkey; mert.gunacti@deu.edu.tr
* Correspondence: cem.cetinkaya@deu.edu.tr

Abstract: Dry periods and drought are inherent natural occurrences. However, due to the increasing
pressures of global warming and climate change, these events have become more frequent and
severe on a global scale. These phenomena can be traced with various indicators and related
indices proposed by various scholars. In general, drought risk assessment is done by modeling
these indicators and determining the drought occurrence probabilities. The proposed adaptation
introduces the “Kaplan–Meier estimator”, a non-parametric statistic traditionally used in medical
contexts to estimate survival functions from lifetime data. The study aims to apply this methodology
to assess drought risk by treating past droughts as “events” and using drought indicators such
as the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration
Index (SPEI). Mapping these results for a better understanding of the drought risks on larger spatial
scales such as a river basin is also within the expected outcomes. The adapted method provides the
probability of non-occurrence, with inverted results indicating the likelihood of drought occurrence.
As a case study, the method is applied to SPI and SPEI values at different time steps (3, 6, and
12 months) across 27 meteorological stations in the Gediz River Basin, located in Western Turkey—a
region anticipated to be profoundly affected by global climate change. The results are represented
as the generated drought risk maps and curves, which indicate that (i) drought risks increase as the
considered period extends, (ii) drought risks decrease as the utilized indicator timescales increase,
(iii) locally plotted drought curves indicate higher drought risks as their initial slope gets steeper. The
method used enables the generation of historical evidence based spatially distributed drought risk
maps, which expose more vulnerable areas within the river basin.

Keywords: Kaplan–Meier estimator; drought risk assessment; SPI; SPEI

1. Introduction

Drought, a recurring and multifaceted phenomenon, is a widely studied topic that
is a complex interplay between atmospheric, land, and water resource systems [1–3]. It
manifests through prolonged periods of below-average precipitation, leading to depleted
soil moisture, reduced surface water availability, and cascading impacts across various
sectors [4]. Its negative impacts are far-reaching, including agricultural losses, water and
food insecurity, economic instability, mass migrations, and environmental degradation [5].

Particularly, the effects of drought on agriculture impact economic, social, and environ-
mental aspects on several levels, because the agricultural sector is the first sector affected
by drought, as a drought may reduce water availability in the soil, increase crop failure
and pasture losses, reduce crop yield, and threaten food security [6]. While meteorological
droughts are associated with precipitation deficits, agricultural droughts are associated
with deficits in soil moisture [7].

In order to develop strategies and approaches to mitigate the effects of drought and
provide water security, firstly the concept of drought in the examined case study is defined
in its current state [5,8,9]. This is expressed by drought indicators based on the historical
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timeseries of water sources, such as precipitation, streamflow, etc. Drought indicators
help us to define quantitative or qualitative parameters of the system for the evaluation
of drought monitoring and prediction [10,11]. These tools may then eventually serve
decision-makers in developing policies against the adverse effects of droughts.

The study uses two of the most widely used drought indicators—the Standardized
Precipitation Index (SPI) [12] and its climatic water balance variant, the Standardized
Precipitation–Evapotranspiration Index (SPEI) [13]—to evaluate the droughts experienced
in the study area. Due to their low data requirements, ease of calculation and interpretation,
and flexible natures, SPI and SPEI have been a staple for drought studies [14–18].

While the drought indicators may define the states of the hydrologic systems, drought
risk assessment is the crucial step for informed decision-making [19], targeting drought
interventions [20], enhanced preparedness [21], the resilience of the hydrologic systems [22],
risk reduction and cost–benefit analysis [23], and sustainable development and climate
change adaptation [24]. However, defining drought risk is an abundantly discussed topic, as
there are newly introduced concepts such as critical drought severity, singular drought, and
within-period drought [25]. Although these discussions are useful for our understanding
of the complex concepts of drought and its risk, the presented study offers a more practical
method that requires fewer data for the determination of drought risk, which is important
considering low data availability on the global scale.

In that regard, the Kaplan–Meier estimator has been used in the evaluation of the
SPI/SPEI drought indicators; it was originally introduced by Kaplan and Meier in 1958 [26]
and is a widely used method for analyzing survival data in medical science, which is the
calculated value of human patients’ survivability probability after a certain treatment. The
Kaplan–Meier estimator’s popularity stems from its key attributes, such as its nonpara-
metric nature, its direct translation of observed data into a survival curve, censored data
handling, and statistical robustness. Although parametric methods have been deemed to
be more robust than the nonparametric ones, their ease of rapid calculation and low input
needs make them essential for this study [27]. The study uses the Kaplan–Meier estimator
based on the constructive interaction whereby every wet period ends with a following dry
period, which can be considered as the limit of the wet period. Determining the survival
curve of the study area based on the SPI and SPEI values would then indicate the survival
of the wet periods. An inverse calculation defines the survival probabilities of the dry
periods, or simply the drought risks.

The assessment of drought risk entails a variety of approaches and applications around
the globe, where researchers usually monitor drought risk as a combination of some sub-
indicators both around the globe [28–31] and within national boundaries [32–35]. The
study supports these approaches, as the adapted methodology can be used with other
drought indicators.

This study’s objective is to explore the drought risks associated with the data from
meteorological stations within the designated study area, by extrapolating the spatial
distribution between these stations to generate comprehensive drought risk maps across
different periods (Figure 1). The main difference between the approach of drought assess-
ment through SPI/SPEI and the newly introduced methodology is that the indices SPI and
SPEI determine the dry/wet states of the examined location based on precipitation plus the
PET for the available period, while the newly proposed methodology defines the occurrence
risk of a drought after a wet period using the Kaplan–Meier estimator through the use
of the drought indicators of SPI and SPEI in this study. Furthermore, the Kaplan–Meier
estimator can also be used for different indices, such as the Reconnaissance Drought In-
dex (RDI) [36], the Streamflow Drought Index (SDI) [37], and the Precipitation Deciles
(PD) [38]. This research introduces an innovative approach to assessing drought risks
within the examined region, aiming to assist decision-makers in prioritizing, evaluating,
and formulating relevant policies.
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Figure 1. Flowchart of the study.

Conversely, it is crucial to acknowledge certain limitations of the study, that primarily
revolve around the availability of temporal and spatial data, as well as the precision and
accuracy of extrapolated drought risk values due to the resolution of data representation.

2. Materials and Methods
2.1. Study Area and Data Selection

The study area is the Gediz River Basin (GRB) located in Western Turkey. The average
annual precipitation is 603 mm (ranging from 500 mm near the Aegean coast to 1000 mm
in the mountainous eastern end), and the average annual temperature ranges between
12.3 and 16.8 ◦C in the basin [39]. According to the Köppen–Geiger classification, the basin
is classified as “Csa”, which is described as “Hot-summer Mediterrenean climate” [40]. The
basin drastically changed in the 1990s, from a water-rich one to one that struggles with
water scarcity. The frequent meteorological and hydrological droughts and increase in
urban and industrial demands are the main drivers of this change [41]. The agricultural
activities in the basin have also been affected by these changes. The distribution of the
main crop types cultivated in the basin (cotton, maize, and grapes) changed over time to
adapt to the water scarcity, and the total irrigated area shrunk to half its potential size by
the year 2012 due to maintenance operation problems and a lack of surface water [42].

The basin has over sixty meteorological stations in and around its boundaries; however,
some of the stations lack reliable data as some others are too close to each other, causing
repeated information (Figure 2). Data availability, a common challenge globally, is one of
the primary driving factors in choosing the best stations to represent the study area in time
and space dimensions. Out of 68 meteorological stations considered around GRB, 27 were
selected according to their data availability and spatial location, aiming at homogeneity in
data representation. The basin substantially changed in the 1990s due to anthropogenic
activities and climate change-related pressures. Thus, the declining water resources and
increasing urban and industrial demands raise concerns regarding water quality and
quantity. Determining and projecting potential future droughts is a valuable tool in decision-
making and planning for the basin [43].

The station records range between the years 1924 and 2013, but the majority of the data
are available for between the 1960s and the late 1990s (Table S1). The missing data from
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the selected stations were imputed by the R software (version 4.2.2) according to linear
regression. The R software is a free and open-source programming language and software
environment for statistical computing and graphics. The package “MICE” was used in the
data imputation process [44]. After the data imputation process, completed continuous
timeseries were used for the SPI/SPEI calculation process. Since the main analysis of
drought indicators for this stage is a localized one, based on the total available data of each
station, the consideration of a common period is not a necessity, as the occurrence of a
drought with any intensity after a wet period is the focus of this study.
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2.2. SPI/SPEI Calculations

The SPI is computed by the cumulative precipitation over k months, defined as the
accumulation periods, fitted to a parametric statistical distribution from which probabilities
are transformed to the standard normal distribution. The SPEI is determined in the same
manner, with a difference in that the cumulative climatic water balance is defined as
the difference between precipitation and the Potential Evapotranspiration (PET). The PET
described in this study has been calculated according to the Hargreaves equation [45], which
actually calculates reference evapotranspiration (ET0) but is considered equivalent [46].
The determined probabilities are then converted to the standard normal distribution to
generate the final drought index values. Equations for SPI and SPEI are given below,

SPI =
Pi − Pm

σx
(1)

SPEI =
Di − Dm

σd
(2)

where Pi is the total precipitation of the station on the i-th month, Pm is the mean precipita-
tion, σx is the standard deviation of the analyzed precipitation series, Di is the difference
between precipitation (P) and PET for the month (i), Dm is the mean difference between P
and PET, and σd is the standard deviation of the analyzed “D” difference timeseries. For
the calculation of SPEI, (Di) is given in Equation (3)

Di = Pi − PETi (3)

The calculated D values are accumulated at different time scales, as follows:

Dk
n = ∑k−1

i−0
Pn−1 − (PET)n−1 (4)
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where k is the timescale (months) of the aggregation and n is the calculation month.
The probability density function of a log-log distribution is given as:

f (x) =
β

α

(
x − γ

α

)β−1
(

1 +
(

x − γ

α

)β
)−2

(5)

where α, β and γ are scale, shape, and origin parameters, respectively, for γ > D < ∞. The
probability distribution function for the D series is then given as:

f (x) =
[

1 +
(α

x
− y
)β
]−1

(6)

With f (x) the SPEI can be obtained as the standardized values of F(x) according to the
method of Abramowitz et al. (1965) [47]:

SPEI = W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3 (7)

W =
√
−2 ln(P) f or P ≤ 0.5 (8)

where P is the probability of exceeding a determined Di value and is given as P = 1 − f (x),
while the constants are:

C0 = 2.515517, C1 = 0.802853, C2 = 0.010328,

d1 = 1.432788, d2 = 0.189269, d3 = 0.001308

The SPI and SPEI values for the 3-, 6-, and 12-month accumulation periods were
calculated for the selected stations by the “SPEI package” of the R software. Shorter
timescales such as 3, 6, and 12 months are generally used as indicators for reduced soil
moisture and flow in relatively small tributaries of a river, and longer timescales are
commonly used as indicators for reduced streamflow and reservoir storage. They can be
used as indicators of different types of droughts.

2.3. Adaption and Adoption of Kaplan–Meier Estimator for Drought Risk Assessment

The Kaplan–Meier estimator methodology is used to analyze “time-to-event” data,
usually in medical sciences. In the term “Time-to-event”, the term “event” is considered
as the “death” of a patient after some applied treatment in medical science, and provides
researchers the flexibility to apply this method to other fields by altering the event term to
apply to the fatigue strength of metals [48] or the employment of married women [49]. The
method’s main assumptions regard the censored data, which are (i) at any time, patients
who are censored have the same survival prospects as those who continue to be followed;
(ii) the survival probabilities are the same for subjects recruited early and late in the study,
(iii) the event happens at the time specified, none of which is related to the presented study
since they are mostly related to patients’ human behavior in relation to joining or leaving
the study. Thus, due to the nature of the study, the term “product limit” describes the
process of the study better.

The calculated values of SPI and SPEI are classified as wet and dry states (Table 1). The
transition of wet state to dry state or drought occurrence indicates the “events” described
by Kaplan–Meier [26]. The study is based on this synergy, where drought occurrences are
named “events”. Thus, applying the Kaplan–Meier or “Product-Limit” estimator would
produce the product limit or the survivability of the wet periods (in this case, in months).

Ŝ(t) = ∏
i: ti≤t

(1 − di
ni
) (9)
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where ti is the time at which a dry state occurs; ni is the total number of wet states at the
time ti and di is the number of dry states that occurred at time ti.

Since dry states can occur consecutively, the adapted method also includes the follow-
ing dry state occurrences in the same wet period. This provides additional knowledge about
the occurrence probabilities of the following dry states, not just the initial one, e.g., Ahmetli
station has 32 wet periods but 44 recorded dry states. Including every dry state within the
equation requires an update of the description of ni, which now can be explained as the
“number of dry states hasn’t happened yet at the time ti” or the “number of unrealized
dry states”.

Table 1. SPI/SPEI classification scale.

SPI/SPEI Values Description of State

SPI/SPEI < −2 Extreme drought
−2 < SPI/SPEI < −1.5 Severe drought
−1.5 < SPI/SPEI < −1 Moderate drought
−1 < SPI/SPEI < 1 Near normal
1 < SPI/SPEI < 1.5 Moderately wet
1.5 < SPI/SPEI < 2 Severely wet

SPI/SPEI > 2 Extremely wet

The result S(ti) indicates the probability of a wet period lasting longer than ti or the
“event” not taking place at the time ti; in other words, the nonconcurrence probability of
the drought. From the drought risk perspective, 1 − S(t) would describe the probability of
an “event” taking place or the occurrence probability, which is the definition of risk, DR(t)
(Table 2).

DR(t) = 1 − Ŝ(t) = 1 − ( ∏
i: ti≤t

(
1 − di

ni

)
) (10)

Table 2. Recorded dry states in Ahmetli station between 1966 and 1988 according to SPI-3.

Time (Month)

No.
Unrealized
Dry States

ri

No.
Dry States
Realized

di

Kaplan–Meier
Ŝ(t)

Drought Risk
(DR(t))

1 44 5 0.886 0.114
2 39 5 0.773 0.227
3 34 6 0.636 0.364
4 28 6 0.500 0.500
5 22 3 0.432 0.568
6 19 2 0.386 0.614
7 17 2 0.341 0.659
8 15 4 0.250 0.750
9 11 2 0.205 0.795
10 9 2 0.159 0.841
14 7 1 0.136 0.864
15 6 1 0.114 0.886
17 5 1 0.091 0.909
18 4 1 0.068 0.932
24 3 1 0.046 0.954
25 2 1 0.023 0.977
27 1 1 0 1.000

In the first column of Table 2, the observed durations (months) that a dry state occurs
after a wet period are given for the specific station, e.g., the longest duration for which a
dry state occurrence was observed after a wet state is 27 months for Ahmetli station. In
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the next column, the number of unrealized dry states, which is the cumulative number of
dry state occurrences (events), is listed in decreasing order. The number of realized dry
states di describes the number of dry state occurrences of each observed duration. The
Kaplan–Meier survival probability is calculated in the Ŝ(t) column and the drought risks
are determined in the last column.

3. Results and Discussion
3.1. Drought Risk Map Results

The drought risks of the 27 meteorological stations, according to the 3-, 6-, and
12-month SPI/SPEI values and the adapted Kaplan–Meier estimator method, are here
calculated (Tables S2–S217). According to the results, 3-, 6-, and 12-month drought risk
values for each station have been integrated with the stations’ locations via ArcGIS soft-
ware (version 10.3.1). Local SPI/SPEI drought risk values were then plotted as drought risk
maps using ArcGIS. Point values have been extrapolated via the “SPLINE” tool of ArcGIS
(Figures 3–8), which is based on the splines methodology described by Wahba [50] and was
computationally developed by Hutchinson [51].
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to SPEI-12.

The plotted drought risk maps present the drought risk possibility after a 3-, 6-,
or 12-month period according to SPI or SPEI values of 3-, 6-, or 12-month timescales
(Figures 3–8). While the lower drought risk percentages are represented by colder color
tones (blue-green), higher risk percentages are represented by warmer color tones (red-
orange). As demonstrated, this array of visual results can be used as tools for decision-
making by various levels of decision-makers and stakeholders. As the density of informa-
tion given to end-users and decision-makers may be confusing due to their complex nature,
spatially distributed maps are helpful tools that help to demonstrate vulnerable hotspots
for different time scales to aid with the comprehension of drought risks by stakeholders
and decision-makers. It must be noted that the drought risk maps are generated based on
a specific case; for instance, a request for drought risk mapping for the next cultivation
season will require a shorter time scale of a chosen drought index, such as SPI, but when the
presentation of the climate change effect is a necessity, another drought risk mapping ap-
proach based on SPEI for a longer planning activity may be preferred by a decision-maker
responsible the implementation of policies and preventive measures.

The drought risk maps produced can be interpreted both via comparisons and via
point value. For instance, in Figure 3, Ahmetli station represents higher drought risks
compared to the other locations around it, but specifically, according to the SPI-3, there
are 36%, 61% and 85% risks that Ahmetli will experience drought in the next 3, 6 and
12 months, respectively.

In general, each of the results plotted and shown in Figures 3–8 indicate that, as the
period of the drought risk assessed increases, the drought risk also increases. This is due to
the fact that as the inquiry period extends, it is more likely that the months considered as
“dry” will also be included in the calculations. It is also observed that as the timescales of
the calculated SPI or SPEI values increase, drought risks decrease. As the timescales of the
SPI or SPEI increases, the accumulated values tend to reach an average, and thus the most
extreme events such as floods or droughts are inclined to diminish.

Conversely, a comparison between the SPI and SPEI drought risk maps indicates that,
for most of the study area, the observed results are similar, aside from slight differences
due to information on PET added by the SPEI.

3.2. Drought Risk Curve Results

While drought risk maps help to capture the general outline and condition of the
study area, drought risk curves can also be used to focus on specific locations, such as
Lake Marmara in the Gediz study case. The drought risk curves of Lake Marmara, derived
from SPI (Figure 9a) and SPEI (Figure 9c) values, validate the historical records of regional
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droughts experienced by local farmers first-hand. Situated in the center of the GRB, Lake
Marmara suffers severely from droughts, and drought risks exponentially increase in
shorter periods, which indicates that droughts occur often in the region with reference to
all of the SPI and SPEI timescales. Conversely, in comparison to Lake Marmara, the SPI
and SPEI drought curves for Salihli station, which is a relatively wetter location, reveal a
decreasing risk of drought considering the slopes of the probability curves (Figure 9b,d).

Agriculture 2024, 14, 503 10 of 15 
 

 

approach based on SPEI for a longer planning activity may be preferred by a deci-
sion-maker responsible the implementation of policies and preventive measures. 

The drought risk maps produced can be interpreted both via comparisons and via 
point value. For instance, in Figure 3, Ahmetli station represents higher drought risks 
compared to the other locations around it, but specifically, according to the SPI-3, there 
are 36%, 61% and 85% risks that Ahmetli will experience drought in the next 3, 6 and 12 
months, respectively. 

In general, each of the results plotted and shown in Figures 3–8 indicate that, as the 
period of the drought risk assessed increases, the drought risk also increases. This is due 
to the fact that as the inquiry period extends, it is more likely that the months considered 
as “dry” will also be included in the calculations. It is also observed that as the timescales 
of the calculated SPI or SPEI values increase, drought risks decrease. As the timescales of 
the SPI or SPEI increases, the accumulated values tend to reach an average, and thus the 
most extreme events such as floods or droughts are inclined to diminish. 

Conversely, a comparison between the SPI and SPEI drought risk maps indicates 
that, for most of the study area, the observed results are similar, aside from slight 
differences due to information on PET added by the SPEI. 

3.2. Drought Risk Curve Results 
While drought risk maps help to capture the general outline and condition of the 

study area, drought risk curves can also be used to focus on specific locations, such as 
Lake Marmara in the Gediz study case. The drought risk curves of Lake Marmara, de-
rived from SPI (Figure 9a) and SPEI (Figure 9c) values, validate the historical records of 
regional droughts experienced by local farmers first-hand. Situated in the center of the 
GRB, Lake Marmara suffers severely from droughts, and drought risks exponentially 
increase in shorter periods, which indicates that droughts occur often in the region with 
reference to all of the SPI and SPEI timescales. Conversely, in comparison to Lake Mar-
mara, the SPI and SPEI drought curves for Salihli station, which is a relatively wetter lo-
cation, reveal a decreasing risk of drought considering the slopes of the probability 
curves (Figure 9b,d). 

 
Figure 9. Drought risk curves of Lake Marmara (Golmarmara) and Salihli station according to
(a,b) SPI and (c,d) SPEI.

3.3. Discussion

The presented study adapts the Kaplan–Meier survivability estimator method for the
purpose of regional drought risk analysis. There are some other studies on the subject,
where the researchers estimate drought risk with other statistical methods, such as Average
Recurrence Interval [52], likelihood of impact occurrence [3], or the correlation between
drought indices and their impacts [53], examining the time series of a single or several
drought index/indices, or as a combination of drought hazard and vulnerability indices [54].
Although most of these studies involve complex calculation processes with rich data
requirements, the results represent the related study areas at a coarser resolution [55,56].

However, the presented study suggests a simpler but more efficient approach. First, the
proposed methodology enables the easy computation of probabilities, and can be applied
to various drought indices. The previous studies examining agricultural drought risk
using SPI alone also have the potential to underestimate the agricultural drought risk
under conditions of global climate change [56–58]. Consequently, the study has potential
applicability as a flexible tool that can be used in diverse studies. Second, the drought
risk maps generated, which can be produced in high resolution (<30 m) depending on
the data availability, are emphasized for their substantial value to stakeholders. Owing to
their accessible and interpretable nature, both technical and non-technical stakeholders can
comprehend and evaluate the provided maps. This raises their value, as conflicts among
stakeholders are often rooted in a lack of comprehension of technical nuances, which may



Agriculture 2024, 14, 503 11 of 14

not be immediately apparent to non-technical counterparts. Furthermore, high-resolution
maps can also provide more information on drought risk in the plots of individual farmers.

The utility of drought risk maps extends to decision-makers, aiding in the identifica-
tion of high-risk areas within the examined region. This information, when demonstrated
in terms of spatial and temporal considerations, enables the formulation of targeted preven-
tive measures, including but not limited to local irrigation rotations, adjustments to crop
patterns, and investments in irrigation infrastructure. The applicability of such comparative
analyses extends not only within the studied region, but also to neighboring areas, reaching
from river basins to national and international boundaries.

Moreover, the study underscores the value of drought curves when used in enhancing
the understanding of localized drought risk trends. These curves offer a comprehensive
perspective compared to drought risk maps, particularly for focal points of significance
and hotspots like degraded wetlands.

The specific outcomes of the study are as follows: firstly, we observed an increase in
drought risk with the extension of the inquiry period, which is attributed to the inclusion
of more months during typically dry periods; secondly, we saw a decrease in drought risk
as the timescale of the SPI or SPEI calculations increased, owing to the cumulative effects
that tend to average out extremes; thirdly, we found consistent results in the SPI and SPEI
drought risk maps plotted across most of the study area, with slight variations attributed to
the incorporation of potential evapotranspiration (PET) by SPEI; and finally, we identified
high-drought-risk areas through drought curves characterized by steeper initial slopes.

4. Summary and Conclusions

The integration of the Kaplan–Meier estimator method into drought risk assessment
yields practical and visually informative tools for a diverse array of decision-makers and
stakeholders, ranging from individual farmers to larger-scale farming enterprises, and
governmental bodies and municipalities.

This tool offers easy probability calculations and can be applied to various drought
indices, making it a flexible tool. Importantly, the drought risk maps generated are valuable
for stakeholders to use due to their clear and accessible nature, bridging the gap between
technical and non-technical understanding. These spatially distributed drought risk maps
also aid decision-makers and water-managers in exposing more vulnerable areas of the
river basin based on historical evidence, enabling targeted interventions like irrigation
management and infrastructure investment. Additionally, the study highlights the value of
drought curves in relation to understanding localized trends, providing a deeper insight
into specific hotspots like degraded wetlands. The low data requirement of the selected
drought indicators, the method’s adaptability to other drought indicators, and the easy-
to-understand visual representation of the results make this adaptation promising, and
extend its applicability beyond the studied region, reaching into neighboring areas and
potentially influencing national and international water management strategies.

On the other hand, it must be also underlined that the proposed methodology has its
limitations, mostly due to data availability and the accuracy of the fictitious values that are
extrapolated between stations. The SPI/SPEI timescales utilized (3-, 6-, and 12-month) while
assessing the drought risks can be optimized in future studies to focus on a specific aim,
supported by the in-situ measurement or records of historical droughts, such as detecting
short-term extreme droughts, which may be unobservable due to the accumulation of
indicator values when using longer timescales. The same methodology can be applied over
longer timescales for detecting longer, more persistent droughts with lower magnitudes.
Moreover, the characteristics of the drought curves, such as the slope or angle of the initial
section of the curve, etc., can be classified into post-defined sub-categories such as wet and
dry states.
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27 meteorological stations; Tables S2–S217: Kaplan–Meier estimator, drought risk calculations for all
27 meteorological stations.
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