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Abstract: An innovative framework for peach tree disease recognition and segmentation is proposed
in this paper, with the aim of significantly enhancing model performance in complex agricultural
settings through deep learning techniques and data fusion strategies. The core innovations include a
tiny feature attention mechanism backbone network, an aligned-head module, a Transformer-based
semantic segmentation network, and a specially designed alignment loss function. The integration of
these technologies not only optimizes the model’s ability to capture subtle disease features but also
improves the efficiency of integrating sensor and image data, further enhancing the accuracy of the
segmentation tasks. Experimental results demonstrate the superiority of this framework. For disease
detection, the proposed method achieved a precision of 94%, a recall of 92%, and an accuracy of 92%,
surpassing classical models like AlexNet, GoogLeNet, VGGNet, ResNet, and EfficientNet. In lesion
segmentation tasks, the proposed method achieved a precision of 95%, a recall of 90%, and an mIoU
of 94%, significantly outperforming models such as SegNet, UNet, and UNet++. The introduction of
the aligned-head module and alignment loss function provides an effective solution for processing
images lacking sensor data, significantly enhancing the model’s capability to process real agricultural
image data. Through detailed ablation experiments, the study further validates the critical role of
the aligned-head module and alignment loss function in enhancing model performance, particularly
in the attention-head ablation experiment where the aligned-head configuration surpassed other
configurations across all metrics, highlighting its key role in the overall framework. These experiments
not only showcase the theoretical effectiveness of the proposed method but also confirm its practical
value in agricultural disease management practices.

Keywords: deep learning in agriculture; peach disease detection and segmentation; image and sensor
data fusion; tiny feature attention; precision agriculture

1. Introduction

In the contemporary world, the sustainability and efficiency of agricultural production
have become a global focus [1]. With the continuous growth of the population [2] and
the limited nature of land resources [3], improving crop yield and quality, particularly in
the domain of disease management, has emerged as a crucial direction for agricultural
technological innovation [4]. As a significant economic crop, peach trees and their fruits
find extensive applications in food, medicine, and cosmetics, among other fields. However,
peach trees are susceptible to various diseases during their growth. These diseases not
only affect the yield and quality of the fruits but also lead to severe economic losses [5].
Thus, the timely and accurate identification and management of peach tree diseases are of
significant importance for ensuring agricultural production.
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Johnson Kendall A. et al. [6] discovered that the identification of phony peach disease
(PPD) in the United States primarily relies on visual assessment. However, other diseases
with symptoms similar to PPD can easily be misidentified as PPD, making identification
challenging; Lou et al. [7] detailed the major peach diseases in China, Spain, and the United
States and employed LAMP-based methods to test peach disease pathogens. However, this
approach requires stringent environmental conditions and incurs high costs; therefore, El-
Kahlout, Mohammed I. et al. [8] proposed a machine-learning-based method for identifying
peach tree varieties. They collected a dataset of over two thousand images, which was split
into a training set and a test set in a 7:3 ratio, ultimately achieving a 100% accuracy rate
on the test set, but the tiny dataset size limits the model’s applicability. Gadade Haridas
D. et al. [9] introduced a machine-learning-based method for classifying diseases on tomato
leaves. They compared methods such as Support Vector Machine (SVM) and Random
Forest, demonstrating their model’s robustness, though this approach is not highly efficient.

Traditional disease identification methods largely rely on the experience and knowledge
of agricultural experts, which is not only time-consuming and labor-intensive but also in-
efficient, hardly meeting the demands of large-scale agricultural production [10]. With the
rapid development of computer vision and deep learning technologies [11], image-based
disease identification methods offer new solutions for agricultural disease management. These
technologies can automatically analyze crop images to identify and classify different types of
diseases [12], significantly enhancing the efficiency and accuracy of disease identification.

Alosaimi, Wael et al. [13] utilized Visual Geometry Group (VGG-19) and Mask R-
CNN structures for peach tree disease detection. To help farmers increase peach yield,
they proposed the PeachNet network architecture, achieving a 94% accuracy rate, but
the model’s accuracy in real-world conditions cannot be guaranteed. Zhang et al. [14]
integrated a convolutional neural network (CNN) with different models such as ResNet-34,
AlexNet, VGG16, and ResNet-50 for peach tree disease detection. The experimental results
showed that the integration with ResNet-34 was the most effective, reaching a 94.12%
accuracy rate; Sun et al. [15] proposed a dual-channel algorithm based on decoupled
representation and classifiers. This algorithm uses transfer learning to enhance feature
representation capabilities and utilizes two channels to separately focus on head and tail
classes. The final classification results are obtained through a residual fusion mechanism.
The experimental results show that the algorithm achieved a 94.27% accuracy rate on
the test set. Yadav Saumya et al. [16] proposed a convolutional neural network model to
detect bacterial disease from peach leaf images, ultimately reaching a 98.75% accuracy rate
on both laboratory and real cultivation field images. However, their dataset was small,
compromising the model’s robustness.

Akbar Muneer et al. [17] proposed a lightweight (WLNet) CNN model based on the
VGG-19, trained on a dataset of 10,000 images. The experimental results showed their
model outperformed four other CNN models, reaching 99%. Farman Haleem et al. [18]
introduced a robust disease detection method based on CNN, utilizing its powerful feature
extraction capability for disease detection in fruit and leaf images. For better testing,
they collected the dataset for this experiment from peach orchards and performed data
augmentation and enhancement. By fine-tuning the EfficientNet model, they obtained the
optimal model for peach tree disease detection, with an average accuracy rate of 96.6%
on the test image set. Huang et al. [19] proposed a peach disease detection method based
on the aymptotic non-local mean (ANLM) image algorithm to address issues such as
noise, background interference, and low detection rates in peach disease images. Their
experiments showed this method to be an effective peach disease detection approach. Nabi
Firasath et al. [20] applied a wireless sensor network (WSN) to an apple disease detection
system. Its flexibility has vast potential in apple farms, but the deployment cost and size
of sensors remain significant challenges. Additionally, expert intervention is necessary in
certain operations of the system.

Despite the significant achievements of deep learning in the field of image recog-
nition [21–25], challenges still exist in the identification and segmentation of peach tree
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diseases. Firstly, the appearance features of peach tree diseases are diverse, and the dif-
ferences from normal leaves are sometimes not significant, increasing the difficulty of
identification. Secondly, existing deep learning models still lack sufficient precision when
dealing with highly similar disease images. Furthermore, due to the lack of high-quality
annotated data, overfitting and other issues may arise during the model training process.
In response to these challenges, this paper proposes a framework for peach tree disease
identification and lesion segmentation based on deep learning and sensor systems. The
main contributions and innovations of this study include the following.

1. Dataset construction and optimization: A large-scale dataset of peach tree disease
images was collected and organized, including images from the West Campus of China
Agricultural University, Zhuozhou Botanical Garden, and the Internet. Through a
carefully designed collection process and high-standard data annotation strategy, the
quality and diversity of the dataset were ensured, providing a solid foundation for the
training of deep learning models.

2. Tiny feature attention mechanism: To enhance the model’s ability to recognize subtle
features of peach tree diseases, a novel tiny feature attention mechanism was proposed.
This mechanism can effectively capture the subtle differences between disease features,
improving the model’s identification precision.

3. Aligned-head module: To address the issue of missing sensor information in web-
crawled image data, the aligned-head module was designed to align sensor data with
image data. Through this approach, the model can fully utilize sensor data, enhancing
the accuracy and robustness of disease identification.

4. Transformer-based semantic segmentation network: An advanced Transformer archi-
tecture was adopted to build the semantic segmentation network. This network can
more accurately segment lesion areas, providing a reliable basis for further analysis
of diseases.

By applying these innovative techniques, this paper not only significantly improves
the accuracy of peach tree disease identification and lesion segmentation but also provides
an efficient, automated solution for agricultural disease management. It is believed that
the findings of this study will have a significant impact on advancing the development of
intelligent agriculture and improving the level of crop disease management.

2. Related Work
2.1. Image Classification Methods Based on Computer Vision
2.1.1. ResNet

ResNet, or Residual Network, marked a significant breakthrough in the fields of
deep learning and computer vision when it was introduced by He et al. in 2015, finding
widespread applications in agricultural scenarios [26]. Its core concept revolves around
addressing the degradation problem encountered during the training of deep networks
by introducing residual learning units. With an increase in network depth, although a
theoretically stronger representational capability is anticipated, training error has been
observed to increase in reality. This phenomenon is attributed to the vanishing or exploding
gradient problem faced during the training of deep networks, making them challenging
to train [27]. The introduction of skip connections in ResNet allows signals to be directly
propagated from early to later layers of the network, effectively mitigating this issue, as
shown in Figure 1.

In instances where the residual equals zero, skip connections can directly transmit
the input without negatively impacting network performance. Another characteristic of
ResNet is its stratified design. Common variants of ResNet include ResNet-50, ResNet-101,
and ResNet-152, with these numbers indicating the number of convolutional layers within
the network. For instance, ResNet-50 is structured into five stages, each comprising several
residual blocks that utilize a bottleneck design to reduce computation. This bottleneck struc-
ture incorporates three layers of convolution—1 × 1, 3 × 3, and 1 × 1 convolutions—where
1 × 1 convolutions are employed to decrease and restore dimensions, and the 3 × 3 con-
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volution is responsible for processing features. The mathematical representation of this
design is

y = F (x, {W1, W2, W3}) + x (1)

Here, F signifies a sequence through 1 × 1, 3 × 3, and 1 × 1 convolutional layers, with
W1, W2, W3 representing the weights of these three convolutional layers. During implemen-
tation, ResNet incorporates Batch Normalization and the ReLU activation function, further
enhancing network training stability and convergence speed. Batch Normalization nor-
malizes the minibatch data before every layer’s input, reducing the internal covariate shift
and allowing for higher learning rates to accelerate network training. The ReLU activation
function introduces non-linearity, enriching the network’s expressive capacity. ResNet’s
applications in computer vision tasks are extensive, encompassing image classification [28],
object detection [29], and semantic segmentation [30], among others. In image classification,
ResNet leverages deep networks to learn high-level image features, significantly improving
classification accuracy [31]. In object detection and semantic segmentation, ResNet often
serves as a backbone for feature extraction, combined with other structures (e.g., Faster
R-CNN, Mask R-CNN, UNet) to provide potent feature representation capabilities [32,33].
Moreover, ResNet exhibits robust network learning and generalization capabilities, show-
casing exceptional performance in various types of peach disease detection tasks. Even
under conditions of tiny sample sizes or uneven sample distribution [34], ResNet can effec-
tively learn generalizable feature representations, offering enhanced stability and reliability
in practical applications. The success of ResNet lies not only in addressing key issues in
training deep models but also in its streamlined and efficient network structure design,
laying the foundation for the development of subsequent deep learning models. Current
and future research continues to explore how to further optimize the ResNet structure and
better apply it to agricultural disease detection domains, fully leveraging deep learning’s
potential in a variety of computer vision tasks.

Figure 1. The ResNet network structure diagram shows the architecture comprising an input layer,
multiple stacked residual blocks (Res Block), and an output layer. Each residual block facilitates
direct feature transfer through skip connections, effectively preventing gradient vanishing issues
in deep network training. This illustration conveys how ResNet enhances deep network learning
capabilities and training efficiency by incorporating residual learning units.
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2.1.2. Vision Transformer

The introduction of Vision Transformer (ViT) [35] signified a major shift in deep
learning for image analysis, proposed by Google in 2020. ViT represents the first successful
application of the Transformer structure, initially designed for natural language processing
(NLP) tasks [36], for image classification tasks, subsequently demonstrating significant
potential in plant disease detection [37]. This innovation not only revealed the potential of
the Transformer structure in processing non-sequential data [38] but also initiated a new
chapter in the application of self-attention mechanisms in the field of computer vision [39].
In ViT, an image is first segmented into a series of fixed-size patches, treated as elements in a
sequence akin to words in text processing. Each patch is then flattened and transformed into
a fixed-dimension vector through a linear layer. These vectors are subsequently processed
by the Transformer model.

This design enables ViT to capture complex relationships and global information be-
tween image patches, thereby improving classification accuracy. The core of the Transformer
model is the self-attention mechanism, which allows the model to consider information
from all other patches when processing each image patch, calculated as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V, (2)

where Q, K, V are the query, key, and value matrices, respectively, and dk is the dimension of
the key vectors. This mechanism enables ViT to dynamically focus on different parts of the
image while processing each patch, effectively capturing long-distance dependencies. ViT
constructs a deep model by stacking multiple such Transformer layers. Each Transformer
layer contains a multi-head attention module and a feed-forward neural network, both
equipped with residual connections and layer normalization to facilitate the training of
deep networks. The output of the ViT model is obtained by pooling (typically simply taking
the vector corresponding to the classification token) the output of the last Transformer layer,
which is then mapped to final class probabilities through a linear layer. ViT has shown
superior performance in many image classification tasks, especially when large volumes
of training data are available. Compared to traditional CNNs, ViT demonstrates distinct
advantages in processing high-resolution images and capturing global dependencies [40],
particularly for peach tree diseases addressed in this paper. After extensive training,
the ViT model excels in learning tasks, accurately identifying various types of diseases
across different scenarios, including leaf discoloration and wilting. Moreover, ViT possesses
strong generalization capabilities that are able to handle images under varying illumination,
angles, and backgrounds, thereby enhancing the stability and reliability of disease detection.
However, the high demands for computational resources and data volume posed by ViT
limit its application in resource-constrained scenarios to a certain extent.

2.2. Image Segmentation Methods Based on Computer Vision
2.2.1. UNet

Since its introduction by Olaf Ronneberger et al. in 2015 [41], the UNet model has
become a significant milestone within the field of medical image segmentation. Its unique
“U”-shaped structure design has exhibited exceptional performance in various image
segmentation tasks, especially in precise localization of minute structures. The success of
UNet extends beyond medical image segmentation to include applications in other domains,
such as agricultural disease identification [42] and satellite imagery analysis [43]. The UNet
architecture primarily consists of two parts: the contracting path and the expansive path,
as shown in Figure 2.

The contracting path captures the contextual information of the image, while the
expansive path recovers precise location information from these data to achieve accurate
image segmentation. The contracting path resembles a traditional convolutional neural net-
work, alternating between multiple convolutional and pooling layers. Each convolutional
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layer extracts features from the input image and applies a non-linear activation function,
commonly ReLU. Subsequently, pooling layers downsample the output of the convolu-
tional layers, reducing the dimensions of the feature maps while preparing to capture
broader contextual information by increasing the receptive field. With each downsampling
operation, the width and height of the feature map are halved, while the depth of the
features is doubled.

Decoder

Encode

Classifier

Figure 2. The UNet network structure diagram in the related work section of this article displays
the encoder–decoder structure of the UNet model. It clearly marks the encoder and decoder parts,
reflecting the typical network architecture of UNet widely applied in medical image segmentation.
The diagram aims to explain how UNet achieves precise segmentation of target areas in images by
extracting features and merging contextual information.

The design of the expansive path, a core innovation of UNet, gradually increases the
size of the feature maps through upsampling layers, restoring the detailed information of
the image. Following each upsampling operation, a convolutional operation reduces the
depth of the features, and skip connections concatenate the corresponding feature maps
from the contracting path with the current feature map, reintroducing lost detail informa-
tion back into the network. Finally, the output layer of UNet uses a 1 × 1 convolution to
map the feature map to the number of target classes, generating the final segmentation
map. This step can be mathematically represented as

Output = Conv1×1(E0 ∗ W0 + b0) (3)

where Conv1×1 denotes the 1 × 1 convolution operation and E0 is the last layer’s feature
map in the expansive path. With its unique structural design, UNet achieves a good
balance between detail restoration and feature extraction. The design of skip connections
enables the network to effectively utilize low-level features, addressing the common issue
of information loss in traditional convolutional networks during image-segmentation
tasks [44]. Additionally, UNet’s flexibility with image sizes allows its application across
various image segmentation tasks [45]. Possessing powerful feature extraction capabilities,
UNet accurately captures various morphological and textural features of peach lesions
through multilevel feature fusion and upsampling operations, enhancing the accuracy
and robustness of segmentation. Moreover, UNet can adjust network depth and width
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to balance model complexity and performance, better accommodating different scales of
datasets and task requirements [42].

2.2.2. MaskRCNN

Introduced by He et al. in 2017 [46], Mask R-CNN has revolutionized the model
by integrating an additional branch into the Faster R-CNN for generating high-quality
segmentation masks for each detected object. This design not only enables Mask R-CNN to
perform high-precision object detection but also allows for pixel-level object segmentation,
significantly broadening its application spectrum in computer vision. Applications of
Mask R-CNN span across various fields, including medical image segmentation [47],
autonomous vehicle vision systems [48], scene understanding [49], and the identification
and segmentation of crop diseases within the agricultural sector [50].

The architecture of Mask R-CNN comprises four main components: the backbone
network, the Region Proposal Network (RPN), the RoI align, and the branches for classifica-
tion, bounding box regression, and mask prediction. The backbone network is responsible
for extracting features from the input image, with ResNet and FPN (Feature Pyramid Net-
works) commonly employed as the backbone networks in Mask R-CNN. By establishing a
feature pyramid, FPN effectively captures objects at various scales, providing rich feature
representations for subsequent object detection and segmentation. RPN utilizes features
extracted by the backbone network to swiftly generate candidate regions for objects. To
address the inaccuracy introduced by the RoI Pooling operation in Faster R-CNN, Mask
R-CNN employs the RoI align, which uses bilinear interpolation to precisely calculate the
values within the boundaries of each RoI, ensuring accuracy in feature extraction. On each
region proposed by the RPN, Mask R-CNN concurrently performs classification, bounding
box regression, and mask prediction. The mask prediction, a key innovation of the model,
employs a small fully convolutional network (FCN) for the pixel-level segmentation of
each RoI. This branch operation can be expressed as

M = FCN(Froi), (4)

where M represents the mask prediction corresponding to each RoI. The training process
of Mask R-CNN involves multi-task learning, including classification, bounding box re-
gression, and mask prediction. The overall loss function is a weighted sum of these task
losses, which can be represented as

L = Lcls + Lbox + Lmask, (5)

where Lcls, Lbox, and Lmask, respectively, denote the losses for classification, bounding box
regression, and mask prediction. This multi-task learning strategy enables Mask R-CNN to
maintain high precision in detection while effectively performing instance segmentation.
The introduction of Mask R-CNN has significantly advanced the field of computer vision,
especially setting a new benchmark for instance segmentation tasks. Through its intricate
network structure and effective multi-task learning strategy, high-precision object detection
and segmentation have been achieved. With ongoing research, Mask R-CNN has been
widely applied in multiple domains [51], giving rise to numerous variants and improved
models, thereby further expanding its application range and performance. For the research
presented in this paper, Mask R-CNN, combining the functionalities of object detection
and semantic segmentation, precisely locates and accurately segments disease spots in
peach images. This fine-grained segmentation result aids further analysis and diagnosis.
Additionally, Mask R-CNN employs a deep neural network structure, trained on exten-
sive datasets and optimized parameters, capable of effectively detecting and segmenting
peach disease spots under various conditions of illumination, angles, and backgrounds,
demonstrating strong generalization capabilities. Moreover, Mask R-CNN can process
multiple disease spots in peaches, achieving the simultaneous segmentation of multiple
targets, thereby enhancing processing efficiency and accuracy.



Agriculture 2024, 14, 797 8 of 31

3. Materials and Method
3.1. Dataset Collection

In this study, a comprehensive and in-depth peach tree disease image dataset was
constructed with the aim of achieving the high-precision identification and segmentation
of diseases through deep learning technologies. The construction of this dataset spanned
from the autumn of 2023 to the spring of 2024, during which extensive use was made of
on-site resources at the West Campus of China Agricultural University and Zhuozhou
Experimental Garden, supplemented by images collected via Internet crawling. A vari-
ety of devices ranging from traditional high-definition digital cameras to modern drones
equipped with multispectral cameras were utilized, ensuring images captured from dif-
ferent angles and resolutions comprehensively reflected the characteristics of the diseases.
Specifically, image resolutions ranged from 1920 × 1080 to 4096 × 2160, with the intention
of meeting the requirements of subsequent deep learning model processing. Through these
devices, approximately 10,000 images were collected, covering 10 common types of peach
tree diseases, including leaf spot and rust, with the number of images for each disease
ranging from 600 to 1300, as shown in Table 1 and Figure 3.

Table 1. Peach diseases and corresponding number.

Disease Number of Images

Peach Leaf Curl 1221
Brown Rot 1109
Powdery Mildew 1083
Shot Hole Disease 938
Bacterial Spot 856
Peach Scab 801
Armillaria Root Rot 755
Peach Tree Borer 793
Crown Gall 651
Peach Yellow Leaf Roll 673

A B DC E

HF G I J

Figure 3. Samples of dataset used in this paper. (A) is peach leaf curl; (B) is peach brown rot disease;
(C) is peach powdery mildew; (D) is peach perforation disease; (E) is peach bacterial spot disease;
(F) is peach scab disease; (G) is peach root rot; (H) is peach tree borer; (I) is peach crown gall disease;
(J) is peach yellow leaf roll disease.

Furthermore, to ensure the collected data could be directly applied to the training
of deep learning models, the images underwent standardization processes, including
resizing and format conversion, to meet the input requirements of the models. Considering
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the demand for a large volume of data by deep learning models, image augmentation
techniques such as rotation and flipping were also employed to expand the dataset. Based
on the data preprocessing, a thorough analysis was conducted on the collected data. Let
the image set be denoted as I, where each image i ∈ I is associated with a series of labels
and parameters, including disease type T, collection time t, and environmental parameters
E = {e1, e2, . . . , en}. A function f was defined to describe the distribution of various disease
images in the dataset:

f : T → N, (6)

where T represents the set of disease types, and N represents the set of natural numbers,
indicating the number of images corresponding to each disease type. For the analysis of
environmental parameters, an environmental parameter vector Ei was defined for each
image i, represented as

Ei = (ei1, ei2, . . . , ein), (7)

where eij denotes the value of the jth environmental parameter. To clarify further, these
environmental parameters include, but are not limited to, temperature, humidity, light
intensity, and CO2 concentration, all of which are crucial factors affecting the growth
and disease development of peach trees. Through the definitions and analysis of these
mathematical models, not only can the structure and characteristics of the dataset be clearly
understood, but a robust mathematical foundation was also provided for subsequent model
training. Overall, the peach tree disease image dataset constructed in this study meets the
demands of deep learning model training in terms of both quantity and quality, laying a
solid foundation for the high-precision automatic identification and segmentation of peach
tree diseases.

3.2. Dataset Annotation

In the research domains of deep learning and computer vision, dataset annotation
constitutes a pivotal step in constructing high-quality datasets, directly influencing the
effectiveness of model training and the performance of final applications. In this project,
within the domain of peach tree disease identification, two principal annotation tasks were
implemented: disease classification and the semantic segmentation of lesions. To ensure
accuracy and consistency in the annotation process, a series of mathematical principles
were employed to define, guide, and validate the annotation tasks.

The disease classification task required annotators to identify the type of disease
present in an image. Assuming a set of images I, each image i ∈ I was to be labeled with a
specific disease category t ∈ T, where T represents the set of all disease categories. This
process is represented by a mapping function f :

f : I → T, (8)

where f (i) = t indicates that image i has been labeled as belonging to disease category
t. To quantify the consistency of annotation, a consistency verification function C was
introduced, which, for any two annotation results t1, t2, is defined as

C(t1, t2) =

{
1, if t1 = t2

0, otherwise
(9)

Here, C(t1, t2) = 1 if the two annotations agree; otherwise, it is 0. This approach
provided a quantitative tool to assess the consistency between different annotators.

The task of semantic segmentation was more complex, requiring the precise outlining
of diseased portions within an image. For each pixel p in an image i, an annotation function
g was defined:

g : I × P → {0, 1}, (10)
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where P represents the set of pixels in image i, and g(i, p) = 1 indicates that pixel p is part
of a diseased area, whereas g(i, p) = 0 indicates it is not. To evaluate the consistency of
semantic segmentation annotations, a pixel-level consistency verification function Cpixel
was defined for each image, calculating the proportion of pixel-level agreement between
two annotations:

Cpixel(I) =
1
|P| ∑

p∈P
C(g1(i, p), g2(i, p)), (11)

where g1 and g2 represent two independent annotation functions, and |P| is the total
number of pixels in the image. Cpixel provided a score between 0 and 1, quantifying the
pixel-level consistency between two independent annotations.

To ensure accuracy and consistency in annotation, beyond the mathematical models
described, a series of standardization procedures were also implemented. Firstly, all
annotators underwent specialized training to learn theoretical knowledge about disease
identification and the use of annotation software. Secondly, to eliminate differences in
subjective judgment, detailed annotation guidelines were developed for each disease,
which were further elucidated with example images illustrating the typical features of
each disease. Moreover, the annotation results for each image were subject to independent
review by at least two annotators. In cases of discrepancy between two annotations, a final
judgment was made by a third expert. This three-level review mechanism, combined with
the aforementioned consistency verification functions, significantly enhanced the accuracy
and consistency of the annotation results. In summary, through meticulous training, clear
annotation guidelines, strict review mechanisms, and the application of mathematical
principles, this project ensured high standards and quality in dataset annotation work,
laying a solid foundation for subsequent deep learning model training and validation.

3.3. Data Augmentation

In the realm of deep learning, data augmentation is an effective technique for en-
hancing the generalization capability of models, especially in image processing tasks. In
this study, three common data augmentation techniques were utilized—CutOut [52], Cut-
Mix [53], and Mixup [54]—as shown in Figure 4. These techniques aim to improve the
model’s robustness and performance by increasing the diversity of training data without
significantly enlarging the dataset size.

CutOut CutMix Mixup

Figure 4. The image enhancement diagram demonstrates the effects of three data augmentation tech-
niques: CutOut, CutMix, and Mixup. CutOut enhances the model’s generalization capability by randomly
occluding parts of the image, forcing the model to learn from other features. CutMix creates new training
samples by blending parts of different images, increasing the model’s adaptability to image variations.
Mixup generates virtual training samples by linear interpolation of images and their labels, thereby
enhancing the model’s generalization ability on input data. These techniques increase the diversity of
training data in different ways, aiding in improving model performance on complex or unseen data.
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3.3.1. CutOut

CutOut is an effective data augmentation method that enhances a model’s generaliza-
tion ability and robustness by randomly occluding parts of an image, thereby forcing the
model to focus on other parts of the image. This method can be seen as a way to simulate
occlusion, compelling deep learning models not to rely on localized features within an
image, thereby enhancing the model’s ability to process occluded or incomplete images.
Mathematically, given a training image I with dimensions H × W (height × width), the
CutOut operation can be defined as a function CutOut(I, r, l, v), where r is the center of
the occlusion area, l is the side length of the occlusion area (assuming the occlusion area is
square), and v is the pixel value used to fill the occluded area. The occluded image I′ can
be calculated using the following formula:

I′(x, y) =

{
v, if rx − l

2 ≤ x ≤ rx +
l
2 and ry − l

2 ≤ y ≤ ry +
l
2

I(x, y), otherwise
(12)

where (x, y) represents the pixel location in the image, and (rx, ry) are the coordinates of
the occlusion area’s center. This formula indicates that if a pixel lies within the occluded
area, its value is set to v; otherwise, the original pixel value remains unchanged. During
the application of CutOut, the center of the occlusion area r is usually randomly selected,
meaning the occlusion’s location varies with each application. The size of the occlusion
area l and the fill value v are also determined based on the specific task and experimental
setup. Typically, v can be set to 0 (black occlusion) or the global average value of the image
to reduce the artificial noise introduced by the occlusion.

3.3.2. CutMix

CutMix, as an innovative data augmentation method, has attracted widespread atten-
tion since its introduction due to its unique way of enhancing diversity and the significant
improvements in performance it brings. Unlike traditional data augmentation methods
such as rotation, scaling, or flipping, CutMix increases training sample diversity by mixing
regions between different images, aiming to create more diverse training samples and
thereby improve model generalization and robustness. Specifically, a region from the first
image is randomly selected and replaced with a region of the same size and location from a
second image. This approach not only increases image data diversity but also requires the
model to consider global information during training, rather than solely relying on local-
ized features. Mathematically, given two images IA and IB, along with their corresponding
labels yA and yB, the CutMix technique first randomly selects a region R, defined by its
top-left corner coordinates (rx, ry) and dimensions width w and height h. The new training
sample IAB is then generated by swapping the region R in IA with the same location in IB
using the following mathematical formula:

IAB(x, y) =

{
IB(x, y), if (x, y) ∈ R
IA(x, y), otherwise

(13)

where (x, y) denotes the pixel location within the image. Moreover, the label of the new
sample is mixed based on the proportion λ of area R in image IA:

yAB = λyA + (1 − λ)yB, (14)

The key to implementing CutMix lies in how to select the region R and calculate the
mixing proportion λ. The selection of region R often relies on a random process to ensure
diversity in the training data. The mixing proportion λ not only depends on the size of
region R but also influences the degree of label mixing, thereby indirectly affecting the
focus of model learning. The CutMix technique, through operations on both the input data
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and labels, not only significantly increases the diversity of training data but also enhances
the model’s adaptability to complex data distributions.

3.3.3. Mixup

Mixup is a data augmentation technique widely used in deep learning training pro-
cesses, based on the mathematical principle of assuming a linear data distribution. Specifi-
cally, if a model can effectively learn new samples generated through linear interpolation,
it is also expected to perform well on the original data distribution. This assumption
encourages the model to learn smoother decision boundaries, thus enhancing robustness
to variations in input. Mathematically, the Mixup process is viewed as performing convex
combinations in feature and label spaces, with the new samples introduced encouraging
the model to consider a broader range of data distributions during training. Given two
random training samples (xi, yi) and (xj, yj), where xi and xj are image data, and yi and yj
are the respective labels, Mixup defines a new training sample (x̃, ỹ) through the following
mathematical formulas:

x̃ = λxi + (1 − λ)xj, (15)

ỹ = λyi + (1 − λ)yj, (16)

where λ ∈ [0, 1] is a mixing coefficient determining the proportion of the two original
samples in the new sample. λ is typically drawn from a distribution (such as the Beta
distribution) to ensure diversity and randomness in the training process. Selecting an
appropriate distribution to draw the mixing coefficient λ is crucial in practice. Theoretically,
Mixup, by encouraging the model to consider more virtual samples between classes during
training, helps reduce the model’s tendency to overfit to noisy data, improving generaliza-
tion to unseen samples. Moreover, Mixup encourages the learning of smoother decision
boundaries, which can be interpreted as enhancing model robustness to a certain extent.

3.4. Proposed Method
3.4.1. Overview

An innovative framework for peach tree disease recognition and lesion segmenta-
tion is proposed in this paper, aiming to enhance recognition accuracy and segmentation
performance in complex agricultural scenarios through deep learning techniques and
data fusion strategies. The framework’s core components include a tiny feature attention
mechanism backbone network, an aligned-head module, a Transformer-based semantic
segmentation network, and an alignment loss function. These components work in syn-
ergy to optimize the model’s capability to capture subtle disease features, integrate sensor
and image data, and enhance segmentation task performance. The tiny feature attention
mechanism enhances the model’s ability to recognize disease details by emphasizing key
features in images; the aligned-head module addresses missing sensor data issues by gen-
erating the missing sensor information to make full use of the web-crawled image data;
the Transformer-based semantic segmentation network effectively processes the contex-
tual information of images through a self-attention mechanism, improving segmentation
precision; and the alignment loss function focuses on optimizing the consistency between
image and sensor data, further enhancing the model’s overall performance. The introduc-
tion of this framework offers an effective technical path for agricultural disease detection
and segmentation, with the potential for widespread application in actual agricultural
production.

3.4.2. Tiny Feature Attention Mechanism Backbone Network

In this study, a tiny feature attention mechanism backbone network (tiny feature
attention, TFA) is proposed to enhance the accuracy of peach tree disease detection, as
illustrated in Figure 5.
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Figure 5. The tiny feature attention network structure diagram presents an attention mechanism
designed to enhance the model’s sensitivity to minute features in images. It emphasizes crucial
features in the input image by integrating spatial and channel attention, thus improving the model’s
ability to recognize subtle differences, especially in accurately identifying disease spots in peach
tree disease detection. This structure includes components such as global average pooling, 1 × 1
convolution, 3 × 3 convolution with dilation, and fully connected layers. Through this intricate
design, key information in images is effectively extracted and utilized, providing robust technical
support for the accurate detection and segmentation of peach tree diseases.

Compared to traditional deep learning model backbones, the TFA network places
more emphasis on extracting and utilizing subtle features in images, especially effective
in handling tiny lesions common in agricultural images, thereby significantly enhancing
the model’s perceptual capabilities. The core idea of the TFA network is to introduce an
attention mechanism for subtle features, which can automatically learn and emphasize
features important for classification or segmentation tasks while suppressing irrelevant
information. Specifically, the TFA network comprises the following key parts:

1. Feature extraction layer: Multiple convolutional and pooling layers are utilized to
extract basic features from images. To ensure the capture of more detailed image
features, smaller convolutional kernels (e.g., 3 × 3) and deeper network structures are
adopted.

2. Tiny feature attention module (TFAM): This module is the core of the TFA network,
designed to weigh the extracted feature maps to highlight those subtle features critical
for the current task. TFAM’s implementation is based on a self-attention mechanism,
allocating attention weights by learning the dependencies between different positions
in the feature map. The mathematical expression is as follows:

A = Softmax(W f F + b f ) (17)

where F represents the input feature map, W f and b f are the weight matrix and bias
term, respectively, and A is the computed attention map.

3. Feature fusion and classification (or segmentation): Features processed by the TFAM
module are further fused and processed, and the final results are output through a fully
connected layer (for classification tasks) or convolutional layer (for segmentation tasks).

The optimization goal of the TFA network is to maximize the model’s response to key
features while minimizing the response to background or non-critical features. This can be
achieved through the following loss function:

L = Ltask + λLattention (18)
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where Ltask is the loss function for the primary task (classification or segmentation), Lattention
is the regularization term for the attention mechanism, and λ is a balancing coefficient.
Through this approach, the model automatically learns during training which features
are more important for the task, subsequently assigning higher attention weights during
prediction. Compared to other deep learning model backbones, the design of the TFA
network focuses more on capturing subtle differences in images, which is particularly
important for agricultural image processing. In tasks such as peach tree disease detection,
diseases often manifest as minor changes in images, and traditional network models
might struggle to effectively recognize these subtle changes due to limitations in their
receptive fields. By introducing a subtle feature attention mechanism, the TFA network
can automatically identify and emphasize these key subtle differences at the feature level,
thereby enhancing model recognition accuracy. Furthermore, another advantage of the TFA
network is its generalization ability. Through the in-depth learning of subtle features, the
model adapts better to minor variations in images, allowing the TFA network to maintain
high recognition accuracy across images of peach trees taken in different environments,
significantly improving the model’s stability and reliability in practical applications.

3.4.3. Aligned-Head Module

In the task of agricultural disease recognition, sensor data (such as temperature, humid-
ity, light intensity, etc.) along with image data serve as important components of the model
input, providing essential information about the crop growth environment, and signifi-
cantly impacting disease recognition. However, especially when utilizing Internet-crawled
image data in practical applications, these images often lack corresponding sensor data. To
overcome this issue, an aligned-head module can be designed that is capable not only of
aligning image and sensor data but also generating missing sensor data when necessary,
thereby enhancing the model’s recognition accuracy and generalization capability.

Assuming there is an image dataset I and a corresponding sensor data set S, where
a portion of the images i ∈ I lack corresponding sensor data s ∈ S, the objective of the
aligned-head module is to generate a mapping f : I → S, predicting the corresponding
sensor data s′ for any given image i. The input to this module includes the image data i
and available sensor data s (if present), while its output is the aligned or generated sensor
data s′. The specific processing flow is as follows:

1. Feature extraction: Deep features are extracted from the image i, using a pretrained
CNN model (such as ResNet) for feature extraction.

2. Sensor data prediction: If the image i lacks sensor data s, a regression model (fully
connected network) is used to predict the sensor data s′ based on the image features.

3. Data alignment: If the image i has corresponding sensor data s, a direct data alignment
operation is performed to ensure that the image data and sensor data are matched
before being input into the model.

Assume that the features of image i are xi, the regression model is f , and the generated
sensor data are s′ = f (xi), where f can be represented as

f (xi) = W · xi + b (19)

Here, W and b are, respectively, the weight and bias of the regression model. The
rationale behind designing this module includes:

1. Data integrity: By generating missing sensor data, the aligned-head module ensures the
model can utilize the completeness of environmental and image information, improving
recognition accuracy.

2. Model generalization capability: through aligning and generating sensor data, the
model can better generalize to new, unseen image data, enhancing the model’s applica-
tion capability in different environments.

3. Flexibility: This module provides a flexible solution for processing Internet-crawled
images, enabling effective disease recognition even in the absence of sensor data.
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3.4.4. Transformer-Based Semantic Segmentation Network

In the task addressed in this paper, a Transformer-based semantic segmentation
network is designed, as shown in Figure 6.
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Figure 6. The Transformer segmentation network structure diagram showcases an image segmenta-
tion network in detail based on the Transformer architecture. By gradually extracting and processing
image features through multiple Transformer blocks and employing overlapping patch embedding
and merging, efficient self-attention, mixed feed-forward network, and upsampling strategies, the
network achieves efficient capture and precise segmentation of image details. This structure fully
utilizes the advantages of Transformer in processing sequential data, providing strong support for
high-precision image segmentation tasks through a deep understanding of spatial relationships.

This mechanism enables the network to calculate the impact of each position on every
other position, thereby capturing global information. By introducing a Transformer-based
network into the semantic segmentation task, its capability to process long-distance depen-
dencies enhances the model’s understanding of the context in images, thereby improving
the accuracy and efficiency of segmentation. This is particularly important in handling com-
plex peach tree disease images, as the disease features often depend on global information
for accurate identification and segmentation. The network primarily consists of two parts:
encoder and decoder. The encoder is responsible for extracting feature representations of
the image, while the decoder classifies pixels based on these features, achieving precise
lesion segmentation. A multi-layer Transformer structure is used as the encoder, each
layer containing multi-head self-attention mechanisms and feed-forward neural networks.
Setting the number of layers in the encoder as Le and the dimension of each layer as De and
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stacking multiple Transformer layers gradually enhances the model’s ability to abstract
image features. Specifically, the output of the lth layer Transformer can be represented as

H(l) = Transformer(l)(H(l−1)), l = 1, . . . , Le (20)

where H(0) is the result of the initial linear projection of the input image, and H(l) is the
output feature of the lth layer. The decoder part adopts a structure similar to the encoder but
introduces skip connections from the encoder to each Transformer layer in the decoder to
retain rich feature information extracted from the input image. We set the number of layers
in the decoder as Ld, and the dimension of each layer as Dd. Each layer of the decoder
receives features from the corresponding layer of the encoder, thereby utilizing global
and local information captured by the encoder to improve the precision and efficiency of
segmentation. The output of the lth layer decoder can be represented as

G(l) = Transformer(l)(G(l−1) + C(l)), l = 1, . . . , Ld (21)

where C(l) represents features from the lth layer of the encoder and G(0) is the final feature
passed from the encoder. Compared to traditional semantic segmentation networks such
as UNet, the Transformer-based network has the following advantages:

1. Capturing long-distance dependencies: The Transformer, through its self-attention
mechanism, can capture the relationship between any two points in an image, which
is crucial for understanding the global structure of the image, thereby improving
segmentation accuracy.

2. Parallel computing: Another advantage of the Transformer structure is its parallel
computing capability, which is especially important for processing large-scale image
datasets, significantly improving training and inference efficiency.

3. Flexibility and scalability: The flexibility and scalability of the Transformer structure
allow for easy adaptation to different task requirements by adjusting the number of
layers and dimensions or by introducing new modules, providing convenience for
subsequent model optimization and improvement.

3.4.5. Alignment Loss

In this paper, for the task of peach tree disease recognition and segmentation, a novel
loss function—alignment loss function—is proposed. This loss function is designed to
address the deficiencies of traditional Transformer network loss functions in processing
the fusion of image data and sensor data, aiming to achieve higher accuracy in disease
recognition and segmentation. The core idea of the alignment loss function is to minimize
the distance between the features of image data and sensor data in the embedding space.
Specifically, its mathematical formula can be expressed as

Lalign =
1
N

N

∑
i=1

∥∥ fimg(xi)− fsensor(si)
∥∥2 (22)

where N is the number of samples in the batch; xi and si represent the image data and
corresponding sensor data of the ith sample, respectively; fimg and fsensor are the feature
extraction functions for image data and sensor data, respectively; and ∥·∥2 denotes the
squared Euclidean distance.

In the task of peach tree disease recognition and segmentation, image data provide
visual information about the disease, while sensor data provide auxiliary information
related to the disease occurrence environment. These two types of information are inher-
ently complementary, but in traditional deep learning models, they are often processed
separately, preventing the model from fully utilizing these complementary information.
The alignment loss function, by minimizing the distance between the features of image
data and sensor data in the embedding space, encourages the model to learn a feature
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representation that effectively integrates both types of information, thereby improving
the accuracy of disease recognition and segmentation. Traditional Transformer models
typically employ the cross-entropy loss function as the optimization objective, which has
been proven effective in many tasks. However, the cross-entropy loss mainly focuses on the
match between the model output and the true labels, neglecting the efficiency of the model
in utilizing the features of the input data; especially when the task involves the fusion of
multimodal data, the cross-entropy loss cannot directly promote the alignment and fusion
of features from different modalities. The introduction of the alignment loss function has
the aim of solving this issue. Unlike the cross-entropy loss, which relies solely on the model
output, the alignment loss function directly acts at the feature level, compelling the model
to learn a feature representation that effectively integrates image and sensor data. This
design gives the alignment loss function a clear advantage in tasks involving the fusion of
multimodal data.

3.5. Experimental Setup
3.5.1. Hardware and Software Configuration

The experiments in this study were primarily conducted on a high-performance com-
puting server equipped with an NVIDIA Tesla V100 GPU (Beijing, China). This GPU,
featuring 32 GB of GDDR5 memory, provides the computational power necessary for train-
ing complex deep learning models. The V100 GPU, widely used in deep learning research,
is particularly suited for handling large datasets and models, significantly accelerating the
training and inference process. The server’s CPU, an Intel Xeon Gold 6154, has 18 cores and
36 threads, operating at 3.0 GHz, offering robust support for data processing and model
training. With 256 GB of system memory, ample memory space is ensured for processing
large datasets. Such hardware configuration not only reduces model training time but also
enhances the efficiency of the experiments.

Ubuntu 18.04 LTS was selected as the operating system, a stable and widely supported
Linux distribution suitable for scientific research and deep learning applications. Built
upon this foundation, PyTorch 1.8 was chosen as the deep learning framework, with Python
version 3.8. PyTorch being widely applied in both academia and industry for its dynamic
computation graph and user-friendly interface, offering a rich set of APIs and tools for
model design, training, and evaluation. Within the PyTorch framework, several key library
functions were primarily utilized for building and training models:

1. “torch.nn”: This module contains all components required for constructing neural
networks, including various types of layers (convolutional layers, pooling layers, fully
connected layers, etc.), activation functions, and loss functions.

2. “torch.optim”: This module provides various optimization algorithms to update net-
work weights, such as SGD and Adam. In this study, the Adam optimizer [55] was
predominantly used for model training.

3. “torchvision”: An extension of PyTorch, torchvision offers tools for loading and process-
ing image datasets, pre-trained models, and common data transformation operations.

Moreover, to implement data augmentation, the “torchvision.transforms” module
was used for various data preprocessing and augmentation techniques, such as random
cropping, rotation, normalization, etc. These techniques effectively enhance the model’s
robustness to image transformations and increase the diversity of training data.

3.5.2. Training Parameters

In this study, to address the problem of peach tree disease identification and segmenta-
tion, deep learning models were employed. A series of meticulous parameter configuration
strategies were adopted to ensure the effectiveness and accuracy of model training. The
batch size, a crucial hyperparameter in deep learning training, directly affects the stability
and efficiency of model training. In our experiments, the batch size was set to 32. This
choice is based on considerations of fully utilizing the GPU’s parallel computing capabili-
ties to accelerate the training process and balancing the search between global and local
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optima, also considering the limitations of GPU memory capacity. Through comparative
experiments, it was found that setting the batch size to 32 under the current hardware
configuration allowed for optimal stability and convergence speed of model training. To
comprehensively evaluate the model’s generalization ability, the five-fold cross-validation
method was employed. Specifically, the entire dataset was randomly divided into five
equally sized subsets, with each experiment using four subsets as the training set and
the remaining one as the test set. This process was repeated five times, each time with
a different subset used as the test set, ensuring every subset had the opportunity to be
used as the test set. Five-fold cross-validation not only improves the reliability of model
evaluation but also effectively reduces the impact of data partitioning on experimental
results, making model performance assessment more objective and accurate.

The Adam optimizer was chosen for parameter optimization during model training,
combining the advantages of Momentum and RMSprop optimizers. It adapts the learning
rate across different parameter space dimensions, thereby accelerating model convergence.
The initial learning rate was set to 1 × 10−4, chosen to balance stability and efficiency
at the beginning of model training. Given the significant impact of the learning rate on
training outcomes, strategies for learning-rate warm-up and dynamic adjustment were also
applied. Learning-rate warm-up involves gradually increasing the learning rate at the start
of training, stabilizing the model in the early stages, and avoiding instability due to a high
learning rate. After the warm-up phase, the learning rate was dynamically adjusted based
on changes in training loss, decreasing the learning rate during plateaus to fine-tune model
parameters and seek optimal solutions.

3.5.3. Evaluation Metric

In the realm of deep learning models, especially within image processing, selecting
appropriate evaluation metrics is crucial for assessing and comparing model performance.
This study, aimed at classifying peach tree diseases and segmenting lesions, employs
precision, recall, accuracy, and mean intersection over union (mIoU) as evaluation metrics.

Precision reflects the proportion of samples correctly predicted as positive by the
model among all samples predicted as positive. It illustrates the model’s accuracy in
positive class prediction. Precision is calculated as

Precision =
TP

TP + FP
(23)

where TP (True Positive) represents the number of true positive samples, and FP (False Pos-
itives) denotes the number of false positive samples. As a critical metric, precision focuses
on the model’s ability to accurately identify positive samples. In practical applications,
high precision, indicating a low False Positive rate, is essential for tasks where accurate
prediction of the positive class is paramount.

Recall indicates the ratio of samples correctly predicted as positive by the model to all
actual positive samples, measuring the model’s capability to capture positive samples. The
formula for recall is

Recall =
TP

TP + FN
(24)

with FN (False Negative) being the number of false negative samples. Recall assesses the
model’s performance from another perspective: its ability to identify all positive samples.
For tasks demanding minimal missed detections, missing any positive sample could have
severe implications, making recall a vital performance metric.

Accuracy, the most intuitive performance metric, represents the proportion of samples
correctly predicted by the model among all samples. Its formula is

Accuracy =
TP + TN

TP + TN + FP + FN
(25)
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where TN (True Negative) is the number of true negative samples. Accuracy provides
an overview of the model’s overall performance by comparing the number of correctly
predicted samples (regardless of class) to the total number of samples. Although it is a
useful tool under balanced sample distribution, its reliability may be overly optimistic in
cases of class imbalance.

For semantic segmentation tasks, mIoU serves as a common metric, quantifying the
similarity between model-predicted segmentation masks and actual masks. It averages the
intersection over union across all categories:

mIoU =
1
N

N

∑
i=1

TPi
TPi + FPi + FNi

(26)

where N denotes the number of categories, and TPi, FPi, and FNi are the quantities of
True Positives, False Positives, and False Negatives for the ith category, respectively. mIoU
measures the accuracy of model segmentation, considering the impact of false positives
and negatives at the pixel level.

In summary, by utilizing a combination of precision, recall, accuracy, and mIoU,
the performance of peach tree disease identification and segmentation models can be
thoroughly evaluated. These metrics reflect model performance from various angles,
identifying strengths and weaknesses and providing guidance for further optimization.
The thoughtful selection and consideration of these metrics during model development
and evaluation are crucial for enhancing model utility and reliability.

3.6. Baseline Model

In the field of deep learning, especially for specific image processing tasks, selecting
an appropriate model architecture is crucial. To comprehensively assess the effectiveness
of the proposed method for peach tree disease identification and segmentation, a series of
deep learning models known for their broad representativeness and excellent performance
in image classification and segmentation tasks were selected as baselines. The baseline
models chosen for this study include AlexNet [56], VGGNet [57], ResNet [58], and Effi-
cientNet [59] for disease detection, as well as UNet [60], UNet++ [61], and SegNet [62] for
lesion segmentation, each demonstrating outstanding performance and wide applicability
in their respective application scenarios.

3.6.1. Baseline Model for Disease Detection

For disease detection, AlexNet, one of the pioneering works in deep learning for
image classification, comprises five convolutional layers and three fully connected layers.
It introduced the ReLU activation function to effectively address the vanishing gradient
problem and employed Dropout and data augmentation techniques to mitigate overfitting.
Its mathematical representation can be simplified as

f (x) = Softmax(W3 · ReLU(W2 · ReLU(W1 · x + b1) + b2) + b3) (27)

where W1, W2, W3 and b1, b2, b3 represent the network weights and biases, respectively; x is
the input image; and f (x) denotes the model output.

VGGNet significantly increased network depth and enhanced the model’s ability to
capture image details by replacing large convolutional kernels with multiple successive tiny
(3 × 3) kernels. A typical representative of VGGNet is VGG-16, consisting of 13 convolu-
tional layers and three fully connected layers. Its simplified mathematical representation is

f (x) = FC3(ReLU(FC2(ReLU(FC1(Conv13(x)))))) (28)

where Conv13(x) represents features after 13 convolutional layers and FC1, FC2, FC3 denote
operations of the three fully connected layers.



Agriculture 2024, 14, 797 20 of 31

GoogLeNet introduced the Inception module, which captures image information at
various scales through parallel convolutional and pooling operations of different sizes,
effectively increasing the network’s width and depth. It balances depth and computational
efficiency. The core idea of the Inception module can be expressed as

Inception(x) = [Conv1×1(x), Conv3×3(x), Conv5×5(x), Pool(x)] (29)

where x is the input feature and Conv and Pool represent convolutional and pooling
operations, respectively, with [] indicating the concatenation of features.

ResNet addresses the vanishing gradient problem in deep neural networks by intro-
ducing residual blocks, allowing the network to achieve unprecedented depth. The basic
idea of a residual block is that the input is not only directly passed to the next layer but
also added to the output of subsequent layers via a skip connection. The mathematical
representation of a residual block is

y = F(x, {Wi}) + x (30)

where x and y are the input and output of the residual block, respectively, and F(x, {Wi})
represents the residual mapping, with {Wi} denoting the weights of the convolutional
layers.

EfficientNet, through a systematic model scaling method, balances the network’s
depth, width, and input image resolution, achieving significant performance improvements
while maintaining computational efficiency. The core of EfficientNet is to uniformly scale
dimensions of depth, width, and resolution using a compound coefficient, optimizing
the use of additional computational resources, though its specific mathematical formulas
are complex. The core idea is to efficiently utilize additional computational resources by
optimizing scaling dimensions.

3.6.2. Baseline Model for Lesion Segmentation

Designed specifically for medical image segmentation, the UNet model, with its
U-shaped structure consisting of symmetric contraction and expansion paths, excels at
capturing fine details within images. This is achieved by incorporating skip connections
from the contraction path into the up-sampling part of the model. The core mathematical
model of UNet encapsulates the encoding of features through successive convolutional and
pooling layers, followed by decoding through up-sampling layers and convolutional layers,
culminating in the fusion of features via skip connections. UNet++ further refines the
architecture of UNet by introducing nested residual pathways within the skip connections,
enhancing the transmission and fusion of features. This modification improves the model’s
ability to capture image details, especially in segmenting image edges. SegNet focuses on
pixel-wise image classification, distinguished by its encoder–decoder architecture. The
encoder utilizes the first 13 convolutional layers of the VGG16 model for feature extraction,
while the decoder up-samples the feature maps to restore them to their original resolution.
In the decoder, SegNet employs max-pooling indices for non-linear up-sampling, effectively
reducing the model’s parameter count while preserving essential feature information.

From the perspective of application breadth and model adaptability, these models
have demonstrated commendable performance across various domains and tasks. Their ap-
plication extends beyond traditional image classification and semantic segmentation tasks,
successfully encompassing more complex visual tasks such as object detection and instance
segmentation. This wide range of applications indicates the models’ strong generalization
capabilities and adaptability, providing robust support for addressing the challenges of
peach tree disease detection and lesion segmentation presented in this study. Moreover,
evaluating and comparing the proposed method against these classic and cutting-edge
models allows for a more comprehensive and impartial assessment of the method’s perfor-
mance. Such comparisons not only validate the advantages of the proposed method against
the backdrop of existing technologies but also reveal potential areas for improvement
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and application prospects. Through meticulous mathematical analysis and experimental
validation, it is anticipated that a deeper understanding of the advantages and potential of
the proposed method in peach tree disease identification and segmentation tasks will be
gained, further advancing the application and development of deep learning technologies
in the agricultural sector.

4. Results and Discussion
4.1. Disease Detection Results

In this section, the efficacy and superiority of the proposed method are demonstrated
by comparing the performance of various deep learning models in the task of detecting
diseases in peach trees. The core purpose of the experimental design is to show that
by integrating advanced deep learning architectures and optimization algorithms, the
precision, recall, and accuracy of disease detection can be significantly improved. By
comparing the proposed method with other mainstream models and models specifically
developed for agricultural disease detection, this paper not only showcases the performance
of each model but also delves into the reasons behind these performance differences, as
shown in Table 2 and Figure 7.

Table 2. Comparison of disease detection performance.

Model Precision Recall Accuracy FPS

AlexNet 0.83 0.80 0.82 21.5
GoogLeNet 0.85 0.82 0.84 25.8
VGGNet 0.87 0.85 0.86 25.3
ResNet 0.90 0.87 0.88 38.1
EfficientNet 0.92 0.90 0.90 41.2
MobileNet 0.84 0.86 0.85 50.5
ResNet-MAF [63] 0.91 0.89 0.91 19.4
TinySegformer [64] 0.88 0.85 0.86 32.5
Ours 0.94 0.92 0.92 38.4

Figure 7. Training process of models in Table 2.

The experimental results indicate that the proposed method achieved the highest
performance in terms of precision, recall, and accuracy, with values of 0.94, 0.92, and 0.92,
respectively, and also demonstrated good performance in processing speed (FPS, frames per
second). This result significantly outperforms mainstream deep learning models. including
AlexNet, GoogLeNet, VGGNet, ResNet, EfficientNet, and MobileNet, as well as two
methods specifically designed for agricultural disease detection: [63,64]. Analyzing from
the design of the models, AlexNet, as an earlier deep learning model with a structure of five
convolutional layers and three fully connected layers, often underperforms on complex or
diverse agricultural image data due to its relatively shallow model. Its precision, recall, and
accuracy are 0.83, 0.80, and 0.82, respectively, reflecting the limitations in feature extraction
and generalization capabilities. GoogLeNet, by introducing the Inception module, allows
the model to capture image features at different scales, slightly outperforming AlexNet
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with a precision of 0.85 and an accuracy of 0.84. VGGNet enhances the capture of image
details through the use of multiple consecutive small convolution kernels, increasing the
network depth, which further boosts the precision, recall, and accuracy to 0.87, 0.85, and
0.86, respectively. ResNet addresses the issue of gradient vanishing in deep network
training through residual learning, allowing the network to be built deeper and be able
to more effectively learn complex image features, resulting in a precision of 0.90 and an
accuracy of 0.88. EfficientNet significantly enhances model performance and efficiency by
systematically balancing network width, depth, and the scale of input image resolution,
achieving a precision of 0.92 and an accuracy of 0.90. MobileNet, due to its lightweight
features, has a higher FPS on mobile devices but slightly lower precision at 0.84, recall at
0.86, and accuracy at 0.85.

For methods specifically developed for agricultural disease detection, ref. [63]’s model
achieves high levels of precision, recall, and accuracy (0.91, 0.89, and 0.91 respectively),
showcasing the advantages of its targeted design. Ref. [64] employs the newer Trans-
formers architecture to handle more complex backgrounds and subtle features, achieving
a precision of 0.88 and accuracy of 0.86, demonstrating the potential of Transformers in
image processing. Theoretical analysis reveals that the proposed model achieves the best
results across all metrics due to the integration of various advanced technologies and cus-
tomized loss functions, which enhance the model’s sensitivity and recognition capabilities
toward disease features. The tiny feature attention (TFA) mechanism enhances recognition
precision by focusing on minute features in images; the aligned-head module improves
the model’s ability to handle incomplete data by addressing missing sensor data; and
the Transformer-based semantic segmentation network effectively processes contextual
information within images through its self-attention mechanism, enhancing segmentation
accuracy. The alignment loss function further optimizes the consistency between image and
sensor data, improving the model’s stability and accuracy under varying environmental
conditions. In summary, this research not only theoretically verifies the effectiveness of the
proposed method but also demonstrates its superiority in practical applications through ex-
perimental results. Future work will continue to optimize the model architecture and data
processing strategies to further enhance system performance and application universality,
aiming to make a greater impact in the field of agricultural disease management.

4.2. Lesion Segmentation Results

The purpose of this chapter’s experiment was to evaluate and compare the effective-
ness of various deep learning models on the task of peach tree lesion segmentation, to
determine which model is most suited for this specific application scenario. By comparing
the performance of different models, guidance is provided for subsequent research and
references for model selection in practical applications. The experimental results are shown
in Table 3 and Figure 8.

Table 3. Comparison of lesion segmentation performance.

Model Precision Recall mIoU FPS

SegNet 0.84 0.81 0.82 15.6
UNet 0.88 0.84 0.86 18.3
UNet++ 0.91 0.87 0.90 14.8
TinySegformer [64] 0.90 0.89 0.90 21.8
Ours 0.95 0.90 0.94 18.0

As can be observed from the table, the method proposed in this paper surpasses other
models across all evaluation metrics, especially in mIoU, achieving a high score of 0.94.
This indicates a significant advantage of this method in terms of segmentation accuracy.
SegNet, a typical encoder–decoder architecture, utilizes the first 13 convolutional layers
of the VGG16 model to extract image features during the encoding phase and upsamples
the image resolution in the decoding phase. A notable characteristic of SegNet is its use
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of max-pooling indices for upsampling during the decoding process, effectively reducing
the number of model parameters. Although SegNet demonstrates certain advantages in
preserving edge information, its relatively simple structure may not be precise enough for
complex image segmentation tasks, especially in restoring details in disease areas. UNet is
characterized by its symmetric “U” shaped design, comprising a downsampling encoder
and an upsampling decoder, with skip connections directly transferring features between
them. This design makes UNet exceptionally adept at capturing both local and global
information in images, achieving impressive performance in image segmentation tasks.
Favored especially in the field of medical image segmentation, UNet’s high sensitivity
to small regions and details also makes it suitable for agricultural disease segmentation
tasks. UNet++ improves upon UNet’s structure by introducing nested and dense skip
connections to further enhance feature transmission and fusion. This improved design
addresses the shortcomings of traditional UNet in handling multi-scale features, increasing
model performance in detail restoration and edge precision. The method presented in this
paper, by integrating the tiny feature attention mechanism, aligned-head module, and a
Transformer-based semantic segmentation network, proposes an innovative approach for
peach tree disease segmentation. The core advantage of this method lies in its more effective
capture and utilization of subtle features within images and optimizing the segmentation
process through deep feature fusion and attention mechanisms. Consequently, it surpasses
traditional deep learning models in precision, recall, and mIoU.

Figure 8. Training process of models in Table 3.

1. Differences in feature fusion capability: The aligned head, through deep integration
of sensor and image data, provides a richer and more detailed feature representation.
This deep fusion strategy enables models to better understand and process complex
image content, especially in identifying and segmenting small or blurred lesions. The
additional information and contextual understanding provided by the aligned head
significantly enhance model performance.

2. Optimization of attention mechanisms: Compared to traditional MLP-head and basic
multi-head mechanisms, the aligned head employs a more advanced attention mech-
anism. This not only strengthens the model’s ability to capture key features but also
optimizes the model’s information processing flow. By focusing on key features and
effectively suppressing background noise, the aligned head accurately locates and
identifies disease features.

3. Data alignment and generation capability: For images crawled from the Internet that
lack sensor data, the aligned head generates the missing sensor information, achieving
effective alignment of image and sensor data. This innovative data alignment and
generation capability greatly expands the range of data the model can process.

4.3. Analysis of Detection Results

The presentation of the results from the aforementioned experiments was conducted
by displaying the average values of each metric to compare the performance of various
models, with comparative data between the proposed method and known methods listed
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in tables. It is believed that this approach provides an intuitive display of the performance
of various methods under the same evaluation criteria, facilitating a quick understanding
and assessment of the strengths and weaknesses of these methods. Additionally, more
comparative methods have been included, such as MobileNet, ResNet-MAF, and TinySeg-
former. By comparing these methods specifically targeted at agricultural disease detection,
it is hoped that the performance characteristics of the proposed method can be demon-
strated. Furthermore, as shown in Table 3, the proposed method achieved an mIoU of
0.94 in the disease segmentation task, while UNet++ and UNet reached mIoUs of 0.90
and 0.86, respectively. Although these differences might seem small numerically, such
improvements are significant in the fields of deep learning and image segmentation. mIoU,
an important performance metric in image segmentation tasks, measures the degree of
overlap between the model’s predicted segmentation mask and the true mask. Even a few
percentage points of improvement can significantly enhance the quality of segmentation,
particularly in recognizing complex backgrounds or subtle features. Additionally, in practi-
cal agricultural applications, a higher mIoU implies more accurate disease detection and
quantitative analysis, which has practical application value for early disease identification
and treatment. To further substantiate these conclusions, a statistical significance analysis
(ANOVA) was conducted on the experimental results to verify whether the performance
differences between the models are statistically significant. The experimental outcomes are
depicted in Figures 9 and 10.

4.4. Loss Function Ablation Experiment

In this chapter, the main purpose of the experiment is to verify the effectiveness of
the proposed alignment loss function in enhancing model performance by comparing
the performance of different loss functions in disease detection and lesion segmentation
tasks. The design of the loss function, a core part of training deep learning models, directly
impacts the efficiency of model learning and final performance. This ablation experiment
deepens the understanding of the specific impact of different loss functions on model
performance, thereby providing a theoretical basis and practical guidance for selecting the
appropriate loss function. Three different loss functions were selected for comparison in the
experimental design, including the traditional cross-entropy loss, the focal loss designed
for imbalanced data, and the alignment loss proposed in this paper. Each loss function was
applied to both disease detection and lesion segmentation tasks, with experimental results
shown in Table 4.

Table 4. Different loss function ablation experiments.

Task—Loss Function Precision Recall Accuracy/mIoU

Disease Detection—Cross-Entropy Loss 0.85 0.82 0.84
Disease Detection—Focal Loss 0.91 0.89 0.90
Disease Detection—Align Loss 0.94 0.92 0.92
Lesion Segmentation—Cross-Entropy Loss 0.85 0.82 0.83
Lesion Segmentation—Focal Loss 0.93 0.88 0.90
Lesion Segmentation—Align Loss 0.95 0.90 0.94

The results from the experiment indicate that, compared to cross-entropy loss and
focal loss, alignment loss achieved higher precision, recall, and accuracy/mIoU in both
disease detection and lesion segmentation tasks. This is primarily due to alignment loss’s
design consideration of the distinctiveness between disease features and background
features, as well as the consistency between image and sensor data, enabling the model to
more effectively learn disease recognition and segmentation. Specifically, alignment loss
emphasizes the difference between disease features and normal features and optimizes
model handling of consistency between image and sensor data, enhancing the model’s
sensitivity and accuracy in disease feature recognition. Mathematically, this is achieved by
introducing additional regularization terms or weighting factors that consider the unique



Agriculture 2024, 14, 797 25 of 31

properties of the data and task requirements, thus providing a more effective learning
direction for the model.

Figure 9. ANOVA test on the results in Table 2.

Figure 10. ANOVA test on the results in Table 3.

4.5. Test on Other Dataset without Sensor Data

In this section, the main objective of the experiment is to validate and evaluate the
performance of the proposed model in detecting diseases using only image data, without
the support of sensor data. This experiment is particularly important because, in many
real-world application scenarios, especially in resource-limited or technically constrained
agricultural environments, obtaining sensor data can be challenging. Therefore, by testing
the model on additional datasets lacking sensor data, a comprehensive understanding of
the model’s applicability and flexibility, as well as the potential limitations and challenges
during actual deployment, can be obtained. Two different datasets were used for testing:
Kaggle’s Wheathead detection dataset and Plantdoc’s plant disease detection dataset.
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The experimental results presented in Table 5 show that in Kaggle’s Wheathead
detection task, the model achieved a precision of 0.71, a recall of 0.73, and an accuracy
of 0.71. In the Plantdoc plant disease detection task, the model significantly improved,
achieving a precision of 0.96, a recall of 0.93, and an accuracy of 0.94. These results reveal
differences in model performance across various tasks and data conditions and reflect
the model’s ability to process different types of disease image data. Theoretically, the
model’s poor performance in the Wheathead detection task might be associated with the
characteristics of the dataset and the complexity of the task. Detecting wheat heads involves
identifying morphologically similar wheat heads against a variable background, which
poses higher demands on the model’s visual recognition and generalization capabilities.
Without the support of sensor data, such as environmental parameters like light conditions
and humidity, the model must rely entirely on visual information from images, which may
limit its recognition accuracy. In contrast, the Plantdoc dataset’s plant disease detection task
may feature more visually distinct and distinguishable disease characteristics, allowing the
model to achieve high precision in recognition even without sensor data.

Table 5. Other disease detection results with only image dataset.

Task Precision Recall Accuracy

Wheathead Detection (Kaggle) 0.71 0.73 0.71
Plant Disease Detection (Plantdoc) 0.96 0.93 0.94

Regarding the discussion on the performance of the proposed method without sensor
data, while the model demonstrated excellent performance on the Plantdoc dataset, proving
its effectiveness under certain conditions, the performance in the Wheathead detection
task suggests that the model may require further optimization or adjustment to adapt to
complex or variable environmental conditions in agricultural scenarios where sensor data
are unavailable. In practical agricultural applications, the availability of sensor data greatly
influences the practicality and effectiveness of the model. Sensor data provide crucial
information about the crop growing environment, such as temperature, humidity, and
light, which helps the model more accurately interpret and classify image data. Therefore,
in agricultural applications, the suitability and importance of sensor data depend on the
specific task and environmental conditions. Where possible, combining sensor and image
data for disease detection can undoubtedly provide more accurate and stable results.
However, in resource-limited or technologically under-equipped scenarios, developing
and optimizing models that can perform excellently based solely on image data holds
significant practical application value. Future research should focus on improving model
robustness and accuracy under various conditions, including without sensor data, to ensure
its effectiveness and reliability across a broad range of agricultural settings. Additionally,
exploring how to enhance image data processing capabilities in the absence of sensor
support is another important direction for future research.

4.6. Test on Mobile Platform

In this section, the primary objective of the experiment is to test and demonstrate
the operational efficiency and performance of the proposed model on various mobile
platforms. This experiment, targeted at real-world application scenarios such as real-time
disease detection and segmentation in agricultural fields, emphasizes the practicality of the
model on embedded devices and smartphones. By testing the model on different mobile
platforms, including Raspberry Pi, HUAWEI P60, and Jetson Nano, this experiment not
only showcases the frame rate (FPS, frames per second) performance of the model on
each platform but also provides an empirical basis for future application optimization and
platform selection.

The experimental results presented in Table 6 indicate that on the Raspberry Pi plat-
form, the FPS for disease detection is 12.6, while for lesion segmentation, it is 9.5; on the
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HUAWEI P60 smartphone, the FPS for disease detection increases to 26.3, and for lesion
segmentation, it is 15.3; on the Jetson Nano, the FPS for these two tasks reaches 31.5 and
16.1, respectively. These data clearly demonstrate that different hardware platforms di-
rectly influence the model’s operational efficiency due to varying processing capabilities.
From a theoretical and technical analysis perspective, the differences in FPS are primarily
due to the different hardware configurations and processing capabilities of each platform.
Raspberry Pi, a cost-effective single-board computer, has relatively limited processing
power and memory size, particularly when handling complex deep learning tasks, where
resource constraints are a major factor affecting FPS performance. The HUAWEI P60, a
high-end smartphone, is equipped with more advanced processors and an optimized GPU,
which provides higher computational efficiency and faster data processing capabilities
when executing the same deep learning models. The Jetson Nano, designed specifically
for AI edge computing, features a GPU that is particularly effective for executing parallel
computing tasks, explaining its highest FPS performance observed in the experiments.
Additionally, based on the analysis of the mathematical characteristics of the model, the
complexity of the deep learning models relied upon for disease detection and lesion seg-
mentation tasks is also a significant factor affecting FPS performance. Generally, the lesion
segmentation task is mathematically more complex, requiring the model to perform with
more detailed pixel-level processing on the image, thereby increasing the computational
load. In contrast, disease detection, although also requiring the model to recognize and
classify features in images, involves less granular processing and therefore has a relatively
lower computational demand. This explains why, across all testing platforms, the FPS for
disease detection is generally higher than that for lesion segmentation. In summary, this
experiment not only demonstrates the performance of the proposed model on different
mobile platforms but also delves into the underlying factors affecting these performances,
including the processing capabilities of the hardware and the computational complexity of
the model.

Table 6. Ablation experiment on different mobile platforms.

Mobile Platform FPS

Disease Detection—Raspberry Pi 12.6
Disease Detection—HUAWEI P60 26.3
Disease Detection—Jetson Nano 31.5
Lesion Segmentation—Raspberry Pi 9.5
Lesion Segmentation—HUAWEI P60 15.3
Lesion Segmentation—Jetson Nano 16.1

4.7. Limitations and Future Work

In this paper, a deep learning framework for peach tree disease recognition and lesion
segmentation was successfully proposed and validated. By integrating a tiny feature at-
tention mechanism, an aligned-head module, a Transformer-based semantic segmentation
network, and an alignment loss function, significant progress was made in enhancing recog-
nition accuracy and segmentation effectiveness. However, despite the achievements of this
research, there are still some limitations and directions for future work in both practical
applications and theoretical research. Firstly, in terms of dataset construction and usage,
although the diversity and richness of the dataset were increased through web crawling
and sensor data fusion, issues of insufficient data volume and data imbalance still exist. Par-
ticularly for some rare disease types, the limited number of samples may affect the model’s
ability to recognize these diseases. Moreover, the quality of image data obtained from the
Internet varies greatly, and further research is needed to improve the efficiency of utilizing
this part of the data. Secondly, in terms of model design, although the introduction of the
tiny feature attention mechanism, aligned-head module, and Transformer-based semantic
segmentation network effectively improved model performance, and the complexity of
these models also increased accordingly. Higher complexity means more computational
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resources and training time are required, which limits the model’s application in resource-
constrained environments to some extent. Reducing model complexity while maintaining
model performance is an important direction for future research. Thirdly, regarding model
generalization ability, although the design of multimodal data fusion and alignment loss
function enhanced the model’s performance on specific datasets, the model’s generaliz-
ability to peach tree images under different regional and planting conditions remains to
be verified. Future work needs to explore more general feature extraction and data fusion
strategies to improve model adaptability and stability in broader application scenarios.
Additionally, although the alignment loss function achieved good results in optimizing
model performance, selecting the optimal loss function weight ratio and further refining the
loss function to address more complex tasks remain open questions. Future research could
delve into the design and optimization strategies of loss functions to further enhance model
recognition accuracy and segmentation effectiveness. Lastly, with the rapid development
of deep learning technology, new model architectures and algorithms continue to emerge.
Understanding how to apply these latest research findings to peach tree disease recognition
and lesion segmentation tasks and how to combine domain knowledge for model design
and optimization are directions worth exploring in future work. Furthermore, considering
the specificity of the agricultural field, future research could also strive to improve model
interpretability and operability, promoting the application of deep learning technology in
actual agricultural production.

5. Conclusions

In this study, a comprehensive framework for peach tree disease recognition and
lesion segmentation was developed, achieving technological innovations on multiple levels,
including a TFA, an aligned-head module, a Transformer-based semantic segmentation
network, and a specially designed alignment loss function. The integration of these com-
ponents not only improved the accuracy of disease recognition and the effectiveness of
segmentation but also demonstrated significant advantages in handling complex image
data in real agricultural scenarios.

Experimental results showed that the method proposed in this paper achieved a
precision of 94%, a recall of 92%, and an accuracy of 92% in the disease detection task, and
a precision of 95%, a recall of 90%, and an mIoU of 94% in the lesion segmentation task.
These results significantly outperformed existing mainstream models such as AlexNet,
GoogLeNet, VGGNet, ResNet, and EfficientNet in disease detection tasks, as well as SegNet,
UNet, and UNet++ in lesion segmentation performance. Particularly in lesion segmentation
tasks, the method proposed in this paper, compared to UNet++, improved mIoU by four
percentage points, fully demonstrating the outstanding capability of the Transformer-based
semantic segmentation network in processing subtle features and complex backgrounds.
Additionally, by introducing the aligned-head module and alignment loss function, this
study successfully addressed the issue of lacking sensor data in web-crawled image data,
effectively utilized existing image resources, and further improved the precision of model
recognition and segmentation. Ablation experiments further validated the importance of
the aligned-head module and alignment loss function in enhancing model performance.
Especially in the attention head ablation experiment, the configuration of the aligned-head
module outperformed other attention mechanism configurations in precision, recall, and
mIoU, showing its key role in improving the overall performance of the model. Through
these experiments, this paper not only verified the feasibility of the proposed method
theoretically but also proved its effectiveness and superiority in practical applications. The
framework and methods proposed in this research provide a new solution for the automatic
recognition and segmentation of peach tree diseases, with clear technical advantages and
practical value. Furthermore, these achievements pave new pathways for the application
of deep learning technology in the field of agricultural disease management.

In summary, the successful implementation of this study showcases the vast potential
of deep learning technology in the field of agricultural disease detection and segmentation,
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laying a solid foundation for further research and practical applications. Future work will
explore further model optimization, data fusion strategies, and new network architectures
to continuously improve the system’s performance and applicability, ultimately aiming for
broader applications in various agricultural scenarios.
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