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Abstract: In view of the typical requirements of large high-clearance sprayers, such as those operating
in poor road conditions for farmland plant protection and at high operation speeds, reducing
the vibration of sprayer suspension systems has become a research hotspot. In this study, the
hydro-pneumatic suspension (HPS) of large high-clearance sprayers was taken as the object, and
a variable universe T-S fuzzy controller with real vehicle vibration data as input was proposed to
control suspension motion in real time. Different from traditional semi-active suspension, based on
the characteristics of variable universe extension factors, a training method combining the artificial
fish swarm algorithm and the back propagation algorithm was used to establish a fuzzy neural
network controller with precise input to optimize the variable universe. Then, the time-domain and
frequency-domain response characteristics of HPS were analyzed by simulating the special road
conditions typical of farmland. Finally, the field performance of the sprayer equipped with the new
controller was tested. The results show that the error rate of the AFSA-BP algorithm in training
the FNN could be reduced to 3.9%, and compared with a passive suspension system, the T-S fuzzy
controller improved the effects of spring mass acceleration, pitch angle acceleration, and roll angle
acceleration by 18.3%, 23.3%, and 27.7%, respectively, verifying the effectiveness and engineering
practicality of the active controller in this study.

Keywords: large high-clearance sprayer; HPS; AFSA; variable universe; fuzzy neural network control

1. Introduction

As the main spraying machine in the field plant protection process, large high-
clearance sprayers play an indispensable role in agricultural production. With the de-
veloping trend of efficient and intelligent agricultural machinery production, large high-
clearance sprayers are increasingly being widely used because of their strong environmental
adaptability and high operating efficiency [1,2]. The core working conditions of large high-
clearance sprayers, i.e., sensitivity to pesticide application and bumps experienced during
road transportation to fields, lead to a contradiction between field driving safety and
ride comfort, which cannot be solved by passive suspension based on tire damping or
traditional semi-active suspension based on air spring damping. The problems caused
by driving comfort and handling safety under high-speed road transportation seriously
affect the working quality of large high-clearance sprayers. As an active suspension struc-
ture scheme for vibration reduction, HPS has become an important research topic in military
and engineering vibration reduction fields due to its advantage of wide-range damping
adjustment [3,4].

Active hydro-pneumatic suspension relies on a controller to adjust the opening of
a solenoid valve in real time to perform oil charging and discharging of the suspension, and

Agriculture 2024, 14, 811. https://doi.org/10.3390/agriculture14060811 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture14060811
https://doi.org/10.3390/agriculture14060811
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0001-7081-4569
https://doi.org/10.3390/agriculture14060811
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture14060811?type=check_update&version=2


Agriculture 2024, 14, 811 2 of 25

output the active control force for the body to cope with the road excitation [5–7]. Although
there has been little research on active vibration reduction control in the field of sprayers,
researchers in other vehicle domains have extensively examined suspension control with
ride comfort as the research goal, in order to fully assess the system efficiency of HPS.
Karnopp et al. assumed that a skyhook damper was installed between the inertial coordi-
nate system and the vehicle body, and the vehicle body vibration was suppressed by the
damping force generated by the skyhook damper [8]. On this basis, the researchers succes-
sively proposed skyhook control, triple skyhook control, hybrid skyhook–ground control,
optimal control with reference to the skyhook, fuzzy skyhook control, and other algorithms,
which improved the body vibration to a certain extent [9]. In addition, the application of
modern control theory to improve vehicle dynamic performance has gradually become
mainstream, and algorithms such as linear quadratic regulators, fuzzy control, and sliding
mode control have been applied in a wide range of scenarios in the field of suspension
vibration reduction. Matthias et al. transmitted information collected by a sensor to a model
predictive controller to improve the active suspension performance of an autonomous vehi-
cle [10]; Meng Jianjun et al. optimized a fuzzy PID controller based on the PSO algorithm,
improving the smoothness of high-speed train operation [11]; Chen et al. proposed a sliding
mode controller integrating SSOB and SMC, which adjusted the damping characteristics
of a magnetorheological damper by controlling the adjustable current to improve the ro-
bustness of the damping system [12]; and inspired by the non-ideal state of an actuator,
Pusadkar et al. designed a sliding mode controller based on a linear disturbance observer
to improve the adverse effects of dead zones and lag of a hydraulic actuator [13]. The
various control algorithms used in the above studies have provided effective control ideas
for suspension system vibration reduction; however, most of them have only focused on the
nonlinear effects inside a system during the vibration reduction process, and study suspen-
sion performance by simulating road roughness. However, for field working environments
with high degrees of randomness, complex interactions between crops and soil, and large
uncertainty of bumps, there is still no model that can accurately reflect field road excitation,
and control methods for a single road shape cannot meet the working requirements of
large sprayers.

Variable universe T-S fuzzy control can not only avoid uncertainty and approximate a
controlled object with arbitrary precision by taking the actual signal as the input, but it can
also control the steady-state error without adding fuzzy rules and fuzzy partitions, which
has strong theoretical applicability in dealing with field environments [14,15]. However, the
uncertainty of the variable universe expansion factor greatly reduces the control accuracy
of the variable universe T-S fuzzy control algorithm and loses the original advantages
of the algorithm. In view of the above problems, most researchers have used multi-
objective optimization algorithms, mathematical operations, and other methods to describe
the size of the expansion factor [16], but the description method is not ideal for domain
control. Artificial intelligence algorithms have extensive applications in fields, such as in
planting machinery and agricultural robots [17,18], for example, the promotion of neural
network algorithms in obstacle avoidance and path planning for agricultural robots, and
the application of machine vision algorithms in crop row monitoring, crop edge detection,
and other areas. Fuzzy neural networks (FNNs), such as artificial intelligence algorithms,
have the ability to handle nonlinear fuzzy systems, and also exhibit optimization functions
of neural networks [19,20]. Cao et al. proposed a method to adjust the scaling factor of fuzzy
controllers based on a fuzzy neural network, utilizing the beneficial FNN characteristics of
using actual data records for training and online adaptive adjustment [21]. In view of the
dependence of FNNs on the parameters to be determined, when defining these parameters,
the back propagation (BP) algorithm is widely used in training the feedforward neural
network, due to its advantages in solving complex internal mechanisms [22]. Similarly, the
BP algorithm is extremely dependent on the selection of initial values and can easily fall
into local optima, which makes the design of this kind of controller uncertain. The artificial
fish swarm algorithm (AFSA) [23] has emerged as a model optimization algorithm due
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to its strong global search ability. However, its high complexity, late maturity, and weak
local search ability stand in contrast to the premature and weak global search ability of
the BP algorithm. Effectively integrating the advantages of the two algorithms is key to
improving the accuracy of fuzzy control.

Based on this, considering the advantages of slow convergence speed and low depen-
dence on the initial values of the AFSA, this paper innovatively introduces the AFSA in
the optimization of an FNN as follows. (1) Actual road surface information in the field
was collected and a Kalman filter vehicle body state observer was constructed; (2) taking
the actual road information as the input, the variable universe T-S fuzzy control method
based on the AFSA-BP algorithm to optimize the FNN cooperative controller was studied,
and an active HPS controller based on the actual working environment was established
to verify the advantages of introducing the AFSA into the controller; and (3) the effect of
the controller was verified through a simulation of typical working conditions and a real
vehicle test.

2. Materials and Methods
2.1. Establishment of Mathematical Model for the Suspension of Large High-Clearance Sprayer
2.1.1. Establishment of an HPS System Model

An HPS system comprises a hydraulic cylinder, an accumulator (1), a proportional
valve (2), a two-position two-way proportional valve (3), and adjustable throttle valves
(4 and 5). The suspension damping is adjusted by regulating the openings of the propor-
tional valve and the throttle valves. When the sprayer is operating, the proportional valve
(2) is opened, and the hydraulic cylinder and the accumulator are jointly controlled by the
adjustable throttle valves (4 and 5), and a semi-active vibration reduction effect is achieved
by altering the damping force.

In this study, an active suspension system was designed according to the vibration
reduction requirements of various working conditions for the sprayer, as shown in Figure 1.
The system comprises a proportional drop valve (6), a proportional lift valve (7), an overflow
valve (8), and a differential pressure reducing valve (9). When large high-clearance sprayers
operate in the field, the active suspension system is activated, and the proportional lift valve
and the proportional drop valve adjust the flow of oil in real time according to the fluctuation
of the road surface. This serves to mitigate vibrations, addressing the limitation of passive
HPS systems that only adjust suspension damping characteristics through proportional valves
and throttle valves, thus enabling active vibration reduction functionality.

Specifically, when significant road fluctuations are detected by the accelerometer, the
active suspension system is activated, and the proportional lift valve (7) and proportional
drop valve (6) are charged and discharge oil in real-time based on the road surface un-
dulations, playing a role in mitigating vibrations. When it comes to dented pavement,
the proportional lift valve (7) is opened. Under the action of the oil pump, hydraulic oil
passes through the differential pressure reducing valve (9), proportional lift valve (7), and
adjustable throttle valve (5), entering the rodless chamber of the hydraulic cylinder. This
causes the hydraulic cylinder to extend, counteracting the impact of the sunken road surface
on the entire vehicle. Conversely, when encountering a raised road surface, the propor-
tional drop valve (6) is opened, and hydraulic oil flows from the hydraulic cylinder to the
proportional drop valve (6), ultimately returning to the hydraulic tank.

During the calculation, the local pressure loss and pressure loss throughout the oil
flow process are taken into account, Assuming that the displacement of the piston rod in
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the hydraulic cylinder is xL, the output force of the HPS is decomposed into elastic force Fs
and damping force Fc [24], which is defined by

F = Fs + Fc
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where r is the gas polytropic index; ms is the front wheel’s sprung mass, kg; pa0 is the gas
initial pressure, Pa; Va0 is the gas initial volume, m3; A1 is the rodless cavity’s effective area,
m2; A2 is the rod cavity’s effective working area, m2; A3 is the pipeline cross-sectional area,
m2; Am1 is the proportional valve’s flow area, m2; Am2 is the throttle valve’s flow area, m2;
dq is the pipeline inner diameter, m; L is the pipeline length, m; Q1 is the oil flow rate in the
rodless chamber, m3/s; Q2 is the oil flow rate in the rod chamber, m3/s; Q3 is the oil flow
rate towards the accumulator, m3/s; Cd is the flow coefficient; A1d is the cross-sectional
area of the accumulator interface, m2; Re is the Reynolds number, 2000; ξ1, ξ2, ξ3, and ξ4
are the pressure loss coefficient from the oil pipe to the rodless chamber, the pressure loss
coefficient from the rodless chamber to the oil pipe, the pressure loss coefficient from the
rodless chamber to the oil pipe, and the pressure loss coefficient from the oil pipe to the
rod-shaped chamber. Q1 and Q2 are determined as the product of the effective working
area and operating speed. Q3 is the difference between Q1 and Q2. The known quantities
in Equation (1) are listed in Table 1.
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where r is the gas polytropic index; ms is the front wheel’s sprung mass, kg; pa0 is the gas 
initial pressure, Pa; Va0 is the gas initial volume, m3; A1 is the rodless cavity’s effective area, 
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dq is the pipeline inner diameter, m; L is the pipeline length , m; Q1 is the oil flow rate in 
the rodless chamber, m3/s; Q2 is the oil flow rate in the rod chamber, m3/s; Q3 is the oil flow 
rate towards the accumulator, m3/s; Cd is the flow coefficient; A1d is the cross-sectional area 
of the accumulator interface, m2; Re is the Reynolds number, 2000; ξ1, ξ2, ξ3, and ξ4 are the 
pressure loss coefficient from the oil pipe to the rodless chamber, the pressure loss coeffi-
cient from the rodless chamber to the oil pipe, the pressure loss coefficient from the rodless 
chamber to the oil pipe, and the pressure loss coefficient from the oil pipe to the rod-
shaped chamber. Q1 and Q2 are determined as the product of the effective working area 

Figure 1. Oil circuit diagram of active suspension system. (1) Accumulator; (2) proportional valve;
(3) two-position two-way proportional valve; (4) adjustable throttle valve; (5) adjustable throttle valve;
(6) proportional drop valve; (7) proportional lift valve; (8) overflow valve; (9) differential pressure
reducing valve.



Agriculture 2024, 14, 811 5 of 25

Table 1. Parameters of hydro-pneumatic suspension system.

Parameter Symbol Reference Value

Hydraulic oil density/kg·m−3 ρ 900
Front wheel spring mass/kg ms 2100

Gas polytropic index r 1.4
Effective working area of rodless chamber/m2 A1 0.6358

Effective working area of rod chamber/m2 A2 0.4768
Accumulator initial pressure/Pa pa0 5,000,000
Accumulator initial volume/m3 Va0 0.0014

Flow Coefficient Cd 0.68
Pipe diameter/m dq 0.012
Oil pipe length/m L 1

Accumulator interface cross-sectional area/m2 A1d 0.05

2.1.2. Establishment of a Complete Vehicle Model with the HPS

In actual operation, sprayers are required to assume additional transportation and
transfer functions, necessitating a suspension system with superior handling performance.
To address this, the vertical shaft-independent suspension was adopted in this study,
and the hydraulic cylinder was vertically arranged between the motor and the vehicle
body. Through the independent control of the four wheels, the suspension vibration
reduction and strength assurance were realized, as shown in Figure 2. Unlike traditional
non-independent suspensions, where the left and right wheels may interfere with each
other, the wheels in this system were designed not to interfere, thereby enhancing ground
contact performance and effectively improving the maneuverability and smoothness of
the sprayer during high-speed transportation.
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Figure 2. Dynamics model of a 7-degree-of-freedom (DOF) sprayer. The arrows represent coordi-
nate system.

When a sprayer operates in the field, it encounters vibration issues such as vertical
jumps, pitch changes, and roll changes. To analyze the vibrational characteristics of the sus-
pension in large high-clearance sprayers, a 7-DOF dynamic model of its HPS was developed.
This model comprises the vehicle body and four single-wheel suspensions. Assuming the
vehicle mass is mts; θ and φ signify the vehicle body’s roll and pitch angles in an inertial
frame; ktij and ctij signify the stiffness and damping of four tires, respectively; ksij and
csij signify the stiffness and damping of the rear suspension, respectively; muij signifies the
four wheels’ unsprung mass, respectively; f i (i = 1~4) signify the four wheel active control
forces, respectively. This model includes seven degrees of freedom, comprising the body’s
roll angle, pitch angle, and vertical displacement, along with the vertical displacement of
four sets of spring masses. The overall vehicle state in static equilibrium is taken as the
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initial position, and the dynamic equations of each system parameter can be obtained from
the d’Alembert theorem [25]:

mts
..
zb = FFL + FFR + FRL + FRR − mtsg +

4
∑

i=1
fi

Jp
..
φ = (FRL + FRR + f3 + f4)b − (FFL + FFR + f1 + f2)a

Jr
..
θ = (FFL − FFR + f1 − f2) · l/2 + (FRL − FRR + f3 − f4) · l/2

(2)

where Jp is the pitch angle acceleration, rad/s2; Jr is the roll angle acceleration, rad/s2; zb is
the displacement of the body’s center of mass, m; Fij is the suspension output force of each
wheel, N; a is the front axle length, m; b is the rear axle length, m; l is the track width, m.

Utilizing Equation (1), the differential equation for the unsprung motion of each set
of suspensions [26] is:

muFL
.
zuFL = −FFL − muFLg − ktFL(zuFL − qFL)− ctFL(

.
zuFL −

.
qFL)
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.
zuFR = −FFR − muFRg − ktFR(zuFR − qFR)− ctFR(
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.
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.
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muRR
.
zuRR = −FRR − muRRg − ktRR(zuRR − qRR)− ctRR(

.
zuRR − .

qRR)

(3)

where muij is each wheel’s unsprung mass, N; zuij is each wheel’s unsprung displacement,
m; qij is each wheel’s road excitation displacement, m.

Given that all four-wheel suspensions employ hydro-pneumatic springs, the output
force of each wheel suspension [27] can be expressed as:

FFL = p1FL A1 − p2FL A2
FFR = p1FR A1 − p2FR A2
FRL = p1RL A1 − p2RL A2
FRR = p1RR A1 − p2RR A2

(4)

where p1ij is the rodless chamber pressure, MPa; p2ij is the suspension rod chamber pressure,
MPa.

When the variation range of the roll and pitch angles of the sprayer is relatively small,
it can be assumed that sinθ = θ and sinφ = φ. Under these conditions, the geometric
relationship between the suspension and the body connection position [28] is as follows:

zsFL = zb − aφ + l
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.
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.
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.
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2

.
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2 θ,
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θ
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2 θ,
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2

.
θ
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2 θ,

.
zsFL =

.
zb + b

.
φ − l

2

.
θ

(5)

In this study, a self-developed large sprayer is considered as the primary research
object, with its parameters detailed in Table 2.

Table 2. Parameters of large high-clearance sprayer.

Parameter Symbol Reference Value

Sprayer front axle length/m a 2.3
Sprayer rear axle length/m b 2.3

Track width/m l 1.9
Accumulator volume/L V 3.5

Overall weight/kg mts 7600
Tire stiffness coefficient/N·m−1 ktij 700,000

Tire damping coefficient/Ns·m−1 ctij 2400
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2.1.3. Road Excitation Input

Given the intricacies of road conditions in field transportation of large sprayers, it is
necessary to collect accurate road information for the indoor simulation test of a controller
to simulate the real-time vibration characteristics of the field transportation without active
damping. Therefore, a three-axis acceleration sensor (Bewis sensing, Wuxi, China) is
positioned at the center of mass of the entire sprayer, enabling real-time monitoring of
the body’s three-axis motion state. The acceleration sensor signal is then transmitted
instantaneously via the sprayer’s data acquisition system and stored on the personal
computer. The transportation scenarios for sprayers are mostly farmland and cement
roads, specifically Class C and D roads. We assume that the sprayer travels on the same
type of road for a sufficiently long period, such as operating at a speed of 20 km/h on Class
C and D roads, and utilize the acceleration sensor signals as a dataset for controller input,
as shown in Figure 3.
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2.1.4. Establishment of An Active Control Force Model

The active controller adjusts the opening of the valve port by controlling the voltage
value input to the proportional solenoid valve, thereby adjusting the active control force in
the hydraulic cylinder. To accurately establish the correlation between the active control
force and the voltage value, and to further characterize the dynamic performance of the
valve-controlled hydraulic cylinder, the following equation is derived by modifying the
fundamental equation of the valve-controlled hydraulic cylinder, assuming negligible oil
compressibility [29].

Kq · xv = Cd1 · w

√
1
ρ
(Ps − PL) · xv = Ap · dxp (6)

where Kq is the flow gain; xv is the spool displacement, m; Cd1 is the hydraulic cylinder’s
total leakage coefficient; w is the valve port area gradient; Ps is the system oil supply
pressure, MPa; PL is the load pressure, MPa; Ap is the hydraulic cylinder’s effective
working area, m2; xp is the hydraulic cylinder’s displacement, m.

Based on the design characteristics of the solenoid valve, xv is equivalent to the product
of the conversion gain K and the control voltage u. By considering the load pressure PL as
the ratio between the active control force and the piston rod area, the relationship between
the active output force f and the control voltage [29] can be expressed as follows:

f =

[
Ps · A2 − ρA2 ·

(
Ap · dxp

Cd · w

)2
]
/K · u (7)
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where ρ is the density of the hydraulic oil, kg/m3.

2.2. Design of a Variable Universe Fuzzy Neural Network Vibration Reduction Controller
for Sprayers

To achieve active vibration reduction in a sprayer, it is essential to regulate the valve
opening based on the real-time input conditions of suspension and road surface to mod-
ulate the oil charging and discharging. In this study, variable universe T-S fuzzy control
is employed to develop an active suspension controller whose control strategy is model-
independent. To mitigate errors, a dynamic universe approach is utilized to approximate
the ideal output of the T-S fuzzy controller. Addressing the challenge of accurately de-
scribing the expansion factor in variable universe control, a fuzzy neural network (FNN)
control strategy optimized through a hybrid optimization of the AFSA and BP algorithms
is introduced to refine the expansion factor. The detailed process is shown in Figure 4.
Specifically, by utilizing the distinct effects of the AFSA and BP algorithms during the
optimization iteration, a balance between global optimization and local optimization is
achieved. By sequentially training the unknown parameters of the FNN controller, a
dynamic response relationship is established between the variable universe T-S fuzzy
controller and the vehicle model, thus enabling the output of active control force.
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2.2.1. State Observer

Due to spatial constraints and technological limitations under harsh working condi-
tions, critical parameters such as sprung mass velocity during the operation of sprayers
are often unattainable through sensor measurements. Moreover, the method of integrating
and transforming signals received from acceleration sensors is prone to system drift and
noise interference, resulting in significant errors in the converted data and subsequently
affecting the accuracy of the observation state. To precisely monitor the suspension’s oper-
ating status and provide real-time running state input for active vibration reduction, a state
observer based on Kalman filter is established based on the acceleration signal received
by the body acceleration sensor. This approach enables the estimation and prediction of
the suspension state.
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Given the limitation of authenticating the state observer’s veracity through actual
vehicle testing, it is imperative to establish a Simulink-based random road input model and
integrate it into the suspension 1/4 dynamic model to validate the model’s effectiveness.
The sprung mass velocity and unsprung mass velocity are used as control groups, and
the estimated values of the Kalman filter are compared. The differential of the road input
displacement [27] is shown as follows:

.
xe(t) = −2πvtn0xe(t) + 2π

√
G(n0)vtw(t) (8)

where vt is the vehicle speed, m/s; n0 is the k, taken as 0.011 m−1; G(n0) is the road surface
roughness coefficient, m2/m−1; w(t) is the mean value, taken as 0.

Utilizing the Class D road as a case study, the sprung mass velocity and unsprung
mass velocity of the sprayer are estimated based on the acceleration sensor signals gathered
at the sprung mass location, as detailed in Section 2.1.3. These estimates are then compared
against the theoretical values derived from the road input model to ascertain the prediction
outcomes of the state observer, as shown in Figure 5.
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Based on the simulation curve depicted in Figure 5, it is evident that the suspen-
sion parameters derived through Kalman filtering exhibit a robust correlation with the
actual state, manifesting a consistent fluctuation pattern and a substantial overlap between
the respective curves. To further gauge the tracking proficiency of the observed values
against the actual values, a tracking performance evaluation metric is introduced, as shown
in the following equation [30].

Er =

1 −

√
N
∑

n=1
(z − z′)2

√
N
∑

n=1
z2

× 100% (9)

where z is the true value of the observed signal; z′ is the estimated value of the observed sig-
nal; N is the data number.

After substituting the data into the calculations, the curve fitting degrees of the sprung
mass acceleration and the unsprung mass acceleration are 79.22% and 81.62%, respec-
tively. For the hydro-pneumatic suspension exhibiting strong nonlinear characteristics, the
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Kalman filter can effectively observe the motion state of the suspension system, and the
estimated value is within the reasonable error range, which proves the effectiveness of the
Kalman filter observer, addressing the issue of the system state being unmeasurable, and
providing the basis for parameter input for the subsequent design of an active vibration
reduction controller.

2.2.2. Design of a Variable Universe T-S Fuzzy Controller

The unevenness of the road surface during the transportation of sprayers will greatly
impact the body. As the core component of the sprayer’s vibration reduction mechanism,
the HPS exhibits a strong nonlinear characteristic when excited by the road surface, thus
posing high requirements on the design of active vibration reduction systems. Achieving
a good vibration reduction effect using traditional linear control methods is challenging.
To address these issues, this study introduces the T-S fuzzy controller, a nonlinear control
method characterized by semi-linearization. The fuzzy field is adjusted using the variable
universe method to improve control accuracy.

The complexity of fuzzy rules in complex systems can effectively enhance the accuracy
of voltage control. However, as the complexity of these rules increases, so does the steady-
state error of the T-S fuzzy controller. Furthermore, the traditional fixed universe control
method poses a higher risk of system overshoot when the universe is set narrowly. To
address this issue, the variable universe theory was introduced, precisely expanding or
contracting the universe in accordance with the changes in system input and output,
thereby achieving real-time high-precision control [14]. The range of dynamic adjustment
for the universe is as follows:{

Xi(xi) = [−αi(xi)Ei αi(xi)Ei]
Y(y) = [−β(y)C β(y)C]

(10)

where Xi(xi) and Y(y) are the fuzzy domains of input and output variables, xi (i = 1, 2, . . .,
n); [−E, E], [−C, C] are the initial domains; αi and β are the expansion factors for input
and output.

The boundaries of the fuzzy universe are dynamically adjusted by altering the expan-
sion factor. Given that the variable universe T-S fuzzy controller regulates the opening of
the valve port via the control voltage output to the proportional solenoid valve, the initial
universe is set to (−5, 5), and seven fuzzy subsets are employed: {NB (negative big), NM
(negative middle), NS (negative small), ZO (zero), PS (positive small), PM (positive middle),
and PB (positive big)}. The controller inputs comprise the sprung mass acceleration value
captured by the acceleration sensor and the sprung mass velocity estimate derived from the
Kalman filter. Based on these considerations, the T-S fuzzy controller is designed according
to the following equation [31]: gij(X) = aij0 + aij1x1 + aij2x2 + · · ·+ aijnxn

gj(X) =
v
∑

i=1
βi · gij , (i = 1, 2, · · ·, t; j = 1, 2, · · ·, v) (11)

where gij(X) is the output of the ith rule; gj(X) is the controller output; βi is the weighting
coefficient of each fuzzy rule; t is the number of fuzzy rules; v is the number of network
outputs; and aij0 is the adaptive weight.

It is assumed that the controller approaches the ideal value after training, following
the initial value setting. The vibration reduction evaluation index for the sprayer com-
prises sprung mass acceleration, roll angle acceleration, and pitch angle acceleration. To
achieve a comprehensive assessment of the vibration reduction and capacity improvement
in farmland operation, the root mean square value of these three metrics is adopted as the
evaluation function for the T-S fuzzy controller:

J = RMS(
..
zb) + RMS(

..
θ) + RMS(

..
φ) (12)
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To guarantee accurate control, a three-axis acceleration sensor was installed at the
center of mass of the large sprayer. The real vehicle data gathered during field transporta-
tion were utilized as training samples, with the T-S fuzzy controller being trained and
optimized in MATLAB R2020b (Version R2020b, MathWorks Inc, Natick, MA, USA), taking
into account the aforementioned evaluation function.

2.2.3. FNN Cooperative Controller Based on the AFSA-BP Algorithm

The contradiction between the steady-state error and the fuzzy rules is effectively
mitigated by real-time adjustment of the fuzzy domain of the T-S controller via the variable
universe. The traditional approach to determining the expansion factor often renders
it challenging to precisely control the convergence speed, and the domain lacks clarity,
thereby hindering the achievement of satisfactory practical application results. Fuzzy
neural networks, as a type of network that constructs local approximations grounded in
fuzzy systems, offer a guarantee for the convergence speed and accuracy of the algorithm,
due to the physical meanings associated with their initial values.

(1) Design of the FNN controller

With the acceleration of the spring mass and the suspension dynamic deflection taken
as the node inputs of the fuzzy neural network, the expansion and contraction factors α1
and α2 of the variable universe are outputted, being processed through seven fuzzy subsets,
as shown in Figure 6.
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In Figure 6, the first layer serves as the input layer, taking the sprung mass acceleration
data and the Kalman filter’s estimated value as its input, namely x = [ab, vb]T. The second
layer is a fuzzy layer, employing a Gaussian function as its membership function bij. The
third layer, being the rule layer, calculates the fitness cj of each fuzzy rule. The fourth
layer, known as the defuzzification layer, utilizes the area center of gravity method to
realize defuzzification through dj. Lastly, the fifth layer is the output layer, calculating and
outputting the expansion and contraction factors α1 and α2 of the variable universe, with
the result denoted as ei. Specifically, each node in the third layer represents a fuzzy rule
and functions to match the antecedent of the fuzzy rule, calculating the utility of each rule.
The second layer has two groups of membership functions, and one membership function
is selected from each group without repetition to form a combination, which then becomes
a node in the third layer. For a given input, only the linguistic variable values near the
input point have a higher membership value, while those further away from the input
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point have a very small membership value (for Gaussian membership functions) or zero
(for triangular membership functions). The number of nodes in the fourth layer is the same
as that in the third layer, and it performs normalization calculations on the applicability of
each rule. The fifth layer is the output layer, which performs defuzzification calculations.
The calculation formula is shown in Equation (13) [32].

bij = exp
((

xi − cij
)2/σ2

ij

)
, (j = 1, 2, · · ·, b1)

cj = µ
j
1µ

j
2 · · · µ

j
n ,

(
j = 1, 2, · · ·, c; c =

n
∏
i=1

b1

)
dj = cj/

m
∑

i=1
cj

ei =
m
∑

j=1
wij · dj

(13)

where cij is the center of the membership function; σij is the width of the membership
function; b1 is the number of fuzzy partitions of the i-th (i = 1,2) input; wij is the weight of
the i-th output of the layer j node.

cij, σij, and wij are unknown parameters. By adjusting the numerical values of these
three unknown parameters, the training effectiveness of the FNN algorithm for improving
the variable universe expansion factors α1 and α2 is enhanced.

(2) Optimization of Fuzzy Neural Networks via the AFSA-BP Algorithm

The FNN algorithm faces challenges in achieving optimal training results for the T-S
fuzzy controller due to a vast number of undetermined parameters. Relying on empirical
methods to set initial parameters significantly increases the algorithm’s calculation error,
and its control accuracy is comparable to traditional mathematical function methods for
determining the expansion and contraction factors, rendering FNN training redundant. To
enhance the training effectiveness of the FNN algorithm, the AFSA algorithm is introduced
to provide a more precise initial value for the BP algorithm. As a multi-objective optimiza-
tion algorithm, the AFSA algorithm can conduct a global search for optimization targets
without relying on the selection of the initial value. This characteristic complements the
fast convergence of the BP algorithm, thus avoiding the issue of the AFSA algorithm being
criticized for its difficulty in convergence during traditional multi-objective optimization
processes. Specifically, the AFSA algorithm is integrated into the network to iteratively
determine the center cij, width σij, and weight wij of the optimal membership function.
These values are then used as the initial parameters for the FNN algorithm. Subsequently,
the BP algorithm is trained to enable the fuzzy neural network to rapidly approximate the
ideal value.

By integrating the AFSA algorithm with the BP algorithm, this study leverages the
global search capability of the AFSA algorithm in the initial optimization phase to swiftly
approximate the Pareto front for the undetermined parameters of the FNN. In the subse-
quent training phase, the BP algorithm is employed to enhance convergence speed and
optimize the search effectiveness within local solution sets. Incorporating the AFSA algo-
rithm in the initial iteration stages addresses the issue of uncertain initial values for the
BP algorithm, thereby improving training stability. The advantages of both algorithms
throughout the iterative process result in outstanding theoretical performance throughout
the entire training cycle.

To mitigate the BP algorithm’s heavy reliance on initialization parameters, the AFSA
algorithm, renowned for its robust global search capabilities and resilience to initial parame-
ters, is introduced in the initial training phase. The AFSA algorithm categorizes fish schools
into four distinct behavioral patterns: foraging, crowding, tailgating, and random behavior.
The actual implementation proceeds as follows:

Step 1: A population N, the initial position of an artificial fish, a visual field V of
that artificial fish, a step length step, a crowding factor γ, and a repetition number Try
are initialized.
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Step 2: Each artificial fish performs tail chasing, foraging behavior, and crowding and
foraging behavior. If the outcome of executing any of these behaviors is superior to the
original state, the artificial fish’s status is updated. If none of the behaviors result in an
improved state, a random behavior is executed.

Step 3: The optimal positions of all artificial fish in the current iteration are recorded.
If the maximum number of iterations is reached, the global optimal solution is outputted.

The update rules for the four typical behaviors [23] are as follows:
Xnext = Xi +

Xj−Xi

∥Xj−Xi∥ step × rand(0, 1)

Xnext = Xi +
Xc−Xi

∥Xc−Xi∥
step × rand(0, 1)

Xnext = Xi +
Xmax−Xi

∥Xmax−Xi∥
step × rand(0, 1)

Xnext = Xi + (2 × rand(1, length(Xi))− 1)× V

(14)

Assuming that the artificial fish’s current state is Xi, during foraging, a random state
Xj within its field of vision is selected. The central position Xc is determined for schooling
behavior, and Xmax represents the location where food concentration is high and the
environment is uncongested for tailing behavior. If congestion is detected in any of these
behaviors, the artificial fish’s response is to execute the foraging behavior.

Compared to traditional multi-objective optimization algorithms, the AFSA algorithm
boasts several advantages. (1) Each artificial fish school retains only the current position
without any additional information, which favors global search. (2) The movement distance
of artificial fish is influenced by the step size, while other algorithms (such as PSO, FA,
etc.) are not constrained by the movement length, which makes the convergence speed of
the artificial fish swarm algorithm slow and avoids premature convergence, providing a
basis for switching to the BP algorithm in the future. (3) The AFSA algorithm disentangles
the updating rules of social and individual attributes of fish schools, preventing the com-
bined influence of individual and global optima on the iteration process and enhancing
population diversity. These characteristics can serve as effective initialization inputs for the
BP algorithm.

After the initial value of the BP algorithm has been roughly determined by the AFSA
algorithm, the training focus is shifted to the BP algorithm to converge the unknown
parameters of the target algorithm. Assuming that e and e′ are the predicted and actual
outputs of the BP algorithm, the error cost function E [33] is represented by Equation (15).

E =
1
2
(
e′ − e

)2 (15)

Therefore, the gradient descent method [33] is employed to represent cij, σij, and wij
as follows: 

cij(λ + 1) = cij(λ)− ν ∂E
∂cij

σij(λ + 1) = σij(λ)− ν ∂E
∂σij

wij(λ + 1) = wij(λ)− ν ∂E
∂wij

(16)

The learning rate of v remains consistently above 0, and the initial value of the net-
work structure is set as the optimization result obtained from the AFSA algorithm, thus
enhancing optimization efficiency. The training process of the AFSA-BP algorithm is shown
in Figure 7.
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3. Results
3.1. Software Simulation Testing

To validate the effectiveness of the proposed algorithm and assess the vibration reduc-
tion capabilities of the vibration reduction system of large sprayers under simulated field
conditions, in MATLAB R2020b, the vibration signals gathered by the three-axis accelera-
tion sensor of the actual vehicle were employed as the training dataset, which was then
utilized to optimize the variable universe T-S fuzzy controller, and served as input for refin-
ing the fuzzy neural network cooperative controller. The effectiveness of active vibration
reduction control was tested through software simulations. Specifically, first, the construc-
tion of m-files for the AFSA-BP algorithm and the FNN algorithm was implemented using
MATLAB R2020b software. Then, in MATLAB/Simulink, a suspension simulation model
was established, based on Equations (1)–(5), (7) and (8) of this study. Finally, the T-S fuzzy
controller was trained by integrating the algorithm with the suspension smodel.

At the same time, to verify whether the training effectiveness of the AFSA-BP algorithm
meets the theoretical expectations, BP [34], PSO-BP [35,36], and AFSA algorithms were
employed as benchmarks for training and optimizing the undefined parameters of the FNN
controller. The Particle Swarm Optimization (PSO) algorithm stands as one of the most
classical and commonly employed optimization algorithms, widely applied in areas such
as neural network training and fuzzy control systems [37,38]. By comparing the AFSA
algorithm with the PSO algorithm, one can effectively validate the superior performance
of the AFSA algorithm during the initial stages of optimization. After numerous training
iterations, a comparison of the error rates across various stages is depicted in Figure 8.

As shown in Figure 8, the error rates of the AFSA, BP, PSO-BP, and AFSA-BP algorithms
are 18.1%, 10.3%, 8.5%, and 3.9%, respectively. Compared with the other three algorithms,
the improvement in error rate exhibited by the AFSA-BP algorithm is significant. Due to the
uncertainty of initial values, the BP algorithm suffers from poor convergence performance
in the initial stages and lacks sufficient global optimization capabilities. Conversely, the
AFSA algorithm remains unaffected by initial values and possesses strong global search
abilities during early iterations. Similar to the AFSA-BP algorithm, the PSO-BP algorithm
can also achieve global optimization in the initial stages and transition to local optimization
later on. However, due to the limitations of the algorithm’s inherent characteristics, the PSO
algorithm’s global search ability is inferior to the AFSA algorithm, resulting in a slower
convergence rate and a higher final error convergence compared to the AFSA-BP algorithm.
By enhancing training speed while avoiding local optima, the AFSA-BP algorithm verifies
its practicality and effectiveness.
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Figure 8. Comparison of algorithm errors.

(1) Simulation Test of Obstacle Excitation

The field pavement primarily consists of soil and stones. The vibration transmitted
from the stones to the vehicle body via the tires directly impacts the performance indicators
of the vehicle, including the acceleration of the car body’s center of mass, roll angle, and
pitch angle. Random stones causing pavement bulges have a significant effect on the
uniformity of spraying and driving stability [39,40]. To simulate the vibration reduction
effect of the sprayer under instantaneous impacts, an obstacle excitation with a bulge
height of 0.1 m and a length of 5 m was input to the simulation model, and the speed of
the sprayer was set at 1 m/s. Under identical initial conditions and a simulation time of 20 s,
the time-domain and frequency-domain response curves of the sprung mass acceleration
were obtained by comparing the vibration reduction simulation effects of the T-S fuzzy
controller trained with the BP algorithm and the passive suspension, as shown in Figure 9.
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Figure 9. Simulation effect of sprung mass acceleration under obstacle excitation. (a) Time-domain
curve; (b) frequency-domain curve.

The time-domain and frequency-domain responses of the entire vehicle suspension sys-
tem after inputting simulated obstacle signals are shown in Figures 9a and 9b, respectively.
Compared with the time-domain curves of other suspensions, the AFSA-BP&T-S fuzzy
controller introduced in this study exhibits a marked reduction in the vertical vibration ac-
celeration amplitude when confronted with instantaneous impact signals. It tends to reach
a stable state more quickly and enables faster system convergence. From the frequency-
domain curve, it can be observed that the main frequency range of all curves is mostly
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concentrated between 0 and 3 Hz. Among them, the main frequency of the passive suspen-
sion is roughly distributed between 1.5 and 2.5 Hz, while the main frequency of the system
after active control is concentrated below 1 Hz. Additionally, the power spectral density
(PSD) of the AFSA-BP&T-S fuzzy controller is smaller. This indicates that the simulation
conditions for obstacle excitation align with the operation environment in fields, where
low-frequency vibrations are prevalent. The AFSA-BP&T-S controller provides effective
control in vibration reduction across various frequency bands, especially exhibiting a sig-
nificant suppression effect on low-frequency vibrations ranging from 0 to 3 Hz. It can
effectively cope with strong uncertainties in random field excitations, such as road bumps,
thereby enhancing driving comfort significantly.

On the premise of ensuring the overall effectiveness of active vibration reduction, the
T-S fuzzy controller, utilizing the AFSA-BP algorithm, prioritizes enhancing the mitiga-
tion of low-frequency vibrations. It fulfills the fundamental requirements for farmland
operations and validates the efficacy of the controller in regulating vibrations throughout
large sprayers.

Similarly, when the same excitation is applied to the vehicle’s roll and pitch dynamics
model, the resulting time-domain and frequency-domain simulation curves for pitch angle
acceleration and roll angle acceleration are compared and shown in Figure 10.
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As depicted, the time-domain and frequency-domain curves of pitch angle acceleration
are shown in Figure 10a,b, while the time-domain and frequency-domain curves of roll
angle acceleration are shown in Figure 10c,d, accordingly. As seen in Figure 10, although
the effect of obstacle excitation on the vehicle’s body roll is not significant, the T-S fuzzy
controller using the AFSA-BP algorithm excels substantially in managing both roll and
pitch accelerations compared to the other two types. The main frequency of pitch angle
acceleration in the passive suspension is concentrated around 2 Hz, whereas after active
control, the pitch angle acceleration’s main frequency is concentrated around 0.5 Hz. The
peak value of the frequency-domain curve decreases significantly. To precisely quantify
vibration reduction effects of both active and passive suspension systems, data from the
first 10 s were collected and the peak-to-peak (ptp) values of the three vibration reduction
methods were statistically analyzed, as shown in Table 3.

Table 3. Comparison of simulation data.

Control Type Sprung Mass Acceleration Pitch Angle Acceleration Roll Angle Acceleration

Passive Suspension 7.737 4.322 2.052

BP&T-S
6.188 4.083 1.218

−20.0% −5.5% −40.6%

AFSA-BP&T-S
6.001 3.889 1.088

−22.4% −10.0% −50.4%

According to Table 3, it can be observed that the algorithm proposed in this study
exhibits favorable effects on vehicle vibration, pitch, and roll control under the ideal condi-
tion of neglecting external interference. Compared to passive suspension, the ptp value of
its sprung mass acceleration is reduced by 22.4%, the pitch angle acceleration’s ptp value
is reduced by 10.0%, and the roll angle acceleration’s ptp value is reduced by 50.4%. As
Figure 11 illustrates, the dynamic performance is significantly improved by the algorithm
proposed in this study. It not only enhances the driving comfort during field operations
but also effectively mitigates unsafe factors resulting from severe roll and pitch conditions.
When encountering sudden low-frequency-impact road conditions, this algorithm also
exhibits good control effects. It is effectively handled for braking “nodding” and steer-
ing sideslip, reducing the driving risk associated with the vehicle suspension system, and
improving the handling performance during field operations.
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(2) Class D road simulation testing

Using the simulated road excitation model established in Section 2.1 as the input, the
excitation impact of Class D road is applied to the four wheels at a speed of 20 km/h.
By comparing the performance of the passive suspension system with the active suspen-
sion system, the vibration reduction effect is analyzed and presented in Figure 12.
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It is evident from Figure 12 that under random road excitation, the active suspension
exhibits a significant vibration reduction effect with regard to the three indices: sprung mass
acceleration, pitch angle acceleration, and roll angle acceleration. The RMS value, serving
as the benchmark for assessing suspension performance, is derived from processing the
aforementioned data, including the RMS values of sprung mass acceleration, pitch angle
acceleration, and roll angle acceleration, as shown in Table 4.

Table 4. Comparison of suspension performance indices under random road excitation.

Index
Passive Suspension BP&T-S AFSA-BP&T-S

RMS RMS Improvement Rate RMS Improvement Rate

sprung mass acceleration/m·s−2 1.471 1.193 19.9% 1.066 28.5%
pitch angle acceleration/rad·s−2 1.535 1.275 16.9% 1.203 21.6%
roll angle acceleration/rad·s−2 0.430 0.097 77.4% 0.091 78.8%

According to Table 4, the BP&T-S algorithm and AFSA-BP&T-S algorithm have signifi-
cantly improved in three dynamic performance indexes, compared to the passive suspen-
sion. Specifically, the AFSA-BP&T-S algorithm has reduced the sprung mass acceleration,
pitch angle acceleration, and roll angle acceleration by 28.5%, 21.6%, and 78.8%, respectively,
outperforming the BP&T-S algorithm’s reductions of 19.9%, 16.9%, and 77.4%. The simula-
tion results obtained under random road input are consistent with those under obstacle
excitation input, thus verifying the effectiveness of the AFSA-BP&T-S algorithm.

3.2. Field Performance Test of Vibration Reduction System

In an idealized simulation environment, many complex real-world operating condi-
tions are inevitably overlooked, and the limitations of the modeling process consistently hin-
der an accurate assessment of the superior vibration reduction effect of the controller [41,42].
To achieve an optimal vibration reduction effect in practical operating environments and
verify the reliability of simulation results as well as the practicability of the controller, in
this study, an AFSA-BP & T-S fuzzy controller was implemented on the suspension system
of a sprayer, and its vibration reduction effectiveness was compared to that of a sprayer
equipped with a BP & T-S fuzzy controller, as well as to a sprayer with a passive suspension
without any controller This sprayer used in this test is independently developed. The
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test platform is shown in Figure 13. In the figure, number 1 is the proportional control
valve group (Doylepacific, Ningbo, China), 2 is the displacement sensor (Milont, Shenzhen,
China), 3 is the IMU sensor (Wheeltec, Dongguan, China) at the center of mass, 4 is the
hydraulic system’s oil pressure sensor (Asmik, Hangzhou, China), and 5 is the accelera-
tion sensor (Zesain, Shanghai, China) at the suspension position. The specific specifications
and parameters are shown in Table 5. The suspension vibration reduction algorithms is
changed through the algorithm burning process.
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Table 5. Suspension performance index comparison under random road excitation.

Name Specifications and Models Technical Specification

Proportional control valve group 0~24 V 250 bar, 60 L/min
Displacement sensor 24 V power supply, 0–5 V output 0~1000 mm

IMU sensor N100 MINI 9-DOF
Acceleration sensor DC24 V, output 1~5 V ±5 g

Pressure sensor 24 V power supply, 0–5 V output 0~30 MPa

Taking the field transportation link as an example, the sprayer was positioned on a flat
hard pavement in an open field, in order to mitigate the impact of the changes in pavement
roughness on the test results due to disruption by the sprayer. With a conventional operat-
ing speed of 15 km/h, it traversed a straight line on the same designated road section for
50 s, employing various vibration reduction control methods. The IMU sensor located at the
centroid position in Figure 3 was utilized to gather the vehicle body position signal, which
was then transmitted to a computer for real-time data processing. During the operation of
the hydraulic system, thermal energy is generated as a result of the conversion of pressure
loss, volume loss, and mechanical loss, thereby causing an increase in oil temperature. The
varying viscosity of oil at different temperatures gives rise to diverse wear conditions of
hydraulic components, affecting the accuracy of each test result [43,44]. Consequently,
after each test, the sprayer returns to the starting point and remains stationary for 60 s to
minimize the impact of hydraulic system heating on the vibration reduction performance.
Due to the inability to achieve precise control over vehicle speed and position during field
operations, the results of the direct test outputs exhibit significant errors, preventing a
comparative analysis of the effectiveness of different algorithms. Therefore, each type of
algorithm was tested 20 times, respectively. Ultimately, the data from the test with the best
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environmental variable control and the highest similarity in vibration reduction curves
under the same road section were extracted, processed, and designated as the output curve
for that group. The results are shown in Figure 14.
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Figure 14. Comparison of vibration reduction test effects in the field. (a) The curve comparison
of sprung mass acceleration between an active suspension equipped with the AFSA-BP & T-S
algorithm and a passive suspension. (b) The curve comparison of sprung mass acceleration between
a suspension equipped with the BP & T-S algorithm and a passive suspension. (c) The curve
comparison of pitch angle acceleration between an active suspension equipped with the AFSA-BP
& T-S algorithm and a passive suspension. (d) The curve comparison of pitch angle acceleration
between a suspension equipped with the BP & T-S algorithm and a passive suspension. (e) The curve
comparison of roll angle acceleration between an active suspension equipped with the AFSA-BP &
T-S algorithm and a passive suspension. (f) The curve comparison of roll angle acceleration between
a suspension equipped with the BP & T-S algorithm and a passive suspension.

Given the significant correlation between the numerical values of indicators and exter-
nal environmental disruptions (such as road conditions, driving conditions, etc.), field test
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data are not amenable to horizontal comparisons with simulation data [45,46]. As shown in
Figure 14, the curves for sprung mass acceleration, pitch angle acceleration, and roll angle
acceleration are illustrated for different vibration reduction strategies. The suspension sys-
tem with active control exhibits varying degrees of improvement in these accelerations,
particularly the AFSA-BP & T-S fuzzy control algorithm, which demonstrates a superior
vibration reduction effect. Due to the disparity between real-world road conditions and
the simulation settings, comparing the improvement rates of these indices becomes more
pertinent. As evident from Table 6, when compared to the passive suspension, the AFSA-BP
& T-S fuzzy controller in this study improves the sprung mass acceleration, pitch angle
acceleration, and roll angle acceleration by 18.3%, 23.3%, and 27.7%, respectively, based
on the root mean square value. Conversely, the BP & T-S fuzzy controller achieves im-
provements of 9.0%, 9.5%, and 23.2% on the three evaluation indices, thus highlighting the
necessity of introducing the AFSA algorithm to optimize the initial BP value.

Table 6. Comparison of data from field vibration reduction test.

Control Type
Sprung Mass Acceleration Pitch Angle Acceleration Roll Angle Acceleration

RMS Improvement Rate RMS Improvement Rate RMS Improvement Rate

Passive Suspension 1.831 / 0.923 / 0.358 /
BP&T-S 1.667 9.0% 0.832 9.5% 0.275 23.2%

AFSA-BP&T-S 1.496 18.3% 0.708 23.3% 0.259 27.7%

Given the intricacies of the field environment, the active suspension’s vibration re-
duction efficacy in the field test is not as ideal as the simulation, yet the overall trend of
the test and simulation results remains comparable. This shows that the variable universe
T-S fuzzy controller based on the AFSA-BP training FNN algorithm has a good vibration
reduction effect when dealing with the low-frequency vibration of the field road, and its
performance is better than that of traditional control algorithms.

4. Conclusions

In this study, based on the typical working conditions of large high-clearance sprayers
in the field, an innovative control method for an active vibration reduction system is
proposed, taking the HPS of the sprayer as the research object. This method is closely
related to the specific working conditions and load variations of agricultural machinery and
addresses the issue of insufficient vibration reduction performance of existing large sprayers
during transportation, thus facilitating the systematic guidance of the design and testing of
the sprayer’s suspension system. The main conclusions are as follows.

(1) The active control method proposed in this study took the four-wheel independent
HPS of a sprayer as the control model and a T-S fuzzy controller as the foundation. The
method encompassed innovative control processes such as real-time field data acquisition,
adjusting fuzzy control rules and partitions with a variable universe method, and regulating
the precision of the T-S system through a fuzzy neural network training approach. By
effectively integrating an optimization method that combined the artificial fish swarm
algorithm with the BP neural network algorithm, a fuzzy neural network collaborative
controller was established, utilizing real-time data input from the sprayer.

(2) Through the software simulation and the field performance test, it has been proven
that the requirements for vibration reduction in large sprayers are met by the active vi-
bration reduction controller. The sprung mass acceleration, pitch angle acceleration, and
roll angle acceleration were reduced to 1.496 m/s2, 0.708 rad/s2, and 0.259 rad/s2. Com-
pared with passive suspension, these three indicators have increased by 18.3%, 23.3%,
and 27.7%, respectively, and the vibration reduction effect was obviously better than that
of the traditional passive suspension, and the trend of the field performance test effect
is consistent with that of the software simulation. The feasibility of the algorithm was
demonstrated, thereby providing a new reference for the research into active vibration
reduction of agricultural machinery.
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Abbreviations

a length of the front axle, m
aij0 adaptive weight
A1 effective working area of rodless chamber, m2

A1d accumulator interface cross-sectional area, m2

A2 effective working area of rod chamber, m2

A3 pipeline cross-sectional area, m2

Am1 proportional valve’s flow area, m2

Am2 flow area of the throttle valve, m2

Ap hydraulic cylinder’s effective working area, m2

b rear axle length, m
b1 the number of fuzzy partitions
bij membership function
cij the center of the membership function
cj the fitness of rule layer
csij damping of the rear suspension
ctij damping of four tires
Cd Flow Coefficient
Cd1 hydraulic cylinder’s total leakage coefficient
dj area center of gravity method
dq pipeline inner diameter, m
e predicted outputs of BP
e′ actual outputs of BP
ei output layer result
E error cost function
fi (i = 1~4) the four wheel active control forces
Fs elastic force, N
Fc damping force, N
Fij suspension output force of each wheel, N
gij(X) output of the ith rule
gj(X) controller output
G(n0) roughness coefficient of the road surface, m2/m−1

Jp pitch angle acceleration, rad/s2

Jr roll angle acceleration, rad/s2

ksij stiffness of the rear suspension
ktij stiffness of four tires
K conversion gain
Kq flow gain
l track width, m
L pipeline length, m
ms Front wheel spring mass, kg



Agriculture 2024, 14, 811 23 of 25

mts vehicle mass, kg
muij the unsprung mass of four wheels, kg
n0 spatial cutoff frequency of the road surface
N the number of data
p1ij the rodless chamber pressure, MPa
p2ij suspension rod chamber pressure, MPa
pa0 Accumulator initial pressure, Pa
PL load pressure, MPa
Ps system oil supply pressure, MPa
qij road excitation displacement of each wheel, m
Q1 oil flow rate in rodless chamber, m3/s
Q2 oil flow rate in the rod chamber, m3/s
Q3 oil flow rate towards the accumulator, m3/s
r Gas polytropic index
step AFSA step length
t the number of fuzzy rules
u control voltage, V
v the number of network outputs
vt vehicle speed, m/s
V visual field of that artificial fish
Va0 Accumulator initial volume, m3

w valve port area gradient
w(t) mean value
wij the weight of the i-th output of the layer j node
xL hydraulic cylinder displaces, m
xp displacement of the hydraulic cylinder, m
xv spool displacement, m
Xc central position during crowding behavior
Xmax position when food concentration is high
Xi current state of the artificial fish
Xi(xi) fuzzy domains of input variables
Xj random state in its field of view during foraging
Y(y) fuzzy domains of output variables
z true value of the observed signal
z’ estimated value of the observed signal
zb displacement of the body center of mass, m
zsij sprung displacement of each wheel, m
zuij unsprung displacement of each wheel, m
αi (i = 1,2) expansion factors for input
β expansion factors for output
βi weighting coefficient of each fuzzy rule
γ crowding factor
ρ Hydraulic oil density, kg0095m−3

ξ1, ξ2, ξ3 the pressure loss coefficient
and ξ4
σij the width of the membership function
θ roll angle of the vehicle body
φ pitch angle of the vehicle body
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