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Abstract: To further enhance the precision and the adaptability of path tracking control, and con-
sidering that most of the research is focused on front-wheel steering, an adaptive parametric model
predictive control (MPC) was proposed for rear-wheel-steering agricultural machinery. Firstly, the
kinematic and dynamic models of rear-wheel-steering agricultural machinery were established. Sec-
ondly, the influence laws of curvature and velocity on the prediction horizon Np, control horizon Nc,
and preview value Npre were obtained by simulating and analyzing the factors influencing the MPC
tracking effect. The results revealed that raising Npre can improve curve tracking performance. Np

was correlated negatively with the curvature change, whereas Nc and Npre were positively connected.
Np, Nc, and Npre were correlated positively with the velocity change. Then, the parameters for
self-adaptation of Np, Nc, and Npre were accomplished via fuzzy control (FC), and particle swarm
optimization (PSO) was utilized to optimize the three parameters to determine the optimal parameter
combination. Finally, simulation and comparative analysis were conducted to assess the tracking
effects of the manual tuning MPC, the FC_MPC, and the PSO_MPC under U-shaped and complex
curve paths. The results indicated that there was no significant difference and all three methods
achieved better tracking effects under no disturbance, with the mean absolute value of lateral error
≤0.18 cm, standard deviation ≤0.37 cm, maximum deviation of U-shaped path <2.38 cm, and max-
imum deviation of complex curve path <3.15 cm. The mean absolute value of heading error was
≤0.0096 rad, the standard deviation was ≤0.0091 rad, and the maximum deviation was <0.0325 rad,
indicating that manual tuning can find optimal parameters, but with high uncertainty and low
efficiency. However, FC_MPC and PSO_MPC have better adaptability and tracking performance
compared to the manual tuning MPC with fixed horizons under variable-speed disturbance and are
more able to meet the actual needs of agricultural machinery operations.

Keywords: path tracking; rear-wheel steering model; MPC; preview; fuzzy control; PSO

1. Introduction

The autonomous driving of agricultural machinery is critical to accomplish the “re-
placement of manual labor with machines” and answer the question of “who will farm
in the future” [1]. Path tracking control is at the heart of autonomous driving technology,
which is widely used in farming, planting, management, harvesting, transportation, and
other aspects of agricultural production to improve work quality and efficiency and to
reduce the waste of agricultural production materials [2]. Typical path tracking control
methods include geometric model-based PP [3] and Stanley [4], etc., kinematic and dynamic
model-based PID [5], LQR [6], SMC [7], and MPC [8], etc., as well as model-free based
fuzzy control [9], reinforcement learning [10], and neural networks [11], etc.

MPC is the most widely used control method in practice other than PID, according
to a survey by the International Federation of Automatic Control [12]. MPC can handle
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constraint problems in real time and has low requirements for the accuracy of the control
model. It is suitable for both linear and nonlinear systems, but tracking accuracy is difficult
to guarantee at high speeds [13,14]. Therefore, it has unique advantages for agricultural
machinery path tracking with relatively low operation speed, complex ground conditions,
and difficulty in establishing accurate models. Xue et al. constructed a kind of MPC
controller utilizing a linear time-varying model for orchard tractors, with average lateral
errors of 7 cm and 13 cm for curve tracking at 2.5 m/s and 5 m/s, respectively [15]. He et al.
built a kind of MPC controller for rice transplanters upon a kinematic model with attitude
correction, and field experiments indicated that the average absolute error was 3.3 cm
under a three-line linear path [16].

The initial parameter settings and weights of the components in the optimization
objective have a significant impact on the computational results and directly affect the final
tracking effect since MPC is essentially an optimization solution method. Neural networks,
fuzzy control, and intelligent search algorithms are commonly used parameter adaptation
methods. Different methods have their benefits as well as limitations. The selection process
is primarily oriented to the actual demand (e.g., control accuracy, stability, adaptability, etc.),
and the control results (e.g., tracking error) are measured as the indexes. Simultaneously,
the computational capability of the implementation hardware is also taken into account.
Zhou et al. applied the genetic algorithm to calculate the optimal time-domain parameters
for articulated steering tractors, with an average lateral error of 2.1 cm under U-shaped
path tracking, while the traditional MPC was 7.53 cm [17]. Wang et al. utilized the fuzzy
principle to achieve the adaptive error weight coefficients of MPC, and the simulation
results demonstrated the superiority of the upgraded MPC tracking effect over the PP
controller [18]. Shi et al. used PSO-BPNN to improve MPC in the prediction and control
horizon under different road adhesion coefficients [19]. Guan et al. dynamically adjusted
the MPC’s feedforward factor and lateral error weight based on BPNN. The maximum
lateral error was 5.13 cm under double-lane path tracking and 9.23 cm for conventional MPC
when the speed was 28 km/h [20]. Liang et al. used RBF neural networks to adaptively
compensate for errors caused by changes in the curvature of complex paths at high speed,
with a maximum error of 0.285 m [21]. Lin et al. adopted fuzzy control to optimize the
prediction and control horizon online with vx and vy as inputs and the horizon factor as
output [22]. Dai et al. proposed a kind of MPC with adaptive preview characteristics, and
the maximum lateral error was 0.04 m at 10 m/s under double-lane path tracking by the
simulation outcomes [23]. Choi et al. updated the sample time in the subsequent iteration
based on the control inputs in each iteration of MPC and simulated the superiority of this
method [24]. Liu et al. proposed a two-layer MPC with curvature adaption, which has
strong adaptability at high speeds [25]. As can be seen from the above, traditional MPC
with fixed parameters has poor adaptability to working conditions. The adaptation of key
parameters such as time domain and error weights has become a research hotspot, but there
is still significant space for improvement in terms of control precision and applicability,
making this a crucial area for further study.

The steering methods of wheeled agricultural machinery mainly include front-wheel
steering (such as tractors, transplanters, etc.), rear-wheel steering (such as grain harvesters,
residual film recyclers, etc.), and four-wheel steering (such as high-clearance sprayers [26],
etc.). Current research on agricultural vehicle models mainly focuses on front-wheel
steering [27], with less research on the kinematic and dynamic models of rear-wheel-
steering agricultural machinery, blurring or ignoring the difference between them, and
equating them for control research.

To further improve the precision of path tracking and the adaptability of the control
system to various operating conditions, and given that most research focuses on front-
wheel steering, this study accomplished the following: (1) established the kinematic model
and dynamic model of rear-wheel-steering agricultural machinery; (2) simulated and
analyzed the key factors affecting the tracking effect, and discovered the interaction laws;
(3) achieved the self-adaptation of the key parameters of MPC utilizing the fuzzy control
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and PSO, and then designed the path-tracking controller to compare and analyze the
parameter adaptive MPC’s tracking effect with that of the traditional manual tuning MPC,
proving the superiority of the designed controller.

2. Materials and Methods
2.1. Vehicle Model of Rear-Wheel-Steering Agricultural Machinery
2.1.1. Kinematic Model

Figure 1 represents the kinematic model of agricultural machinery schematically.
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Figure 1. Schematic diagram of the kinematic model for agricultural machinery. Note: φ is the yaw
angle; β is the center of mass lateral deviation angle; L is the wheelbase; v is the center of mass velocity;
δf and δr are front- and rear-wheel angles, respectively; and R is the instantaneous turning radius.

The vehicle’s kinematic equation is as follows, according to the geometric relationship
of the steering: 

.
x = v cos(β + ϕ)
.
y = v sin(β + ϕ)
.
ϕ =

v(tan δ f +tan δr) cos β

L

(1)

Under low-speed conditions (the operation speed of the agricultural machinery is usually
<3 m/s), assuming that the vehicle has no side-slip, i.e., vy = 0, then β = arctan vy

vx
= 0.

In agricultural machinery with rear-wheel steering, the front-wheel steering angle δf = 0;
therefore, its kinematic equation is as follows:

.
x = v cos ϕ
.
y = v sin ϕ
.
ϕ = v tan δr

L

(2)

Select χ = [x, y, ϕ]T as the state variables and u = [v, δ]T as the control variables. The
error state equation is obtained by performing a Taylor series expansion at the reference
point, neglecting high-order terms, and calculating the Jacobian matrix.

.
χ̃ =

0 0 −vr sin ϕr
0 0 vr cos ϕr
0 0 0

x − xr
y − yr
ϕ − ϕr

+

 cos ϕr
sin ϕr
tan δr

L

0
0
vr

L cos2 δr

[v − vr
δ − δr

]
= aχ̃ + bũ (3)

The error state equation is discretized using the forward Euler method, to facilitate
the design of the MPC controller. The discrete error model of the system is as follows:

χ̃(k + 1) = ãχ̃(k) + b̃ũ(k) (4)

where ã =

1 0 −Tvr sin ϕr
0 1 Tvr cos ϕr
0 0 0

, b̃ =

 T cos ϕr
T sin ϕr

T tan δr
L

0
0

Tvr
L cos2 δr

, and T is the sampling time.
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2.1.2. Dynamic Model

The dynamic model of rear-wheel-steering agricultural machinery is schematically
depicted in Figure 2, taking into account the two degrees of freedom in the lateral and
yaw directions.
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Figure 2. Schematic diagram of 2DoF dynamic model for rear-wheel-steering agricultural machinery.
Note: Flf and Flr are the longitudinal forces acting on the front and rear wheels; Fcf and Fcr are the
lateral forces acting on the front and rear wheels; Fxf and Fxr are the combined forces acting on the
front and rear wheels along the x-axis; Fyf and Fyr are the combined forces acting on the front and
rear wheels along the y-axis; vx and vy are the longitudinal and lateral velocities of the vehicle; lf and
lr are the distances between the front and rear axles and the center of mass, respectively; θvr is the
velocity deviation angle of the rear wheels.

The two-degree-of-freedom (2DoF) dynamic equation for rear-wheel-steering agricul-
tural machinery is derived as follows:

m(
..
y + vx

.
ϕ) = 2Cc f (−

vy + l f
.
ϕ

vx
) + 2Ccr(δr −

vy − lr
.
ϕ

vx
) (5)

Iz
..
ϕ = 2l f Cc f (−

vy + l f
.
ϕ

vx
)− 2lrCcr(δr −

vy − lr
.
ϕ

vx
) (6)

where m is the mass of the vehicle; Iz is the moment of inertia around the z-axis of the
vehicle; Ccf and Ccr are the lateral stiffness of the front and rear wheels respectively.

Choose χ =
[
y,

.
y, ϕ,

.
ϕ
]T

as the state variables (i.e., lateral position, lateral position
change rate, yaw angle, and yaw angle change rate). Set the rear-wheel angle as the control
variable, i.e., u = [δr]. The state space equation is as follows:

d
dt


y
.
y
ϕ
.
ϕ

 =


0 1 0 0

0 − 2Cc f +2Ccr
mvx

0 − 2Cc f l f −2Ccr lr
mvx

− vx

0 0 0 1

0
2lrCcr−2l f Cc f

Izvx
0 −

2l2
r Ccr+2l2

f Cc f
Izvx




y
.
y
ϕ
.
ϕ

+


0

2Ccr
m
0

− 2lrCcr
Iz

δr (7)

Rewrite Equation (7) as follows:

.
χ = aχ + bu (8)

The response of the vehicle’s lateral displacement, yaw angle, lateral velocity, and yaw
angular rate can be analyzed under a given steering angle input according to the system
state equation. However, as the goal of tracking control is to minimize tracking deviation,
the state equation ought to be able to analyze the vehicle’s tracking deviation under a
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given angle. Therefore, it is necessary to transform Equation (8) into the tracking error state
space equation.

Set χ̃ =

[
ỹ,

.
ỹ, ϕ̃,

.
ϕ̃

]T
as the state variables (i.e., lateral position error, lateral position

error change rate, yaw angle error, and yaw angle error change rate). The tracking error
state space equation of the dynamic model for rear-wheel-steering agricultural machinery
is as follows:

d
dt


ỹ
.
ỹ
ϕ̃
.
ϕ̃

 =


0 1 0 0

0 − 2Cc f +2Ccr
mvx

2Cc f +2Ccr
m − 2Cc f l f −2Ccr lr

mvx
0 0 0 1

0
2lrCcr−2l f Cc f

Izvx
− 2lrCcr−2l f Cc f

Iz
−

2l2
r Ccr+2l2

f Cc f
Izvx




ỹ
.
ỹ
ϕ̃
.
ϕ̃

+


0

2Ccr
m
0

− 2lrCcr
Iz

δr (9)

Rewrite Equation (9) as follows:

.
χ̃ = ãχ̃ + b̃u (10)

According to Equations (8) and (10), path tracking can be accomplished by utilizing
MPC to obtain the appropriate amount of control at the lowest possible cost, hence lowering
the tracking error.

The kinematic model is simple and practical, suitable for situations with low speeds
and infrequent curvature changes. Nevertheless, it disregards the force interacting between
wheels and ground, which can lead to side-slip at high speeds. The dynamic model
considers the ground–wheel interactions and more vehicle physics, but it is more complex
and requires balancing computational accuracy and real-time performance due to its
difficult-to-access modeling parameters. This paper takes the kinematic model as the
control model since agricultural machines have low speeds and complex ground conditions

2.2. Model Predictive Control

To obtain the optimal control sequence at the current moment, the MPC controller
performs an optimization solution based on the prediction model, objective function, and
constraint conditions. The principle can be summarized as predictive modeling, rolling
optimization, and feedback correction.

2.2.1. Objective Function

To achieve a more stable path-tracking effect, the control quantity increments are
constrained and new state variables are constructed.

ξ(k) =
[
χ̃(k) ũ(k − 1)

]T (11)

Substitute Equation (11) into the state space equation to obtain a new state space
expression and output equation:{

ξ(k + 1) = Aξ(k) + B∆ũ(k)
η(k) = Cξ(k)

(12)

where A =

[
ã b̃

ONu×Nx INu

]
, B =

[
b̃

INu

]
, C =

[
INx ONu×Nx

]
, ∆ũ(k) = ũ(k)− ũ(k − 1)

Nx and Nu are the state and control quantity dimensions, respectively; I and O are the
identity and zero matrix, respectively; and η is the new output variable.

Then the output equation can be expressed as follows:

Y = Ψξ(k) + Θ∆U (13)
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where Y =
[
η(k+ 1) η(k+ 2) · · · η(k+ Np)

]T, Ψ =
[
CA CA2 · · · CANp

]T, Θ =

CB 0 · · · 0
CAB CB · · · 0

...
...

...
...

CANc−1B CANc−2B · · · CA0B
...

...
...

...
CANp−1B CANp−2B · · · CANp−Nc B


, ∆U =

[
∆ũ(k) ∆ũ(k+ 1) · · · ∆ũ(k+ Nc − 1)

]T

Np and Nc (Np > Nc) are the prediction and control horizon, respectively.
Thus, the output in Np can be predicted if the present ξ(k) and ∆U in the control

horizon are known.
It is expected to achieve the reference value of the state variable as quickly as possible

with the minimum control quantity while ensuring stationarity in path tracking control.
Therefore, the optimization objective function can be expressed as follows:

J = ỸTQQỸ + ∆UT RR∆U
= (Y − Yr)

TQQ(Y − Yr) + ∆UT RR∆U
(14)

where QQ = INp ⊗ QNx×Np , RR = INp ⊗ RNu×Nc , Q and R are the state and quantity weight,

respectively; and Yr is the system output reference value, Yr =
[
0 0 · · · 0

]T .
To facilitate the computational solution, the objective function is converted by the

rounding method into the standard quadratic form:

min
∆U

J =
1
2

∆UT H∆U + gT∆U (15)

where H = ΘTQQΘ + RR, g = ETQQΘ, E = Ψξ(k). A relaxation factor ε is included to
prevent the equation from having no solution, and the augmented vectors of H and g are as

follows: H =

[
ΘTQQΘ + RR 0

0 ε

]
, g =

[
ETQQΘ

ε

]
.

2.2.2. Constraint Condition

The control quantities at each moment in the control horizon satisfy the following equations:

U =


u(k)

u(k + 1)
...

u(k + Nc − 1)

 =


u(k − 1)
u(k − 1)

...
u(k − 1)

+


I2 0 · · · 0
I2 I2 · · · 0
...

...
. . .

...
I2 I2 · · · I2




∆u(k)
∆u(k + 1)

...
∆u(k + Nc − 1)

 = Ut + AI∆Ut

Umin =
[
umin umin · · · umin

]T ≤ U ≤
[
umax umax · · · umax

]T
= Umax

∆Umin =
[
∆umin ∆umin · · · ∆umin

]T ≤ ∆U ≤
[
∆umax ∆umax · · · ∆umax

]T
= ∆Umax

(16)

Rewrite Equation (16) as follows:
AI∆Ut ≤ Umax − Ut

−AI∆Ut ≤ −Umin + Ut
∆Umin ≤ ∆U ≤ ∆Umax

(17)

For the standard quadratic programming problem, the MATLAB (2021b) QP solver
“quadprog” is used for solving. Finally, a sequence of control increments in Nc is derived:

∆U∗
k =

[
∆ũ∗

k ∆ũ∗
k+1 · · · ∆ũ∗

k+Nc−1

]T
(18)
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Apply the first element of the control sequence to the controlled object, and the system
continues to execute it until the next moment. Repeat the above operation in the next cycle.

u(k) = u(k − 1) + ∆ũ∗
k (19)

2.3. Analysis of Factors Influencing MPC Tracking Performance

It is vital to explore the impacts of the initial control parameters and the vehicle’s
original parameters on MPC since MPC is an optimization method, and the setting of its
initial parameters has a significant impact on the solution results.

Typically, agricultural machinery operates at a speed of less than 3 m/s. The operating
speed in the simulation below was set to 3 m/s, except for the speed impact analysis. Table 1
displays the other MPC control parameter settings, excluding the dynamically modified pa-
rameters. A MATLAB-based simulation environment was built for agricultural machinery
path tracking control and the factors affecting tracking performance were analyzed.

Table 1. Control parameter settings.

Parameters Values

Prediction horizon Np
Dynamic adjustmentControl horizon Nc

Preview value Npre
State quantity weight Q 100

Control increment weight R 1
Relaxation factor ε 10

Control minimum ũmin/rad [−0.2 −0.54]T

Control maximum ũmax/rad [0.2 0.54]T

Control increment minimum ∆ũmin/rad [−0.05 −0.2]T

Control increment maximum ∆ũmax/rad [0.05 0.2]T

Sampling period T/s 0.1

2.3.1. Impact of Wheelbase on Tracking Effect

The wheelbase L is the only inherent physical property of the vehicle taken into account
in the kinematic model. In agricultural machinery, the wheelbase is typically customized
to a non-standard value according to the needs of specific applications. The following
simulation analyzed the effect of a typical wheelbase on the effectiveness of path tracking,
with settings Np = 10 and Nc = 2.

As shown in Table 2 and Figure 3, with the same initial position and heading angle,
the online distances are 8.7 m, 10.7 m, and 11.7 m, and the online times are 3 s, 3.6 s, and
3.9 s, respectively, when the wheelbases are 1.5 m, 2.9 m, and 3.7 m, respectively. That
is to say, an increase in the wheelbase results in an increase in online distance and time,
but the impact on the control accuracy and stability after going online is not significant.
The heading error peak value before going online gradually decreases as the wheelbase
increases, while the difference in rear-wheel steering angle peak value is not significant.
This paper took the large wheelbase L = 3.7 m as the simulation parameter.

Table 2. Parameters of tracking effect at different wheelbases under straight paths.

Wheelbase
/m

Online Time
/s

Online Distance
/m

Absolute Value of Lateral Error

Mean Value
/m

Standard
Deviation/m Maximum Error/m

L = 1.5 3 8.7 0.0005 0.0027 0.0216
L = 2.9 3.6 10.7 0.0007 0.0029 0.0232
L = 3.7 3.9 11.7 0.0007 0.0031 0.0243
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Figure 3. Tracking effects with different wheelbases under straight paths. (a) Path tracking; (b) lateral
error; (c) heading error; (d) rear-wheel steering angle.

2.3.2. Impact of Preview on Tracking Effect

The gap from the actual position (x, y, φ) to the projected point of that position on
the reference path is normally used as the value of the lateral error when path tracking
computes it (Figure 4). Finding the nearest point to (x, y, φ) in the discrete reference path,
i.e., the matching point (xm, ym, φm, ρm), is the initial step in the calculation. It is usually
assumed that the curvature of the matching point and the projection point is consistent,
and then the projection substitution method is used to calculate approximately the lateral
error ed based on the matching point, i.e., as follows:

ed ≈ (
⇀
x −⇀

x m)
⇀
n m (20)

where
⇀
x is the cartesian coordinate of the current position;

⇀
x m is the cartesian coordinates

of the matching point;
⇀
x −⇀

x m = (x − xm, y − ym), nm, τm are the normal and tangential
vectors of the matching point, respectively; and ρm is the curvature of the matching point.
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This method is more accurate when the reference path has zero curvature. However,
there is an inaccuracy in approximating the projection point with the matching point when
the curvature is not zero. Consequently, adding a preview on the initial matching point is
more beneficial to improving the tracking effect for path tracking with non-zero curvature,
i.e., as follows:

IndexMatchpoint = Index[min(d1, d2, · · · dn)] + Npre (21)

where Index represents the index number of the matching point; d1, d2, . . ., dn represent the
lengths from the vehicle and to each discrete point on the reference path, respectively; and Npre
stands for the added preview value, with a value range of [0, size (Reference Path) − Npre].

1. Impact of reference path curvature on the value of Npre

As shown in Figure 5, under the same other parameters (set Np = 10, Nc = 3), adding
Npre is more effective when the reference path curvature is not zero. Npre = 2 results in a
much better curve tracking effect than Npre = 0 and Npre = 1, and when Npre = 0, it is prone
to untimely turn response with obvious hysteresis. However, when Npre is excessively high
(referring to Npre = 5 in Figure 5), more attention will be paid to the distant situation, and
ignoring the current situation will reduce control accuracy.
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Figure 5. U-shaped path-tracking effect under different values of Npre. (a) Path tracking; (b) lateral error.

From Figure 6 (set Np = 10 and Nc = 3), Npre should be increased appropriately but not
excessively as the curvature grows. The tracking effect in Figure 6 is ranked as Npre(0) <
Npre(1) < Npre(2) < Npre(4) > Npre(5) > Npre(10), with Npre = 4 having the best effect.

2. Impact of velocity on the value of Npre
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Figure 6. Effect of double-lane change path tracking at different values of Npre. (a) Path tracking;
(b) lateral error.

Take the U-shaped path (the commonly used agricultural machinery operation path)
as the reference path and set Np = 10 and Nc = 3.
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Figure 7a illustrates that when v = 1 m/s, the tracking effect is ranked as Npre(0) <
Npre(1) > Npre(2) > Npre(3), where Npre = 1 indicates the tracking effect’s optimality. Figure 7b
illustrates that when v = 3 m/s, the tracking effect is ranked as Npre(1) < Npre(2) > Npre(3) >
Npre(4), where Npre = 2 indicates the tracking effect’s optimality. Figure 7c illustrates that
when v = 5 m/s, the tracking effect is ranked as Npre(2) < Npre(3) > Npre(4) > Npre(5), where
Npre = 3 indicates the tracking effect’s optimality. Figure 7d illustrates that when v = 10 m/s,
the tracking effect is ranked as Npre(4) < Npre(5) < Npre(6) > Npre(7), where Npre = 6 indicates
the tracking effect’s optimality.

Agriculture 2024, 14, x FOR PEER REVIEW 11 of 23 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 7. Lateral error under different Npre values at different velocities. (a) Lateral error under dif-
ferent Npre values at v = 1 m/s; (b) lateral error under different Npre values at v = 3 m/s; (c) lateral error 
under different Npre values at v = 5 m/s; (d) lateral error under different Npre values at v = 10 m/s. 

In summary, the selection of the value of Npre is correlated positively with the curva-
ture of the reference path and velocity. 

2.3.3. Impact of the Predictive Horizon and Control Horizon on Tracking Effect 
(1) When tracking a straight path (set Npre = 0) 
As can be seen in Figure 8a, a smaller Np corresponds to slower convergence and a 

bigger Np to faster online time. The difference in the control effect is not significant when 
Nc = 2, 3, and 4. Nevertheless, considering real-time control, Np should be appropriately 
increased and Nc reduced while tracking a straight path; the tracking effect is best where 
Np = 10 and Nc = 2, as shown in Figure 8. But once Np rises to a certain point, convergence 
slows down while Nc remains constant, necessitating simultaneous adjustments to Np and 
Nc, as Figure 8b illustrates. Thus, Np should be adjusted adequately but not excessively for 
straight path tracking. 

  
(a) (b) 

0 50 100 150 200
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

La
te

ra
l e

rr
or

/m

Time/s

 v=1,Npre=0
 v=1,Npre=1
 v=1,Npre=2
 v=1,Npre=3
 Baseline

50 100 150 200
−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

La
te

ra
l e

rr
or

/m

Time/s

0 20 40 60 80
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

La
te

ra
l e

rr
or

/m

Time/s

 v=3,Npre=1
 v=3,Npre=2
 v=3,Npre=3
 v=3,Npre=4
 Baseline

10 20 30 40 50 60 70
−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

La
te

ra
l e

rr
or

/m

Time/s

0 10 20 30 40 50
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

La
te

ra
l e

rr
or

/m

Time/s

 v=5,Npre=2
 v=5,Npre=3
 v=5,Npre=4
 v=5,Npre=5
 Baseline

10 20 30 40
−0.08

−0.04

0.00

0.04

0.08

La
te

ra
l e

rr
or

/m

时时 /t/s

0 5 10 15 20 25
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

La
te

ra
l e

rr
or

/m

Time/s

 v=10,Npre=4
 v=10,Npre=5
 v=10,Npre=6
 v=10,Npre=7
 Baseline

5 10 15 20

−0.08

−0.04

0.00

0.04

0.08

0.12

La
te

ra
l e

rr
or

/m

Time/s

0 2 4 6 8 10 12 14 16 18
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

La
te

ra
l e

rr
or

/m

Time/s

 Np=2,Nc=2
 Np=3,Nc=2
 Np=5,Nc=2
 Np=10,Nc=2
 Np=3,Nc=3
 Np=5,Nc=3
 Np=10,Nc=3
 Np=5,Nc=4
 Np=10,Nc=4
 Baseline

3 4 5 6−0.6

−0.4

−0.2

0.0

La
te

ra
l e

rr
or

/m

Time/s

0 2 4 6 8 10 12 14 16 18
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

La
te

ra
l e

rr
or

/m

Time/s

 Np=10,Nc=2
 Np=20,Nc=2
 Np=25,Nc=2
 Np=30,Nc=2
 Np=30,Nc=10
 Baseline

2 3 4 5 6 7
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

La
te

ra
l e

rr
or

/m

Time/s

Figure 7. Lateral error under different Npre values at different velocities. (a) Lateral error under
different Npre values at v = 1 m/s; (b) lateral error under different Npre values at v = 3 m/s; (c) lateral
error under different Npre values at v = 5 m/s; (d) lateral error under different Npre values at v = 10 m/s.

In summary, the selection of the value of Npre is correlated positively with the curvature
of the reference path and velocity.

2.3.3. Impact of the Predictive Horizon and Control Horizon on Tracking Effect

(1) When tracking a straight path (set Npre = 0)
As can be seen in Figure 8a, a smaller Np corresponds to slower convergence and a

bigger Np to faster online time. The difference in the control effect is not significant when
Nc = 2, 3, and 4. Nevertheless, considering real-time control, Np should be appropriately
increased and Nc reduced while tracking a straight path; the tracking effect is best where
Np = 10 and Nc = 2, as shown in Figure 8. But once Np rises to a certain point, convergence
slows down while Nc remains constant, necessitating simultaneous adjustments to Np and
Nc, as Figure 8b illustrates. Thus, Np should be adjusted adequately but not excessively for
straight path tracking.
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Figure 8. Lateral error under different Np and Nc values of straight path tracking. (a) Lateral error I;
(b) lateral error II.

(2) When tracking curves (set Npre = 2)
In the case of the fixed-curvature circular path and the variable-curvature U-shaped

path, as shown in Figures 9b and 10b, the control effect is better at Nc = 3 than it is at
Nc = 2 when Np = 3, 5, 10, respectively. While as Nc increases (referring to Nc = 5), the
control impact does not significantly alter. As a result, Nc can be increased suitably for
curve tracking while taking the computation of the real-time performance into account.
When Np = 10 and Nc = 3, there is a better effect, as shown in the illustration.
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Figure 9. Circular path-tracking effect under different Np and Nc values. (a) Path tracking; (b) lateral
error I; (c) lateral error II.
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Figure 10. U-shaped path-tracking effect under different Np and Nc values (a) Path tracking; (b) lateral
error I; (c) lateral error II.

The difference in tracking effect is not significant when Np = 6, 8, 10, 20, respectively,
as shown by Figures 9c and 10c. Therefore, Np can be suitably lowered considering the
computational load and real-time computation when the curve is tracked. However, when
it is reduced to a smaller value (referring to Np = 3 and Nc = 3), the tracking effect is
rather decreased.

In conclusion, the selection of Np and Nc is affected by the reference path curvature
ρ. Np should be increased appropriately and Nc should be reduced appropriately when
tracking a straight path. For curve tracking, Np should be decreased appropriately to
account for as much path curvature information as possible in each prediction horizon, and
Nc should be increased appropriately to reduce the amplitude of changes in rear-wheel
steering while ensuring tracking accuracy and stability.

At low vehicle speeds, the steering wheel needs to go a shorter distance to reach the
target corner, resulting in a smaller total error during the process, while at high vehicle
speeds, the vehicle will travel farther, potentially causing inferior tracking performance.
Therefore, Np should also grow when v increases to avoid the premature steering issue. Nc
should also increase accordingly to reduce sudden changes in control inputs, preventing
situations of skidding or even loss of control when driving at high speeds. The influence
laws of reference path curvature ρ and vehicle speed v on Np, Nc, and Npre are summarized
in Table 3.

It is obvious that varying operation speeds and path curvatures result in different
tracking performances. The impact of changes in reference path curvature and agricultural
machinery operating speed on tracking performance is not taken into account by the
conventional MPC algorithm, which has fixed Np, Nc, and Npre values. Np, Nc, and Npre
can be dynamically adjusted based on the reference path curvature and operating speed to
achieve parameter adaptation.
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Table 3. The influence laws of ρ and v on Np, Nc, and Npre.

Parameters Np Nc Npre

ρ ↑ ↓ ↑ ↑
↓ ↑ ↓ ↓

v ↑ ↑ ↑ ↑
↓ ↓ ↓ ↓

Note: ↑ represents positive correlation; ↓ represents negative correlation.

2.4. Parameter Adaptive MPC
2.4.1. Parameter Adaptive MPC Based on Fuzzy Control

Fuzzy control (FC) has the advantage of handling nonlinear factors and the effects
of uncertainty. The primary idea is to create fuzzy rules based on expert experience, then
fuzzify the input, apply fuzzy reasoning, and defuzzify the results to obtain accurate
outcomes. It benefits from being simple in design, easy to implement and transplant, and
independent of the mathematical models of the controlled object [28]. Therefore, fuzzy
control can be employed to perform the adaptive adjustment of Np, Nc, and Npre, based on
the analysis of affecting factors in Section 2.3. Use v and ρ as the input parameters, while
Np, Nc, and Npre are the outputs to the fuzzy control, i.e., as follows:

[Np, Nc, Npre] = Round[Fuzzy(v, ρ)] (22)

where Round represents the rounding function, and Fuzzy represents a fuzzy control function.
Classify v, ρ, Np, Nc, and Npre into 7 fuzzy subsets, respectively: NB, NM, NS, ZO, PS,

PM, and PB. An optimization strategy for output variables was developed based on the
simulation results, and a fuzzy control rule library was established using the Mamdani
method. Table 4 illustrates the fuzzy control rules and the range of values for each variable.

Table 4. Fuzzy control rules and range of variable values.

Np = [5, 12]
v = [0, 3]

NB NM NS ZO PS PM PB

ρ = [0, 0.18]

NB ZO PS PM PM PB PB PB
NM NS ZO PS PM PM PB PB
NS NM NS ZO PS PM PM PB
ZO NM NM NS ZO PS PM PM
PS NB NM NM NS ZO PS PM
PM NB NB NM NM NS ZO PS
PB NB NB NB NM NM NS ZO

Nc = [2, 5]
v = [0, 3]

NB NM NS ZO PS PM PB

ρ = [0, 0.18]

NB NB NB NB NM NM NS ZO
NM NB NB NM NM NS ZO PS
NS NB NM NM NS ZO PS PM
ZO NM NM NS ZO PS PM PM
PS NM NS ZO PS PM PM PB
PM NS ZO PS PM PM PB PB
PB ZO PS PM PM PB PB PB

Npre = [0, 4]
v = [0, 3]

NB NM NS ZO PS PM PB

ρ = [0, 0.18]

NB NB NB NB NM NM NS ZO
NM NB NB NM NM NS ZO PS
NS NB NM NM NS ZO PS PM
ZO NM NM NS ZO PS PM PM
PS NM NS ZO PS PM PM PB
PM NS ZO PS PM PM PB PB
PB ZO PS PM PM PB PB PB

Figure 11 presents each variable’s membership functions and the fuzzy control surface.
Gaussian membership functions were applied at both ends of the input variable domain
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and triangular membership functions were applied in the middle region of the domain to
ensure high accuracy, stability, and sensitivity. The fuzzy outputs were obtained through
fuzzy inference, and the precise output of Np, Nc, and Npre were obtained by using the
MIN-MAX-Center of Gravity method for defuzzification.
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2.4.2. Parameter Adaptive MPC Based on PSO

Particle Swarm Optimization (PSO) is a heuristic global search algorithm based on
swarm intelligence, characterized by its ease of implementation, high accuracy, and rapid
convergence [29]. The basic idea involves leveraging collaboration and information ex-
change among particles to arrive at the optimal solution [30].

The PSO algorithm first initializes n particles to form a population B = (B1, B2, . . ., Bn),
where every particle stands for a possible ideal solution. The position and velocity of the
i-th particle Bi are Xi = (xi1, xi2, . . ., xid) and Vi = (vi1, vi2, . . ., vid), respectively. Then, the
particles update their position and velocity by tracking individual extremum Pbest = (pi1,
pi2, . . ., pid) and population extremum Gbest = (pg1, pg2, . . ., pgd) during the iteration process.
The updated formula is as follows:

Vk+1
id = ωVk

id + c1r1(Pk
id − Xk

id) + c2r2(Pk
gd − Xk

gd)

Xk+1
id = Xk

id + Vk+1
id

(23)

where ω is the inertia factor with a non-negative value; c1 and c2 are individual and group
learning factors, respectively; and r1 and r2 are randomly generated numbers ranging from 0 to 1.

Local search benefits more from a smaller ω, while a bigger one is better for global
search. Better optimization results can be achieved with the dynamic ω than with the fixed
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one, as it can better balance the capabilities of local and global search. This paper adopted
the commonly used Linear Decreasing Weight (LDW) strategy, i.e., as follows:

ωk = (ωint − ωend)(Gk − k)/Gk + ωend (24)

where Gk stands for the maximum number of iterations, k denotes the current iterations
number, ωinit represents the initial inertia weight, and ωend represents the inertia weight
when evolving to the maximum iterations.

Set Np, Nc, and Npre as the three dimensions of each particle. Set the root mean square
error of the lateral error as the fitness function, i.e., as follows:

Fitness(i) = MSE(ed − red) (25)

where Fitness represents the fitness function, MSE represents the root mean square error
function, and red represents the lateral error reference value.

Table 5 displays the key parameter settings of the PSO algorithm, and Figure 12
illustrates the control process.

Table 5. PSO parameter settings.

Parameters Values

Particle dimension D 3
Pop size 1

Maximum number of iterations 100
Individual learning factor c1 0.8

Global learning factor c2 1
VarSize of Np [5, 12]
VarSize of Nc [2, 5]

VarSize of Npre [0, 4]
ωinit 0.9
ωend 0.4
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Figure 12. PSO-MPC control flow.
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3. Results and Discussion
3.1. Simulation Test Results

The tracking effects of the manual tuning MPC (MPC), the parameter adaptive MPC
based on fuzzy control (FC_MPC), and the parameter adaptive MPC based on PSO
(PSO_MPC) under U-shaped paths (commonly used operation paths) and complex curve
paths (simulating curve driving and obstacle avoidance behaviors, etc.) were compared
and analyzed through simulation.

3.1.1. U-Shaped Path Simulation Test

Set Np = 6, Nc = 3, and Npre = 2 for the manual tuning MPC. From Figure 13 and Table 6,
the tracking effects of MPC, FC_MPC, and PSO_MPC differ little and all have superior
tracking effects under no external disturbance. In contrast, the effect of PSO_MPC is slightly
better than the first two. The mean absolute values of lateral errors for the three methods
are 0.0016 m, 0.0014 m, and 0.0003 m, respectively, with maximum values of 0.0238 m,
0.0014 m, and 0.0168 m. The mean absolute values of heading errors for the three methods
are 0.0096 rad, 0.0095 rad, and 0.0095 rad, respectively, with maximum values of 0.0325 rad,
0.0321 rad, and 0.0326 rad.
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Figure 13. Contrast in tracking effects under a U-shaped path without disturbances. (a) Path tracking;
(b) lateral error; (c) heading error; (d) rear-wheel steering angle.

Table 6. Statistics of lateral and heading errors under U-shaped path tracking without disturbances.

Control
Algorithm

Online Time
/s

Online
Distance/m

Absolute Value of Lateral Error Absolute Value of Heading Error

Mean Value
/m

Standard
Deviation

/m

Maximum
Error

/m
Mean Value

/rad
Standard
Deviation

/rad

Maximum
Error
/rad

MPC 4.1 11.29 0.0016 0.0023 0.0238 0.0096 0.0091 0.0325
FC_MPC 3.9 10.67 0.0014 0.0021 0.0214 0.0095 0.0091 0.0321

PSO_MPC 3.7 10.10 0.0003 0.0028 0.0168 0.0095 0.0091 0.0326



Agriculture 2024, 14, 823 17 of 21

The tracking effects of FC_MPC and PSO_MPC are significantly better than that of
MPC when the random perturbation of [1, 5] is set for the speed, as shown in Figure 14
and Table 7. There is a small difference between the two effects of FC_MPC and PSO_MPC,
and the tracking effect is lower than when there is no perturbation but still within the
usage demand range. The mean absolute values of lateral errors for the three methods
are 0.0189 m, 0.0047 m, and 0.0049 m, respectively, with maximum values of 0.0561 m,
0.0498 m, and 0.0244 m. The mean absolute values of heading errors for the three methods
are 0.0060 rad, 0.0160 rad, and 0.0159 rad, respectively, with maximum values of 0.0502 rad,
0.0471 rad, and 0.0463 rad.
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Figure 14. Comparison of tracking effects under a U-shaped path with disturbances. (a) Lateral error;
(b) heading error.

Table 7. Statistics of lateral and heading errors under U-shaped path tracking with disturbances.

Control Algorithm Online
Time

/s

Online
Distance

/m

Absolute Value of Lateral Error Absolute Value of Heading Error

Mean
Value

/m

Standard
Deviation

/m

Maximum
Error

/m

Mean
Value
/rad

Standard
Deviation

/rad

Maximum
Error
/rad

MPC_Disturb 2.1 11.67 0.0189 0.0181 0.0561 0.0060 0.0076 0.0502
FC_MPC_Disturb 1.9 9.93 0.0047 0.0059 0.0498 0.0160 0.0153 0.0471

PSO_MPC_Disturb 1.7 10.44 0.0049 0.0056 0.0244 0.0159 0.0151 0.0463

3.1.2. Complex Curve Path Simulation Test

Set Np = 10, Nc = 3, and Npre = 2 for the manual tuning MPC. As can be observed
from Figure 15 and Table 8, similar to the U-shaped path, MPC, FC_MPC, and PSO_MPC
differ little and all have good tracking effects under no external disturbance. The mean
absolute values of lateral errors for the three methods are 0.0017 m, 0.0018 m, and 0.0019 m,
respectively, with maximum values of 0.0269 m, 0.0315 m, and 0.0290 m. The mean absolute
values of heading errors for the three methods are 0.0021 rad, 0.0022 rad, and 0.0022 rad,
respectively, with maximum values of 0.0334 rad, 0.0334 rad, and 0.0330 rad.

Similar to the U-shaped path, the tracking effects of FC_MPC and PSO_MPC are
significantly better than that of MPC when the random perturbation of [−5, 5] is set for
the speed, as shown by Figure 16 and Table 9. Furthermore, the difference in tracking
performance between FC_MPC and PSO_MPC is relatively small. The mean absolute values
of lateral errors for the three methods are 0.0072 m, 0.0020 m, and 0.0018 m, respectively,
with maximum values of 0.1625 m, 0.0200 m, and 0.0193 m. The mean absolute values of
heading errors for the three methods are 0.0022 rad, 0.0020 rad, and 0.0021 rad, respectively,
with maximum values of 0.0293 rad, 0.0200 rad, and 0.0263 rad.
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Figure 15. Contrast in tracking effects under complex curve path without disturbances. (a) Path
tracking; (b) lateral error; (c) heading error; (d) rear-wheel steering angle.

Table 8. Statistics of lateral and heading errors under complex curve path tracking without disturbances.

Control
Algorithm

Online Time
/s

Online
Distance/m

Absolute Value of Lateral Error Absolute Value of Heading Error

Mean Value
/m

Standard
Deviation

/m

Maximum
Error

/m
Mean Value

/rad
Standard
Deviation

/rad

Maximum
Error
/rad

MPC 4.2 10.57 0.0017 0.0035 0.0269 0.0021 0.0046 0.0334
FC_MPC 4.3 10.81 0.0018 0.0037 0.0315 0.0022 0.0046 0.0334

PSO_MPC 4.2 10.45 0.0016 0.0034 0.0290 0.0022 0.0046 0.0330
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Figure 16. Contrast in tracking effects under complex curve path with disturbances. (a) Lateral error;
(b) heading error.
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Table 9. Statistics of lateral and heading errors in complex curve path tracking with disturbances.

Control
Algorithm

Online
Time

/s

Online
Distance/m

Absolute Value of Lateral Error Absolute Value of Heading Error

Mean
Value

/m

Standard
Deviation

/m

Maximum
Error

/m
Mean Value

/rad
Standard
Deviation

/rad

Maximum
Error
/rad

MPC_Disturb 4.9 26.59 0.0072 0.0137 0.1625 0.0022 0.0046 0.0293
FC_MPC_Disturb 2.3 11.12 0.0020 0.0033 0.0200 0.0020 0.0033 0.0200
PSO_MPC_Disturb 2.3 13.14 0.0018 0.0031 0.0193 0.0021 0.0044 0.0263

3.2. Discussion

According to the above simulation and analysis results, it can be seen that the three
designed controllers, the manual tuning MPC, the FC_MPC, and the PSO_MPC, can achieve
a better control effect under no disturbance, whether in the U-shaped path or complex
curve path, meeting the requirements of ISO12188-2:2012(E) [31] and GB/T 37164-2018 [32]
for agricultural machinery operation with a lateral error of less than 2.5 cm. This also
demonstrates that, similar to PID parameter tuning, the MPC with manual parameter
tuning under constant debugging can obtain the optimal key parameters combination,
and that the control results satisfy the demand for control accuracy. Nevertheless, the
debugging process is laborious, and the acquisition of debugging results has significant
randomness and uncertainty. What is more, it lacks robustness and is not flexible enough
to adjust to changing operating conditions. Due to the complex and ever-changing work-
ing environment of agricultural machinery, the FC_MPC and PSO_MPC with parameter
adaptation designed in this paper have stronger applicability and application value.

The parameter adaptive MPC in this paper is based on the vehicle kinematic model,
which is simple to control and can meet operational requirements, but it does not consider
the effects of vehicle forces and ground conditions. Therefore, it is of certain research value
and significance to design the parametric adaptive MPC controller based on the dynamic
model of rear-wheel-steering vehicles (refer to Section 2.1.2), to compare and analyze the
similarities and differences between the two in terms of the control effect, and to focus on
summarizing the applicability conditions of the two, so as to make the controller’s control
accuracy, stability, and adaptability higher.

4. Conclusions

To enhance the precision and adaptability of path tracking, based on establishing kine-
matic and dynamic models of rear-wheel-steering agricultural machinery and analyzing
the factors affecting the tracking effect, this study proposed the adaptive parameters MPC
based on fuzzy control and PSO. The main conclusions are as follows:

• Since the vehicle model is a vital part of implementing MPC, the kinematic and
dynamic error state–space equations for rear-wheel-steering agricultural machinery
were established, which can directly apply to the design of MPC controllers.

• The factors impacting the MPC control effect were simulated and analyzed using the
kinematic model as the control model. (a) The larger the unique vehicle intrinsic physi-
cal quantity wheelbase incorporated by the kinematic model, the larger the online time
and distance. (b) Increasing Npre was favorable to improving the curve tracking effect,
and Npre was correlated positively with the curvature and speed changes. Preferred
values of Npre for the U-shaped path were 1, 2, 3, and 6, respectively, at speeds of
1 m/s, 3 m/s, 5 m/s, and 10 m/s. (c) The tracking effect was affected by the parameter
settings of Np and Nc, which were influenced by the curvature and speed. Np should
be increased appropriately and Nc should be decreased appropriately in straight path
tracking, while Np should be decreased appropriately and Nc should be increased
appropriately in curve tracking. Np and Nc should be increased appropriately when
the vehicle speed increases.

• Fuzzy control and the PSO algorithm were used to establish the adaptive MPC pa-
rameters (Np, Nc, and Npre) under different curvatures and velocities, and then the
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simulation platform was built based on MATLAB for simulation and analysis un-
der U-shaped and complex curve paths. The results indicated that the differences
among the manual tuning MPC, the FC_MPC, and the PSO_MPC were small under
no disturbance, and the tracking effects were all better. The mean absolute value of
lateral error was ≤0.0018 m, with the maximum error <0.0315 m, while the mean
absolute value of heading error was ≤0.0096 rad, with the maximum error <0.0325 rad.
Laterally, this implies that manual tuning can obtain an optimal parameters combi-
nation, but with high uncertainty and low efficiency. The tracking effect of FC_MPC
and PSO_MPC was significantly better than that of the manual tuning MPC under
random velocity disturbance, and the difference between FC_MPC and PSO_MPC
was not significant. As a result, FC_MPC and PSO_MPC are more anti-interference
compared to the manual tuning MPC with fixed horizon, and more adaptable to
complex field scenarios.
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