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Abstract: Bacillus strains have long been recognized for their beneficial interactions with plants,
enhancing growth, nutrient uptake, and stress resistance. Understanding their molecular mechanisms
and plant-microbe interactions is crucial for harnessing their potential in sustainable agriculture.
Here we used ten strains from the 5 Bacillus species namely Bacillus velezensis, Bacillus subtilis, Bacillus
atrophaeus, Bacillus altitudinis and Bacillus amylofaciens, which are previously reported for PGPR
activity. A comparative analysis of these strains was performed to determine their evolutionary
relationships, which revealed that Bacillus velezensis and Bacillus amyloliquefaciens are closely related
based on underlying genetic and proteomic similarities. Bacillus altitudinis strain LZP02 was the
most distantly related to all the other selected strains. On the other hand, Bacillus atrophaeus strains
GQJK17 and CNY01 are shown to be closely related to each other. Mauve alignment was performed
to determine the genetic relationships between these strains. The LZP02 strain exhibited several
unique inversions harboring important genes, such as betB, ftsW, and rodA, which are important for
bacterial survival. Proteomic analysis highlighted important pathways that were conserved across
these strains, including xenobiotic biodegradation and metabolism, biosynthesis of polyketides and
nonribosomal pathways, and biosynthesis of secondary metabolites, all of which have been shown to
be involved in plant growth promotion.

Keywords: plant growth promotion (PGP); evolutionary relationship; comparative genomic analysis;
comparative proteomic analysis; gene inversion; pathway class

1. Introduction

Plant growth-promoting (PGPR) bacteria are bacteria that reside in the rhizosphere, a
narrow soil region influenced by root exudates [1]. They play a crucial role in enhancing
plant growth. Due to their notable efficacy in stimulating plant growth and controlling
diseases, PGPR are considered environmentally friendly alternatives to chemical fertilizers
and pesticides. Various bacterial species, including Bacillus, Burkholderia, Azospirillum,
Azotobacter, Rhizobium, and Pseudomonas, have been identified as PGPR, with Bacillus,
Rhizobium, and Pseudomonas being the most prominent [2–9]. PGPR has been applied to
a diverse range of plants, including chickpeas [10], maize [11], peas [12], peanuts [13],
rice [14], soybeans [15], sugarcane, wheat [16], and sugarbeets [17]. Their positive impact
on plant growth makes them valuable allies in sustainable agriculture practices.

In recent years, there has been increasing interest in harnessing the potential of plant
growth-promoting rhizobacteria (PGPR) as sustainable and eco-friendly alternatives to
enhance crop productivity. PGPRs have emerged as key players in this regard due to their
multifaceted abilities to promote plant growth, confer stress tolerance, and mitigate the
impact of various plant pathogens [18]. Among the myriad of mechanisms employed by
PGPRs, the synthesis and secretion of auxins have been recognized as pivotal contributors
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to enhanced plant development and nutrient uptake. Auxins, primarily indole-3-acetic acid
(IAA), play a crucial role in regulating diverse physiological processes in plants, including
cell elongation, root development, and stress responses [19].

Bacillus, belonging to the phylum Firmicutes, comprises gram-positive, rod-shaped,
endospore-forming bacteria. Bacillus strains are known to produce spores, enabling them to
survive even under harsh conditions, and they can release antimicrobial compounds that
increase their chances of survival under biologically diverse conditions [20]. In addition,
these bacteria can utilize a myriad of nutritional sources [21], further enabling them to
survive in ecologically diverse habitats. Thus, these Bacillus strains are favored for inoculant
preparation due to their extended viability, which supports the creation of long-lasting
commercial products.

The strains selected for this study included Bacillus altitudinis LZP 02, Bacillus amy-
loliquefaciens subsp. Plantarum UCMB5036, Bacillus atrophaeus CNY01, GQJK17, Bacillus
sp. C01-6, Bacillus subtilis SX01705, MBI 600, Bacillus velezensis S141, and sx01604, which
have been reported to support PGPR activity. Previously published studies have tried to
look at individual strains and underlying factors playing a significant role in bacterium’s
PGPR phenotype. One such study by Weihui Xu et al. [14] looked at the complete genome
sequence of B. altitudinis LZP02 and found it to be a valuable resource for determining its
ability to promote the growth of rice roots.

Similarly, it was previously reported that the UCMB5113 strain inhibits the prolifer-
ation of various fungal pathogens on oilseed rape, including Alternaria brassicae, Botrytis
cinerea, Leptosphaeria maculans, and Verticillium longisporum [22]. Another separate study con-
cluded it has the ability to enhance the development of both subterranean and aerial tissues
in various plants [23]. The B. atrophaeus has also been extensively investigated and recog-
nized as a valuable group of bacteria. This is a plant growth-promoting rhizobacterium
(PGPR) that significantly suppresses certain soil-borne diseases and enhances the growth
of specific plants [7]. Studies have also confirmed its ability to be a prolific producer of
known important biomolecules [24]. Morphological observations and phylogenetic analysis
revealed a close relationship between B. atrophaeus GQJK17 and B. atrophaeus CPB072.

The genomic sequence of Bacillus amyloliquefaciens strain Co1-6 was identified as a
plant growth-promoting rhizobacterium (PGPR) with extensive antagonistic efficacy against
a range of plant-pathogenic fungi, bacteria, and nematodes [25]. The B. subtilis strains
SRCM103689 and SX01705 stand out for their potential to enhance nutritional quality [26].
Bacillus spp. MBI 600, identified as a gram-positive bacterium, is a plant growth-promoting
rhizobacterium (PGPR) with the ability to enhance plant growth [27]. B. velezensis S141 has
also been suggested to play pivotal roles in promoting plant growth [15].

We investigated the plant growth-promoting phenotype of the aforementioned ten
Bacillus strains using a holistic approach utilizing evolutionary relatedness, genetic data to
understand conserved and unique genomic features, and proteomic data to understand
conserved pathways and to identify key attributes responsible for the positive impact on
plant growth rendered by these bacterial cohorts.

2. Materials and Methods
2.1. Genome Retrieval

For this work, the genomes were retrieved from the database of the Bacterial and Viral
Bioinformatics Resource Center (BV-BRC) [28,29]. The various bioinformatic tools devel-
oped by BV-BRC and used for this work are listed in Figure 1. We also used HeatMapper,
which is a web server that generates the HeatMap [30].
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Figure 1. Depiction of the methodology and tools used in this study.

2.2. Evaluation Using a Phylogenetic Tree

Bacterial phylogenetic tree construction is a powerful technique used in microbiology
to uncover evolutionary relationships between different bacterial species. This approach
allows researchers to understand the diversity, connections, and evolutionary history
of bacteria. The process used to generate the phylogenetic tree was as follows. Steps:
1. The protein sequences were aligned using MUSCLE Version 3.5 (Multiple Sequence
Comparison by Log-Expectation) software [31], and step 2 involved aligning the nucleotide
coding gene sequences using the BioPython Codon_align function [32]. Step 3 was to create
a combined alignment of all proteins and nucleotides, which were subsequently formatted
into a PHYLIP file [33]. Step 4: A partition file was generated, specifying the different data
partitions (proteins and nucleotides) used in the analysis.

2.3. Comparative Genomic Analysis

ProgressiveMauve Version 2.3.1 [34] is a software application developed to align
and visualize multiple genomes. Widely employed in comparative genomics, it serves
to pinpoint both conserved and variable regions within related genomes. Embracing a
progressive methodology, the tool systematically aligns sequences, proving especially
valuable when confronted with sizable and intricate genomes. The regions of interest, such
as conserved regions or the regions undergoing gene inversions, present in the genomes of
the various strains analyzed here can be viewed using contig information. The contigs are
labeled with numbers and have annotated lengths that can be used to visualize the genomic
regions using the NCBI database, where in-depth genomic analysis can be performed to
understand the different proteins (annotated and unannotated) that are harbored in the
specific genomic regions.

2.4. Comparative Proteomic Analysis

To perform a comparative analysis involving the entire set of proteins from all ten
bacterial strains, the BLASTP program [35,36] was used to find the protein similarity. For
BLASTP analysis, a minimum coverage of 30%, a minimum identity of 10% and a BLAST
E-value of 1 × 10−5 were used to generate hits that classified each gene into three categories:
(1) unique, (2) unidirectional, and (3) bidirectional hits upon comparative analysis with the
reference. Based on these three categories, the hits are colored, and a circular dendrogram
is generated [37]. We further manually examined different protein categories, and any
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protein that was missing from any strain was excluded. The resulting proteins were then
visualized using HeatMap generated by HeatMapper [30].

We further analysed the different protein pathways that were classified based on their
specific biological functions [36,38]. The analysis was performed using protein families
that were generated using a previously published approach called PATtyFams [39]. This
approach utilizes k-mers for functional assignment and family formation via RAST [36].

3. Results
3.1. Phylogenetic Tree Showing the Evolutionary Relationships between Selected Bacillus Strains
with a Positive Impact on Plant Growth

To establish the evolutionary relationships between selected strains of Bacillus, we
employed a previously published bacterial phylogenetic tree-based strategy [38]. This
methodology helps in understanding the diversity, relatedness, and evolutionary history of
bacterial strains.

The tree in Figure 2 is rooted with Bacillus altitudinis strain LZP 02. This means that
this strain is the most distantly related to all the other strains in the tree. As the tree
moves, the branches indicate how closely related the different strains are. The numbers
along the branches represent the percentage of similarity between the 16S rRNA gene
sequences of the two strains that are connected by that branch. For example, 100 bp between
Bacillus velezensis strains AK-04 and S141 means that their 16S rRNA gene sequences are
100% identical.
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Figure 2. The phylogenetic tree shows the evolutionary relationships between ten strains of Bacillus
spp. that are known for their PGPR activity.

The following are the main groups in the phylogenetic tree:

• Bacillus altitudinis group: This group consists of only Bacillus altitudinis strain LZP 02.
As mentioned earlier, this strain is the most distantly related to all other strains in
the tree.
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• Bacillus atrophaeus group: This group consisted of Bacillus atrophaeus strains GQJK17
and CNY01. These two strains are more closely related to each other than any other
strains in the tree.

• Bacillus velezensis/Bacillus subtilis group: This group is the largest and most diverse
group in the tree. These strains included Bacillus velezensis strains sx01604, S141, and
AK-04, Bacillus subtilis strains SX01705 and MBI 600, and Bacillus sp. strain Co1-6. The
Bacillus velezensis and Bacillus subtilis strains are the most closely related strains in
this group, while Bacillus sp. strain Co1-6 is more closely related to them than to the
Bacillus atrophaeus group.

3.2. Comparative Genomic Analysis of the Ten Chosen Bacillus Strains

To investigate the genetic relationships, including conserved genetic regions and
regions displaying variations, we compared the genomes of the ten selected Bacillus strains
(Table 1). The genome sizes ranged from 3.9 M to 4.3 M across the ten chosen bacillus strains.
Additionally, the number of encoded proteins varied among the strains. Interestingly,
strains from Bacillus velezensis had the highest GC content among the chosen strains. The
only strain with plasmids was B. subtilis SX01705, which had two plasmids. The range of
RNA across the 10 genomes was from 12 to 30, and the range of TRNA was from 81 to 89.

Table 1. The different genomic features of the ten strains of Bacillus.

Species Strain Plasmids Contigs Size GC Content Contig L50 Contig N50 TRNA RRNA CDS

Bacillus
amyloliq-
uefaciens

UCMB5036 1 3,910,324 46.6 1 3,910,324 89 30 3914

Bacillus
sp. Co1-6 1 3,922,431 46.6 1 3,922,431 86 27 3997

Bacillus
subtilis SX01705 2 3 4,169,021 43.7 1 4,072,531 86 30 4365

Bacillus
subtilis MBI 600 1 4,076,736 43.8 1 4,076,736 86 20 4271

Bacillus
atrophaeus GQJK17 1 4,325,818 43.3 1 4,325,818 84 12 4507

Bacillus
atrophaeus CNY01 1 4,144,521 43.5 1 4,144,521 82 24 4332

Bacillus
altitudinis LZP 02 1 3,763,082 41.4 1 3,763,082 81 23 3911

Bacillus
velezensis sx01604 1 3,926,520 46.5 1 3,926,520 86 14 3987

Bacillus
velezensis S141 1 3,974,582 46.5 1 3,974,582 87 27 4028

Bacillus
velezensis AK-0 1 3,969,447 46.5 1 3,969,447 86 27 4017

To determine the genetic relationships between these ten selected genomes, the se-
quences were aligned using progressive Mauve (Figure 3). The progressive Mauve algo-
rithm is designed to align genomes that have undergone rearrangements, such as insertions,
deletions, and inversions [36]. Each genome is represented by a horizontal line, and dif-
ferent colored blocks represent different gene coding regions. The same-colored regions
between the lines show regions of similarity between the different genomes.

The alignment clearly shows that there is some variation in the gene arrangements
between the strains. This variation is likely due to mutations that have occurred since the
strains diverged from their common ancestor. Also, looking at the alignment in Figure 3,
we clearly see the lengths of same coding contigs differ among different genomes for the
Bacillus strains.



Agriculture 2024, 14, 838 6 of 19

Agriculture 2024, 14, x FOR PEER REVIEW 6 of 19 
 

 

enzyme responsible for DNA replication in bacteria. DNA replication is essential for bac-

terial growth and reproduction [41,42]. 

 

Figure 3. Alignment of Bacillus genomes using progressive Progressive Mauve. An example of a 

locally collinear block (LCB) identified by MAUVE (orange color-coded) linking between LCBs, as 

indicated by the thin orange-colored lines. 

Figure 3. Alignment of Bacillus genomes using progressive Progressive Mauve. An example of a
locally collinear block (LCB) identified by MAUVE (orange color-coded) linking between LCBs, as
indicated by the thin orange-colored lines.

We then investigated whether there are regions unique in terms of characteristics
such as inversions, and for that, we focused on the regions that showed inversions. We
found that the strains LZP02, CNY01, MBI600, GQJK17, and SXO1705 had some inversions.
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Interestingly, however, there were several regions that had undergone inversion only in the
LZP02 strain, thus highlighting the genetic basis of its evolutionary distance from other
Bacillus strains, as shown in the phylogenetic tree (Figure 2). We focused our analysis on
the two major inverted regions.

As shown in Figure 4A, twelve genes were annotated in the LCB from position
595,455–608,432. These genes were dhbC and dnaB. In Figure 4B, position 1,482,268–1,502,365
had twenty-five genes, of which three genes were annotated. These genes were betB, ftsW
and rodA. The ddhbC gene encodes dihydrolipoyl dehydrogenase, an enzyme involved
in the pyruvate dehydrogenase complex, which is responsible for converting pyruvate to
acetyl-CoA. Acetyl-CoA is a key intermediate in many metabolic pathways, including the
citric acid cycle and fatty acid synthesis. Another important mechanism involved in the
functionality of the dhbc gene is its important role in siderophore biosynthesis [40]. The
second gene was dnaB, which encodes DNA polymerase III, the main enzyme responsible
for DNA replication in bacteria. DNA replication is essential for bacterial growth and
reproduction [41,42].
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(B) 1,482,268–1,502,365.

The betB gene plays an important role in the biosynthesis of the osmoprotectant
glycine betaine. Its involvement is crucial in cellular processes that render the adaptive
ability of Bacillus [43]. Gene ftsW encodes the protein FtsW, which is essential for cell wall
formation [44], and the rodA gene encodes DNA gyrase, an enzyme that is responsible
for introducing negative supercoils into DNA. Negative supercoils are required for DNA
replication and transcription [45]. It is an essential gene for maintaining the rod shape of
cells, as well as maintaining cell viability [46].

Furthermore, upon closer examination of the gene arrangement pattern among the
strains that were close in the phylogenetic tree cluster (Figure 2), it was observed in Figure 5
that the gene arrangement was comparable in these five Bacillus strains, in which two
regions of conserved gene arrangement are highlighted. These regions are indicated by the
dashed box, which shows that the genes in these regions are located in the same pattern in
all five strains.
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Figure 5. The alignment of Bacillus genomes that clustered together in the phylogenetic tree shows
the conservation of genetic arrangements. The dashed box indicates two close regions of conserved
gene arrangement. Color coding is used to represent the genes of the same protein family.

Taken together, these results not only shed light on the genomic structure differences
but also on the underlying importance of these structural differences in the genes that
are important for specific strains, and the mechanisms involved over the course of evolu-
tion to ensure that these genes are not lost but are utilized in characterizing the specific
characteristics of the strains.

3.3. Comparative Proteomic Analysis of the Ten Chosen Bacillus Strains

Comparative analysis was performed for the 10 Bacillus strains, and mapping was
performed for all the protein sets expressed in these strains. A circular dendrogram was
constructed for the proteome of the 10 Bacillus strains (Figure 6). Bacillus velezensis strain
S141 was randomly selected as a reference for protein alignment. The closeness of various
protein hits has been depicted in Figure 6 using the color-coding scheme with dark blue,
indicating that the gene was completely similar to the randomly selected reference genome
of Bacillus velezensis strain S141. As blue became lighter, the protein sequence became
increasingly less similar to that of the reference. As the protein sequence identity decreased,
the color scheme changed from blue to green and eventually to shades of red, representing
>30% sequence identity.

Using this methodology, we aimed to obtain a more holistic view of the proteomes
of the different strains. The circular dendrogram not only shows the sequence identity
matches ranging from very close matches (blue) to less similar (in yellow) and to more
distinct identity matches (orange) but also shows multiple clear areas representing strains
that did not express certain protein sets.

The data were thus processed to remove proteins that were absent in one or more
strains. The processed data were used to generate a heatmap to show the differences
between different Bacillus strains (Figure 7). The difference between the sequence is high-
lighted as we go from green to red. We found that Bacillus altitudinis is indeed farthest from
the others in the group, thus providing us insight that the evolutionary distance is based
on the genetic divergence that translates into proteomic diversity.
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We next investigated how the difference is seen at the macroscopic level in the pro-
teomic data across different genomes of Bacillus strains and to what extent these differences
appeared in proteomes. In order to find this, we looked at different protein families across
the ten Bacillus strains and identified common protein families. Figure 8A shows a pie
chart in which the total number of perfect protein families analyzed was 6791. These
were the sum of all perfect protein families across the ten Bacillus strains. However, the
number of common perfect protein families among all strains was only 1683. The extent
of conservation of various proteins present in all the selected Bacillus strains was also
evaluated (Figure 8B). Approximately 22% of the proteins (506 out of 2297 analyzed) across
the ten Bacillus strains exhibited less than 50% sequence conservation across all Bacillus
species. Approximately 34% of the proteins (778 out of 2297) exhibited between 50% and
70% sequence conservation. Most proteins (~38%, 873 out of 2297) exhibited between 70%
and 90% sequence conservation. Approximately 6% (140 out of 2297) showed at least 90%
or greater than 90% sequence conservation.
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(B) Bar graph showing the number of proteins and their percentage sequence conservation across
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We also investigated whether there were important pathways that were conserved and
common to all the different strains. We focussed our analysis on pathway classes known to
support plant growth and thus explored possible common mechanisms that contributed
to the plant growth-promoting phenotypes of these different strains. Different pathway
classes were analyzed, as shown in Figure 9.
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Figure 9. Bar chart showing various protein pathways analyzed across Bacillus strains.

The numbers at the end of the bars represent various pathways that were common
across all the Bacillus strains for that particular class. For example, thirteen amino acid
metabolism pathways included (1) alanine, aspartate and glutamate metabolism; (2) argi-
nine and proline metabolism; (3) cysteine and methionine metabolism; (4) glycine, serine
and threonine metabolism; (5) histidine metabolism; (6) lysine biosynthesis; (7) lysine
degradation; (8) phenylalanine metabolism; (9) phenylalanine, tyrosine and tryptophan
biosynthesis; (10) tryptophan metabolism; (11) tyrosine metabolism; (12) valine, leucine
and isoleucine biosynthesis; and (13) valine, leucine and isoleucine degradation. The signal
transduction and immune system classes each had a single pathway.

Next, we looked at the special genes that encode for virulence factors and antibiotic
resistance, as shown in Figure 10A,B. These are key microbial indicators and result of
adaptation in different ecological niches. After the analysis, it was found that at least
four virulence factors were present in all Bacillus strains. The Bacillus atrophaeus strain
GQJK17 had a maximum number of virulence genes with seven genes followed by Bacillus
subtilis MBI600 which has 6. Furthermore, all strains of the Bacillus had antibiotic-resistance
genes. Bacillus altitudinis LPZ02 had the lowest number of antibiotic resistance genes, with
45 genes among the group of Bacillus strains, while others ranged between 55 to 63 genes.

For the plant growth-promoting phenotype, we focused on pathway classes such as
xenobiotic biodegradation and metabolism [47], biosynthesis of polyketides and nonriboso-
mal peptides [48], and biosynthesis of secondary metabolites [49], which were previously
reported to play a pivotal role in plant growth promotion. We further looked for the key
genes that have been reported to play roles in PGP activity rendered by PGP bacteria.

We investigated various path through which plant growth enhancement have been
facilitated by plant growth promoting bacteria. The results have been summarized in
Table 2.
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It was found that most of the key pathways that play crucial roles in PGP activity,
either in key metabolic activities or providing resistance from stress, such as heavy metals,
antibiotics, etc., were present in almost all 10 Bacillus strains. Together, the results show
that although there is variation in these strains and evolutionary differences, as expected
from their speciation process, the plant growth-promoting phenotype between bacterial
strains is rendered by evolutionarily conserved pathways.
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Table 2. Qualitative summary of plant growth-promoting genes. Positive (+) depicts the presence of the gene, and Minus (−) depicts the absence of the genes in the
respective strain.

Genes Reported to Support
Plant Growth

Plant Growth
Promoting Property

B. amyloliquefaciens
subsp. plantarum
UCMB5036

B. sp. strain
Co1-6

B. subtilis
strain
SX01705

B. subtilis
strain MBI
600

B. atrophaeus
strain
GQJK17

B. atrophaeus
strain CNY01

B. velezensis
strain sx01604

B. velezensis
strain S141

B. velezensis
strain AK-0

B. altitudinis
strain LZP 02

Trilactone hydrolase
[bacillibactin] siderophore

Improves Iron
availability + + + + + + + + + +

2,3-dihydro-2,3-
dihydroxybenzoate
dehydrogenase (Siderphore
biosynthesis)

Siderophore
Biosynthesis + + + + + + + + + -

Nitrite-sensitive
transcriptional
repressor (NsrR)

stress resistance + + + + + + + + + +

Superoxide Dimutase stress resistance + + + + + + + + + +

betaine aldehyde
dehydrogenase stress resistance + + + + + + + + + +

copC copper
resistance genes + + + + + + + + + +

copD copper
resistance genes + + + + + + + + + +

Fosfomycin antibiotic
resistance genes + + + + + - + + + -

ykkD antibiotic
resistance genes + + + + + + + + + +

ykkC antibiotic
resistance genes + + + + + + + + + -

norD Nitrogen Metabolism + + + + + + + + + +

norQ Nitrogen Metabolism + + + + + + + + + +

Tpx and related Sulfate Metabolism + + + + + + + + + +

phoP phosphate
metabolism + + + + + + + + + +

tryptophan synthase auxin biosynthesis + + + + + + + + + +

anthranilate
phosphoribosyltransferase
(trpD)

auxin biosynthesis + + + + + + + + + +

phosphoribosylanthranilate
isomerase auxin biosynthesis + + + + + + + + + +

gabR γ-Aminobutyric Acid
(GABA) Metabolism + + + + + + + + + +
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4. Discussion

The relationship between certain bacterial strains present in the vicinity of plant roots
that support plant growth has immense importance not only for plant growth but also for
greener ways to harness such potential from nature’s own microbial populations rather
than using synthetic fertilizers and chemicals. However, the underlying mechanisms
mediating these interactions between bacterial strains and plants remain unclear. To
obtain a mechanistic understanding of the nature of the interaction that occurs and the
resulting impact on the plant and the soil, a deeper understanding of the main player
in such interaction is warranted. This need, coupled with advancements in the field of
computational biology and improvements in computational capacity, has promoted studies
that utilize genomic and proteomic data for comparative analysis of bacterial strains.

In the present study, we studied 10 Bacillus strains known to have a positive impact on
plant growth using multifaceted computational analysis such as phylogenetic, genetic, and
proteomic relationships to understand the underlying mechanisms towards the evolution
of the growth-promoting phenotype of these bacteria.

We started by investigating how all these strains are evolutionarily related to each
other. We constructed a phylogenetic tree, and our analysis revealed that these strains
represented five species of the Bacillus genus. These species included strains from Bacillus
velezensis, Bacillus subtilis, Bacillus atrophaeus, Bacillus altitudinis, and Bacillus amyloliquefaciens.
These selected strains were PGPR strains with either known or predicted properties for
promoting plant growth. Interestingly, the evolutionary relationships of Bacillus velezensis
and Bacillus amyloliquefaciens were similar, showing their evolutionary closeness based on
the underlying genetic and proteomic closeness [50]. B. atrophaeus and B. subtilis clustered
closely as the nearest neighbors, as was also identified in a study by Gibbons et al. [51],
where in a Bacillus-wide phylogenetic analysis, B. subtilis was found to be the nearest
neighbor to B. atrophaeus. The Bacillus altitudinis strain LZP 02 was found to be the most
distantly related to all the other strains in the tree.

Looking closely at Bacillus altitudinis, it was found that this strain has genetic features
that were not shared with any of the other strains. We observed that some of the regions
inverted in the Bacillus altitudinis strain LZP 02 were not inverted in the remaining nine
Bacillus strains, which is consistent with the evolutionary analysis showing that this strain
is farthest from all the other selected strains. Such inversions in bacterial genomes refer to
the rearrangement of genetic material wherein a segment of DNA is flipped or reversed in
orientation within the chromosome. It is widely known that these inverted elements often
carry genes that contribute to bacterial adaptation and response to environmental stimuli,
highlighting the significance of understanding the mechanistic aspects and influencing
factors of gene inversion in bacteria [47]. We examined the segments of genomic regions
that were inverted in the Bacillus altitudinis strain LZP 02 to understand the nature of the
genes that are harbored in those regions.

We observed that the five annotated genes that were found in these regions were dhbC,
dnaB, betB, ftsW, and rodA. A closer examination of the functions of these genes revealed
that they are very important for the adaptation and survival of the Bacillus altitudinis strain
LZP02. The dhbC gene encodes dihydrolipoyl dehydrogenase, an enzyme involved in
the pyruvate dehydrogenase complex, which is responsible for converting pyruvate to
acetyl-CoA. Acetyl-CoA is a key intermediate in many metabolic pathways, including
the citric acid cycle and fatty acid synthesis. Another important mechanism involved in
the functionality of the dhbc gene is its important role in siderophore biosynthesis [40].
The second annotated gene was dnaB, which encodes DNA polymerase III, the main
enzyme responsible for DNA replication in bacteria. DNA replication is essential for
bacterial growth and reproduction [41,42]. The third gene, betB, was reported to play an
important role in the production of glycine betaine, which has been reported to act as an
osmoprotectant protecting against abiotic stress conditions such as salinity [43,48]. The
fourth gene candidate that was annotated was ftsW, which encodes the protein FtsW, which
is essential for cell wall formation [44], and the rodA gene, which is known to encode
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DNA gyrase, an enzyme that is responsible for introducing negative supercoils into DNA.
Negative supercoils are required for DNA replication and transcription [45]. It is an essential
gene for maintaining the rod shape of cells, and this gene is also essential for maintaining
cell viability [46]. Overall, the set of annotated genes found in the inverted regions were
found to be essential genes not only for survival but also for playing a potential role in
PGPR activity. One of the postulated reasons for such inversions is collisions between the
replisome and RNA polymerases (RNAPs). These conflicts collapse the replication fork,
break DNA strands, and increase mutagenesis [47,49]. These “replication-transcription
conflicts” can lead to stalled replication forks, broken DNA, and increased mutation rates,
especially in essential genes [52–54]. To combat this threat, bacteria have evolved a clever
strategy: co-orienting genes with DNA replication. This means that genes are arranged
on the same DNA strand as in replication, minimizing head-on collisions. In fact, most
bacterial genomes exhibit a strong bias toward co-orientation, with essential and highly
transcribed genes such as rRNA operons almost exclusively coordinated [55,56].

Proteome comparisons for 10 selected Bacillus strains were performed using circular
dendrograms. Interestingly, this pattern mimicked the pattern of relatedness observed
in the phylogenetic tree, with Bacillus altitudinis strain LZP02 showing the most distant
proteomic similarity. Additionally, gaps were observed, indicating that certain proteins
were absent from certain strains. The data were processed to compare only the proteins
that were present in all 10 Bacillus strains to remove any skewness in the analysis and to
determine whether the pattern was preserved. Once we processed the dataset to eliminate
all the missing data, we then used the percentage sequence identity to determine the
relatedness using heatmap representation (see Figure 7). The results confirmed that the
trend shown in Figure 6 was maintained, and in fact, the Bacillus altitudinis strain LZP
02 had the same annotated proteins but had a higher level of sequence diversity in those
protein groups, thus making them more distant from other strains.

However, closer looking at the different protein pathway classes, it was found that
despite the macroscopic differences observed, some important proteins were conserved.
Overall, six percent of the proteins were conserved, with sequence conservation greater
than 90%. Unexpectedly, nearly 40% of the remaining proteins exhibited high levels of
conservation, ranging between 70% and 90%. We then looked at the protein pathways that
were conserved. We found many important pathways that were conserved. Most of these
played pivotal roles in sustaining the bacterium. We looked at the key microbial indicators,
such as the presence of virulence factors and antibiotic resistance rendering genes. The
presence of virulence factors and antibiotic resistance in bacteria plays a crucial role in their
adaptation and survival in a competitive environment. Figure 10 shows that all the strains
analyzed in this study had multiple of genes providing virulence and antibiotic resistance,
thus ensuring the survival and adaption of these strains in different environments and
ecological niches.

We focused our analysis on the three-pathway class that is shown to have rele-
vance in rendering PGP activity to bacteria. These were xenobiotic biodegradation and
metabolism [47], biosynthesis of polyketides and non-ribosomal peptides [48], and biosyn-
thesis of secondary metabolites [49]. The presence of these common proteomic pathway
classes indicates conservation at the pathway level, which renders important PGPR-related
functionalities. This translated to the conservation of key genes such as gabR that encodes
GABA aminotransferase. The amino acid GABA acts as a signal molecule in communica-
tion between plants and microorganisms in the rhizosphere [57]. Other key genes include
genes involved in Auxin biosynthesis, nitrogen, sulfur, and phosphorus acquisition, as well
as resistance against heavy metals and antibiotics. Table 2 summarizes the key genes that
are present in almost all the strains playing important roles in different mechanisms that
are associated with the PGP activity.

Other studies, such as Liu H et al. [58], carried out comparative genomic analysis
of 96 strains of Bacillus amyloliquefaciens to shed light and provide valuable insights into
the phylogenetic relationship, ecological niches, and functional differences of B. amyloliq-
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uefaciens strains. Zhang N. et al. [59] also performed a comparative genomic analysis
of Bacillus amyloliquefaciens (BA) and Bacillus subtilis (BS) strains. Their analysis showed
that strains have evolved their genomes to better enable adaptation to different habitats,
particularly plant-associated habitats. Shen et al. [60] also used comparative genomic-based
analysis of four Pseudomonas strains involved in promoting plant growth being part of
rhizobium. Their findings showed the presence of conserved sequences and gene order
within Pseudomonas strains. Interestingly, they also observed the presence of major genomic
inversions in the Pseudomonas strain upon comparing genomic landscapes as the differ-
entiator between different related strains. Our study compared a larger, varied cohort of
Bacillus strains. Furthermore, our analysis is based not only on genomic features but also
on proteomic data derived from protein sequence conservation to evaluate the different
strains used in this study.

Overall, this indicates that nearly half of the proteins across the selected strains had
high levels of conservation, which may be related to functions that have high survival value;
thus, significant changes could prove to be detrimental. In addition, all of these Bacillus
strains have shown conservation of key genes that can play crucial roles in promoting
plant growth through pathways ranging from affecting nutrient availability for plants to
providing resistance to things like heavy metals and antibiotics.

5. Conclusions

Overall, this study aimed to adopt a multifaceted computational approach in which
we examined evolutionary relationships, genomic features, and proteomic relatedness to
see if important functions across the different strains are either conserved or unique to
make these bacterial strains distant or more closely related. We found that in the selected
cohort of Bacillus strains, Bacillus altitudinis was evolutionary most distant, which was
further validated by looking at its genetic and proteomic features. We compared proteomic
pathways and identified three important pathways that promote plant growth, which
were largely conserved in all these strains in spite of being evolutionary distant. Such an
in-depth analysis could help in the classification and identification of novel bacterial strains
that can be used as green fertilizers and aid in a positive impact on crop cultivation.
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