Predicted Distribution of Locoweed Oxytropis glabra in China under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Occurrence Data
2.2. Environmental Variable Data
2.3. Model Optimization and Evaluation Metrics
2.4. Habitat Suitability Classification and Visualization of Future Changes
3. Results
3.1. Occurrence Records and Environmental Variable Screening
3.2. Model Optimization and Evaluation
3.3. Key Environmental Variables
3.4. Current Suitable Habitat Distribution
3.5. Changes in the Distribution of Future Suitable Habitat
4. Discussion
4.1. Optimization of MaxEnt Model
4.2. Environmental Variables Affecting the Distribution of O. glabra
4.3. Suitable Habitat of O. glabra under Different Climate Conditions
4.4. Research Significance and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- O’Connor, B.; Bojinski, S.; Roosli, C.; Schaepman, M.E. Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies. Ecol. Inf. 2020, 55, 101033. [Google Scholar] [CrossRef]
- Qin, G.-X.; Wu, J.; Li, C.-B.; Qin, A.-N.; Ni, L.; Yao, X.-Q. Grassland vegetation phenology change and its response to climate changes in North China. J. Appl. Ecol. 2019, 30, 4099–4107. [Google Scholar] [CrossRef]
- Stocker, T.F. Climate change. The closing door of climate targets. Science 2013, 339, 280–282. [Google Scholar] [CrossRef]
- Ghahramani, A.; Howden, S.M.; del Prado, A.; Thomas, D.T.; Moore, A.D.; Ji, B.; Ates, S. Climate change impact, adaptation, and mitigation in temperate grazing systems: A review. Sustainability 2019, 11, 7224. [Google Scholar] [CrossRef]
- Zhou, Q.W.; Zhao, B.Y.; Lu, H.; Wang, S.S.; Zhang, L.; Wen, W.L.; Yang, X.W. The Research and Control Situation of Ecology and Animal Poisoning of Locoweed in Western Natural Grassland of China. Sci. Agric. Sin. 2013, 46, 1280–1296. [Google Scholar] [CrossRef]
- Wu, C.C.; Han, T.S.; Lu, H.; Zhao, B.Y. The toxicology mechanism of endophytic fungus and swainsonine in locoweed. Environ. Toxicol. Pharm. 2016, 47, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Guo, Y.; Wang, S.; Yang, C.; Su, Y.; Wu, C. Adcances in research on poisonous plants and grazing livestock poisoning diseases of Natural Grassland in China. Acta Vet. Zootech. Sin. 2021, 52, 1171–1185. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Fois, M.; Cuena-Lombrana, A.; Fenu, G.; Bacchetta, G. Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecol. Model. 2018, 385, 124–132. [Google Scholar] [CrossRef]
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- Jiang, R.P.; Zou, M.; Qin, Y.; Tan, G.D.; Huang, S.P.; Quan, H.G.; Zhou, J.Y.; Liao, H. Modeling of the Potential Geographical Distribution of Three Fritillaria Species Under Climate Change. Front. Plant Sci. 2022, 12, 749838. [Google Scholar] [CrossRef] [PubMed]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Wieder, W.; Boehnert, J.; Bonan, G.; Langseth, M. Regridded Harmonized World Soil Database v1. 2; ORNL DAAC: Oak Ridge, TN, USA, 2014. [Google Scholar]
- Shi, X.L.; Chen, X.L.; Dai, Y.W.; Hu, G.Q. Climate Sensitivity and Feedbacks of BCC-CSM to Idealized CO2 Forcing from CMIP5 to CMIP6. J. Meteorol. Res. 2020, 34, 865–878. [Google Scholar] [CrossRef]
- Li, D.; Li, Z.; Liu, Z.; Yang, Y.; Khoso, A.G.; Wang, L.; Liu, D. Climate change simulations revealed potentially drastic shifts in insect community structure and crop yields in China’s farmland. J. Pest. Sci. 2022, 96, 55–69. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carre, G.; Marquez, J.R.G.; Gruber, B.; Lafourcade, B.; Leitao, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Zeng, Y.W.; Wei, L.B.; Yeo, D.C.J. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecol. Model. 2016, 341, 5–13. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Hundessa, S.; Li, S.S.; Liu, D.; Guo, J.P.; Guo, Y.M.; Zhang, W.Y.; Williams, G. Projecting environmental suitable areas for malaria transmission in China under climate change scenarios. Environ. Res. 2018, 162, 203–210. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Zhao, M.Y.; Zhang, L.; Wang, C.Y.; Xu, Y.L. Predicting Possible Distribution of Tea (Camellia sinensis L.) under Climate Change Scenarios Using MaxEnt Model in China. Agriculture 2021, 11, 1122. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Le Lay, G.; Helfer, V.; Randin, C.; Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 2006, 199, 142–152. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Dudik, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Huang, R.; Du, H.; Wen, Y.; Zhang, C.; Zhang, M.; Lu, H.; Wu, C.; Zhao, B. Predicting the distribution of suitable habitat of the poisonous weed Astragalus variabilis in China under current and future climate conditions. Front. Plant Sci. 2022, 13, 921310. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Du, Q.; Yan, S.; Cao, Y.; Liu, X.; Guan, D.X.; Ma, L.Q. Geographical distribution of As-hyperaccumulator Pteris vittata in China: Environmental factors and climate changes. Sci. Total Environ. 2021, 803, 149864. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.Y.; Li, X.H.; Zou, H.F. Optimizing MaxEnt model in the prediction of species distribution. Chin. J. Appl. Ecol. 2019, 30, 2116–2128. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Peerj 2017, 5, e4095. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.L.; Wright, A.N.; Seifert, S.N.; Shaffer, H.B. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers. Distrib. 2014, 20, 334–343. [Google Scholar] [CrossRef]
- Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Model. 2011, 222, 1343–1346. [Google Scholar] [CrossRef]
- Yan, H.Y.; Feng, L.; Zhao, Y.F.; Feng, L.; Wu, D.; Zhu, C.P. Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt. Glob. Ecol. Conserv. 2020, 21, e00856. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Kong, X.; Ma, L.; Hu, X.; Yang, Y. Transcriptome analysis reveals diversified adaptation of Stipa purpurea along a drought gradient on the Tibetan Plateau. Funct. Integr. Genom. 2015, 15, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Noor, M.; Rehman, N.u.; Jalil, A.; Fahad, S.; Adnan, M.; Wahid, F.; Saud, S.; Hassan, S. Climate change and costal plant lives. In Environment, Climate, Plant and Vegetation Growth; Springer: Cham, Switzerland, 2020; pp. 93–108. [Google Scholar] [CrossRef]
- Hessburg, P.F.; Miller, C.L.; Parks, S.A.; Povak, N.A.; Taylor, A.H.; Higuera, P.E.; Prichard, S.J.; North, M.P.; Collins, B.M.; Hurteau, M.D. Climate, environment, and disturbance history govern resilience of western North American forests. Front. Ecol. Evol. 2019, 7, 239. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Chen, G.; Xi, L.; Ma, C. An Overview of Ecological Research on Oxytropis glabra DC. J. Domest. Anim. Ecol. 2014, 35, 85–88. [Google Scholar]
- Wang, Q.; Pang, Z.; Li, C.; Wu, J.; Da, N.; Wang, D.; Ma, Q. Effects of Astragalus variabilis and Oxytropis glabra on the Soil Properties of Desert Grassland. Acta Agrestia Sin. 2015, 23, 469–475. [Google Scholar] [CrossRef]
- Editorial Committee of Chinese Flora, CAOS. Flora of China Vol.42 Division 1 Leguminosae; Science Press: Beijing, China, 1998; Volume 42. [Google Scholar]
- Wang, C.H.; Zhang, S.N.; Zhang, F.M.; Li, K.C.; Yang, K. On the Increase of Precipitation in the Northwestern China Under the Global Warming. Adv. Earth Sci. 2021, 36, 980–989. [Google Scholar] [CrossRef]
- Lenoir, J.; Gegout, J.C.; Marquet, P.A.; de Ruffray, P.; Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 2008, 320, 1768–1771. [Google Scholar] [CrossRef] [PubMed]
- Beckage, B.; Osborne, B.; Gavin, D.G.; Pucko, C.; Siccama, T.; Perkins, T. A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proc. Natl. Acad. Sci. USA 2008, 105, 4197–4202. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hu, Z.; Wang, Y.; Zhao, W. Spatial Distribution Characteristics of Suitable Planting Areas for Pyrus Species under Climate Change in China. Plants 2023, 12, 1559. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Miao, Y.; Zhu, S.; Cheng, J.; Jin, J. Modelling the Geographical Distribution Pattern of Apple Trees on the Loess Plateau, China. Agriculture 2023, 13, 291. [Google Scholar] [CrossRef]
- FU JJ, G.; HUANG, W. The distribution of locoweed in natural grassland in the United States and the current status and prospects of research on animal poisoning. Acta Agrestia Sin. 2019, 27, 519–530. [Google Scholar] [CrossRef]
- Tao, Y.; Niu, D.; Li, F.; Zuo, S.; Sun, Q.; Xu, C. Effects of Ensiling Oxytropis glabra with Whole-Plant Corn at Different Proportions on Fermentation Quality, Alkaloid Swainsonine Content, and Lactic Acid Bacteria Populations. Animals 2020, 10, 1733. [Google Scholar] [CrossRef] [PubMed]
- Gebrewahid, Y.; Abrehe, S.; Meresa, E.; Eyasu, G.; Abay, K.; Gebreab, G.; Kidanemariam, K.; Adissu, G.; Abreha, G.; Darcha, G. Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in Northern Ethiopia. Ecol. Process 2020, 9, 6. [Google Scholar] [CrossRef]
- Wiens, J.A.; Stralberg, D.; Jongsomjit, D.; Howell, C.A.; Snyder, M.A. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proc. Natl. Acad. Sci. USA 2009, 106, 19729–19736. [Google Scholar] [CrossRef] [PubMed]
Model | Model Parameter | Avg. AUC | Avg. CBI | Avg. OR10 | Avg. AUCdiff | AICc | Delta.AICc |
---|---|---|---|---|---|---|---|
Default | FC = LQPH, RM = 1 | 0.9461 ± 0.0260 | 0.8796 ± 0.0681 | 0.1307 ± 0.1065 | 0.0222 ± 0.0185 | 4246.1018 | 0 |
Optimized | FC = LQH, RM = 0.5 | 0.9500 ± 0.0196 | 0.8832 ± 0.0601 | 0.1415 ± 0.1018 | 0.0182 ± 0.0122 | 4240.9586 | 5.1431 |
Environmental Variables | Optimum Value of Suitability | Highest Logistic Value | Suitable Habitat Threshold |
---|---|---|---|
bio2 | 14.22 °C | 0.62 | 11.98~17.91 °C |
bio11 | −6.49 °C | 0.63 | −12.04~−0.07 °C |
bio15 | 100.01 | 0.57 | 31.22~113.46 |
bio18 | 11.44 mm | 0.73 | 0~269.50 mm |
bio19 | 4.01 mm | 0.62 | 0~15.17 mm |
elev | 1351.26 m | 0.68 | 715.00~4341.35 m |
t_oc | 0.50% weight | 0.72 | 0~27.45% weight |
t_ph | 8.55 −log(H+) | 0.96 | 5.11~8.88 −log(H+) |
Period/Climate Scenarios | Current | 2050s | 2070s | ||||||
---|---|---|---|---|---|---|---|---|---|
SSP126 | SSP245 | SSP370 | SSP585 | SSP126 | SSP245 | SSP370 | SSP585 | ||
Unsuitable area | 87.76% | 84.26% | 83.04% | 84.18% | 84.15% | 85.46% | 83.28% | 80.68% | 82.08% |
Low-suitability area | 7.18% | 8.83% | 8.79% | 8.11% | 8.15% | 7.79% | 8.50% | 9.55% | 9.10% |
Medium-suitability area | 3.21% | 4.35% | 4.78% | 4.61% | 4.27% | 4.09% | 4.74% | 5.57% | 4.87% |
High-suitability area | 1.85% | 2.56% | 3.39% | 3.09% | 3.43% | 2.66% | 3.48% | 4.20% | 3.95% |
All suitable area | 12.24% | 15.74% | 16.96% | 15.82% | 15.85% | 14.54% | 16.72% | 19.32% | 17.92% |
Elevation/m | 1541.81 | 1603.58 | 1677.62 | 1707.62 | 1659.24 | 1634.88 | 1683.77 | 1741.18 | 1762.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Wu, C.; Lu, H.; Wu, X.; Zhao, B. Predicted Distribution of Locoweed Oxytropis glabra in China under Climate Change. Agriculture 2024, 14, 850. https://doi.org/10.3390/agriculture14060850
Huang R, Wu C, Lu H, Wu X, Zhao B. Predicted Distribution of Locoweed Oxytropis glabra in China under Climate Change. Agriculture. 2024; 14(6):850. https://doi.org/10.3390/agriculture14060850
Chicago/Turabian StyleHuang, Ruijie, Chenchen Wu, Hao Lu, Xuemei Wu, and Baoyu Zhao. 2024. "Predicted Distribution of Locoweed Oxytropis glabra in China under Climate Change" Agriculture 14, no. 6: 850. https://doi.org/10.3390/agriculture14060850
APA StyleHuang, R., Wu, C., Lu, H., Wu, X., & Zhao, B. (2024). Predicted Distribution of Locoweed Oxytropis glabra in China under Climate Change. Agriculture, 14(6), 850. https://doi.org/10.3390/agriculture14060850