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Abstract: The research on the significant toxic weed Oxytropis glabra, which adversely affects the
grazing industry and the ecological integrity of natural grasslands in the arid and semi-arid regions of
northern China, aims to delineate its potential distribution amidst changing climate conditions. This
analysis involves both current conditions (1970–2000) and future projections (2050s and 2070s) under
four climate scenarios using an R-optimized MaxEnt model. The results indicate that the distribution
of O. glabra was primarily influenced by the temperature of the coldest quarter (bio11, ranging from
−12.04 to −0.07 ◦C), precipitation of the coldest quarter (bio19, 0 to 15.17 mm), and precipitation of
the warmest quarter (bio18, 0 to 269.50 mm). Currently, the weed predominantly occupies parts of
Xinjiang, Inner Mongolia, Gansu, Qinghai, Ningxia, and Tibet. Projections indicate that, across four
future climate scenarios, the area of suitable habitats for O. glabra is expected to expand and shift
toward higher latitudes and elevations. The research provides valuable information and a theoretical
foundation for the management of O. glabra, alongside advancing grassland ecological research and
grazing practices.

Keywords: Oxytropis glabra; locoweed; MaxEnt modeling; climate change impacts; toxic plant control;
grazing management

1. Introduction

Climate significantly influences the geographical distribution of vegetation, and global
climate change has profoundly affected the structure and function of grassland ecosys-
tems [1,2]. The Fifth Assessment Report by the Intergovernmental Panel on Climate Change
(IPCC) predicts a continued rise in global average temperatures, accompanied by significant
changes in precipitation patterns [3]. However, the impact of climate change is not uniform
across different regions due to the distinctiveness of natural conditions, leading to varied
effects on the growth and distribution of plants [4]. Thus, understanding plant responses
to future climate change is crucial for deciphering their survival strategies and for the
conservation of biodiversity or the targeted management of invasive species.

Toxic plants are one of the many problems plaguing the development of global grass-
land livestock farming. Numerous studies have identified locoweed as the most significant
toxic plant affecting global grassland pastoralism, primarily due to its toxic alkaloid compo-
nent, swainsonine [5]. Livestock ingesting locoweed exhibits characteristic symptoms of the
disease, potentially resulting in death in severe instances. Locoweed’s presence is global,
with documented cases of livestock poisoning and consequent economic losses impacting
grassland pastoralism in countries such as China, Mongolia, the United States, Brazil, Ar-
gentina, and Australia, significantly affecting local pastoral economies [6]. Oxytropis glabra
DC, a member of the Fabaceae family, is native to China and various regions in Asia and
Europe, such as Mongolia, Pakistan, and East European Russia. Conversely, it is considered
an introduced species in the United States. In China, this species is recognized as a principal
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locoweed. It typically grows in habitats such as mountain grasslands, rocky slopes, saline
low-moisture meadows, field ridges, and road edges (Figure 1) [7]. Current research on O.
glabra primarily investigates its chemical components and activities, toxic effects, treatments
for poisoning, endophytes, and feed utilization after detoxification. However, there is a
notable scarcity of studies concerning the distribution of suitable habitats for O. glabra.
Previously, knowledge of these habitats was limited, relying solely on manual field surveys.
Moreover, the future impact of climate change on the distribution of suitable habitats for O.
glabra remains uncertain, impeding effective control measures and pasture management.
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MaxEnt, a Species Distribution Model (SDM) that utilizes the maximum entropy
principle, predicts the distribution of species’ suitable habitats by employing occurrence
points and environmental data [8]. Recognized for its operational simplicity, minimal
data requirements, and strong predictive performance, MaxEnt is extensively utilized in
conservation efforts for endangered species, invasive species management, pest and disease
control, and the cultivation of economic plants [9]. In this study, an R-optimized MaxEnt
model and ArcGIS spatial analysis were utilized to investigate the primary environmental
variables influencing the distribution of O. glabra, the current distribution patterns of its
suitable habitats, and potential changes in its distribution under various future climate
scenarios. This research fills the research gap by simulating and predicting a suitable habitat
for O. glabra in China and providing basic information references for the formulation of O.
glabra prevention and control strategies and pasture management.

2. Materials and Methods
2.1. Species Occurrence Data

Occurrence data for O. glabra at the research institute were collected from two primary
sources. First, records from field investigations conducted by the corresponding author’s
research group between 2014 and 2021 were used. These investigations utilized a handheld
GPS device (GARMIN GPSMAP 621sc) to capture the latitude and longitude coordinates
of O. glabra populations in their natural habitats, yielding a total of 441 records. Second,
additional data were sourced from online databases, including the Chinese Virtual Herbar-
ium (CVH) and the Global Biodiversity Information Facility (GBIF), with selection criteria
focusing solely on records with precise geographic coordinates, resulting in 96 additional
records (details are provided in Table S2).

The occurrence data for spatial filtering of O. glabra occurrence points were processed
using the spThin package in R [10], which removed points within a distance of less than
20 km [11]. The Moran’s Index was then calculated using the ArcGIS toolbox to analyze
the spatial autocorrelation before and after filtering the occurrence point data [11].
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2.2. Environmental Variable Data

The Intergovernmental Panel on Climate Change (IPCC) has developed the Shared
Socioeconomic Pathways (SSPs), which consider a variety of factors such as population
growth, economic development, technological progress, and resource utilization, building
on the foundation of Representative Concentration Pathways (RCPs). SSP126, SSP245,
SSP370, and SSP585 represent scenarios titled “Taking the Green Road”, “Middle of the
Road”, “A Rocky Road”, and “Taking the Highway”, respectively, each with progressively
increasing carbon emissions and warming trends [12].

In our initial analysis, we assessed 24 environmental variables, grouped into three
main environmental factors crucial for predicting plant distributions: bioclimate, soil, and
terrain, as detailed in Table S2 [9]. We sourced data for both current (1970–2000) and future
(2050s and 2070s) projections for bioclimate and terrain from the WorldClim database
(https://www.worldclim.org/, accessed on 21 January 2022) [13] and soil information from
the World Soil Database v1.2 (https://daac.ornl.gov/, accessed on 21 January 2022) [14].
Future climate scenarios were projected using four Shared Socioeconomic Pathways (SSPs)
and the BCC-CSM2-MR model from the Beijing Climate Center, confirmed as highly
effective for simulating climate variations in China [15]. All environmental data were
processed at a spatial resolution of 2.5 arc-minutes, covering a rectangular area broadly
representing China (18.16◦–53.53◦ N, 73.45◦–134.98◦ E).

We performed a correlation analysis of environmental variables using ENMTools [16].
When the absolute value of the correlation coefficient between two variables surpassed 0.7,
we excluded the less influential variable, as indicated by Jackknife test results [17,18].

2.3. Model Optimization and Evaluation Metrics

We employed the ENMeval 2.03 package [19] for model parameter optimization, uti-
lizing 10-fold cross-validation to ensure the stability of the prediction accuracy [20]. We
combined eight regularization multipliers, ranging from 0.5 to 4 in 0.5 increments, with
six feature classes (linear (L), quadratic (Q), hinge (H), linear–quadratic–hinge (LQH),
linear–quadratic–hinge–product (LQHP), and linear–quadratic–hinge–product–threshold
(LQHPT)), resulting in a suite of 48 candidate models (8 RM × 6 FC). The Akaike Infor-
mation Criterion corrected for small sample sizes (AICc) was employed to compare the
goodness of fit and complexity across the models, with models achieving the lowest AICc
(Delta AICc = 0) generally indicating superior performance [19].

We also evaluated the model performance using the following metrics: area under the
receiver operating characteristic curve (AUC), the Continuous Boyce Index (CBI), the 10%
training omission rate (OR10), and the difference between the training and testing AUC
(AUCdiff). The AUC, a threshold-independent metric, is commonly utilized to assess the
performance of MaxEnt models. Typically, a value of 1 > AUC ≥ 0.9 indicates excellent
predictive performance, while 0.9 > AUC ≥ 0.8 denotes good performance [21]. The range
of the CBI lies between −1 and 1, with values closer to 1 indicating higher consistency
between model predictions and the observed distribution in the evaluation dataset [22].
The OR10 is used to demonstrate the degree of model overfitting, with values closer to
0.1 suggesting lower overfitting levels [19]. Similarly, AUCdiff is employed to assess the
degree of model overfitting, where its magnitude is directly proportional to the level of
overfitting [23].

The final predictions for the suitable habitat distribution of O. glabra were conducted
using MaxEnt 3.4.4 [24], with the optimal combination of Feature Classes (FC) and Regular-
ization Multipliers (RM) settings, consistent with previous studies [25,26].

2.4. Habitat Suitability Classification and Visualization of Future Changes

The maximum training sensitivity plus specificity logistic (MTSPS) threshold was
employed to categorize species habitats into “suitable” and “unsuitable” zones. This
methodology has previously been proven to be straightforward and effective [27]. Based
on logistic values derived from the model, the habitat of O. glabra was segmented into

https://www.worldclim.org/
https://daac.ornl.gov/
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unsuitable areas (0 to MTSPS), low-suitability areas (MTSPS to 0.4), medium-suitability
areas (0.4 to 0.6), and high-suitability areas (0.6 to 1).

The ArcGIS Toolbox was utilized to assign values of 1, 2, 3, and 4 to unsuitable areas
and low-, medium-, and high-suitability areas, respectively. This approach facilitates the
comparison of current and future distribution patterns of suitable habitats by observing
changes in raster values [21]. For instance, a change in raster value from 2 to 4, denoted as
“2–4”, indicates a transition from a low- to a high-suitability area. Additionally, using SDM-
Tools 2.5 [28], the centroids of total suitable areas at different time points were calculated
and connected in chronological order to observe the direction of centroid migration.

3. Results
3.1. Occurrence Records and Environmental Variable Screening

A total of 537 occurrence points of O. glabra were obtained through field surveys and
online databases. After spatial filtering at a 20 km distance, 178 occurrence points remained
(see Table S1 for details). Spatial autocorrelation analysis revealed that the distribution of
unfiltered occurrence points was clustered, with a Moran’s Index of 0.04770; however, after
spatial filtering at 20 km, the distribution appeared random, as indicated by the Moran’s
Index of −0.00056 (Figure 2A). Consequently, we modeled using the spatially filtered
occurrence points.
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After filtering 24 environmental variables, the final selection for modeling included the
mean diurnal range (bio2), mean temperature of the coldest quarter (bio11), precipitation
seasonality (bio15), precipitation of the warmest quarter (bio18), precipitation of the coldest
quarter (bio19), elevation (evel), topsoil organic carbon (t_oc), and topsoil pH (t_oh), all
with absolute correlation values of less than 0.7 (Figure 2B).

3.2. Model Optimization and Evaluation

Among 48 candidate models, the model configured with the parameters “FC = LQH,
RM = 0.5” achieved the lowest AICc value, as shown in Table 1. Compared to the default
model, this optimized model exhibited higher AUC and CBI scores and lower OR10 and
AUCdiff scores, indicating increased accuracy and diminished overfitting. With an AUC
exceeding 0.9, a CBI close to 1, and an OR10 approaching the target of 0.1, this model
demonstrates robust predictive performance, making it well-suited for projecting the
habitat distribution of O. glabra.
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Table 1. Comparison of metrics before and after model optimization.

Model Model Parameter Avg. AUC Avg. CBI Avg. OR10 Avg. AUCdiff AICc Delta.AICc

Default FC = LQPH, RM = 1 0.9461 ± 0.0260 0.8796 ± 0.0681 0.1307 ± 0.1065 0.0222 ± 0.0185 4246.1018 0
Optimized FC = LQH, RM = 0.5 0.9500 ± 0.0196 0.8832 ± 0.0601 0.1415 ± 0.1018 0.0182 ± 0.0122 4240.9586 5.1431

3.3. Key Environmental Variables

Figure 3A highlights the contribution rates of various environmental variables to the
model. The most significant variable was the mean temperature of the coldest quarter, con-
tributing 40.72%. It was followed by precipitation of the coldest quarter, which contributed
22.86%, and precipitation of the warmest quarter, contributing 14.73%. Collectively, these
three accounted for 78.31% of the total contributions.
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used for the MaxEnt model (B).

The jackknife test, shown in Figure 3B, confirmed the significance of these environ-
mental variables in modeling habitat suitability for O. glabra. The largest gain in model
accuracy occurred when including the mean temperature of the coldest quarter. This
was followed by the contributions from the precipitation of the coldest quarter, elevation,
and precipitation of the warmest quarter, indicating that these variables provide critical
information for the model.

Excluding the mean temperature of the coldest quarter resulted in the most consider-
able decrease in model accuracy, followed by the precipitation of the coldest quarter, the
mean diurnal range, and the precipitation of the warmest quarter. This pattern shows that
these factors offer indispensable information that cannot be substituted by other variables.
Therefore, these conditions—specifically the mean temperature of the coldest quarter, pre-
cipitation of the coldest quarter, and precipitation of the warmest quarter—play crucial
roles in determining the distribution of O. glabra.

Figure 4 presents the response curves of environmental variables (with the horizontal
axis representing the values of the environmental variables and the vertical axis showing
the logistic values from the model) that depict the habitat suitability of O. glabra under
varying environmental conditions. The response curve for elevation (elev) exhibited two
peaks at 1351.26 m and 3187.70 m, with corresponding logistic values of 0.68 and 0.43. The
response curve for total potential hydrogen (t_ph) exhibited three peaks at −log(H+) values
of 5.86, 7.85, and 8.55, corresponding to logistic values of 0.39, 0.72, and 0.96. Apart from
elev and t_ph, other environmental variables exhibited approximately unimodal response
relationships. Table 2 displays the optimum value of suitability, the highest logistic value,
and the suitable habitat threshold for these environmental variables. According to the
classification method of “suitable–unsuitable”, grid cells with a logistic value exceeding
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the minimum threshold for suitable potential species survival (MTSPS) of 0.1872 were
categorized as suitable habitats, thereby establishing the suitable habitat threshold for
environmental variables.
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Table 2. Details of environmental variables used for the MaxEnt model.

Environmental
Variables

Optimum Value of
Suitability

Highest Logistic
Value

Suitable Habitat
Threshold

bio2 14.22 ◦C 0.62 11.98~17.91 ◦C
bio11 −6.49 ◦C 0.63 −12.04~−0.07 ◦C
bio15 100.01 0.57 31.22~113.46
bio18 11.44 mm 0.73 0~269.50 mm
bio19 4.01 mm 0.62 0~15.17 mm
elev 1351.26 m 0.68 715.00~4341.35 m
t_oc 0.50% weight 0.72 0~27.45% weight
t_ph 8.55 −log(H+) 0.96 5.11~8.88 −log(H+)

3.4. Current Suitable Habitat Distribution

The distribution model for the suitable habitats of O. glabra under the current climatic
conditions is depicted in Figure 5. The areas classified as low, medium, and high suitability
encompass 1.22 × 106 km2, 5.46 × 105 km2, and 3.18 × 105 km2, respectively. The medium-
and high-suitability areas are primarily located in the central and western parts of Xinjiang
(northern and western Tarim Basin, surrounding areas of Turpan Basin), western and
southwestern Inner Mongolia (eastern and western sides of the Badain Jaran Desert, the
Tengger Desert and its southern regions, and the Yellow River basin in Inner Mongolia
and its southern areas), central and northern Ningxia (Ningxia Yellow River basin area),
north–central Gansu (north of the Qilian Mountains), central Qinghai (Altai Mountains
area), northern Shaanxi, and central and northern Shanxi. Low-suitability areas are mainly
found around the medium- and high-suitability regions, with scattered distributions in
northwestern Sichuan, central and southeastern Tibet, and northern Hebei. In addition, we
also generated a figure depicting the relationship between the suitability of O. glabra and
its occurrence records. For further details, please refer to Figure S1.
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Figure 5. Simulation of suitable habitat distribution of O. glabra in current climate conditions.

3.5. Changes in the Distribution of Future Suitable Habitat

Projections of the habitat suitability for O. glabra in the 2050s and 2070s were made
under four future climate scenarios (Figure S2) and compared with the current spatial
distribution of O. glabra habitats (Figure 6). Overall, regions where habitat suitability is
predicted to decrease are primarily concentrated in the southeastern part of the total habitat
area, while increases in suitability are expected mainly in the northern, northwestern, and
northeastern sections. Figure 7 illustrates that under all four climate scenarios, the centroid
of O. glabra’s total habitat area generally shifts towards inland and higher-latitude regions.

We quantified the relative area of each suitability class within the study region under
various future climate scenarios, as well as the average elevation of the total suitable habitat
area (Table 3). Under all future scenarios, the area of suitable habitats for O. glabra is pro-
jected to increase relative to the present. In the SSP126 and SSP245 scenarios, the total area
of suitable habitat initially increases and subsequently experiences a slight decline; in con-
trast, under the SSP370 and SSP585 scenarios, it continues to expand. Across all four climate
scenarios, the average elevation of the total suitable habitat area consistently increases.

Table 3. Changes in the relative proportions and average elevation of suitable habitat of O. glabra.

Period/Climate
Scenarios

Current
2050s 2070s

SSP126 SSP245 SSP370 SSP585 SSP126 SSP245 SSP370 SSP585

Unsuitable area 87.76% 84.26% 83.04% 84.18% 84.15% 85.46% 83.28% 80.68% 82.08%
Low-suitability area 7.18% 8.83% 8.79% 8.11% 8.15% 7.79% 8.50% 9.55% 9.10%

Medium-suitability area 3.21% 4.35% 4.78% 4.61% 4.27% 4.09% 4.74% 5.57% 4.87%
High-suitability area 1.85% 2.56% 3.39% 3.09% 3.43% 2.66% 3.48% 4.20% 3.95%

All suitable area 12.24% 15.74% 16.96% 15.82% 15.85% 14.54% 16.72% 19.32% 17.92%
Elevation/m 1541.81 1603.58 1677.62 1707.62 1659.24 1634.88 1683.77 1741.18 1762.69
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4. Discussion
4.1. Optimization of MaxEnt Model

The processing of species occurrence data and environmental variables, along with the
configuration of MaxEnt model parameters, significantly affects the model’s performance.
A fundamental assumption of the MaxEnt model is that species occurrence data are either
systematically or randomly sampled across all regions [8]. However, in practical surveys,
various factors often introduce sampling bias, leading to model overfitting and reduced
predictive capacity [29]. To mitigate this, we implemented spatial filtering to reduce the
spatial autocorrelation among occurrence points, thereby approximating the random sam-
pling approach. Additionally, multicollinearity among some environmental variables can
cause overfitting [30]. We used the ENMTools to assess correlations among these variables
and selectively filtered them. Lastly, research indicates that the settings for the feature class
(FC) and regularization multiplier (RM) substantially influence the robustness of MaxEnt
predictions, with default parameters frequently being suboptimal [31]. Consequently, we
employed the ENMeval package to optimize these model parameters. The optimized Max-
ent model demonstrated an AUC > 0.9, a CBI close to 1, and an OR10 near the desired value
of 0.1, confirming the reliability of the model for predicting suitable habitats for O. glabra.

4.2. Environmental Variables Affecting the Distribution of O. glabra

Temperature and precipitation are significant factors influencing the geographical
distribution of vegetation [32]. Typically, a plant’s thermal requirements determine its
latitudinal range of suitable habitats, while its moisture needs influence proximity to
areas with abundant rainfall, such as coastal versus inland regions [33,34]. This study
reveals the key environmental variables and habitat suitability thresholds for O. glabra,
which are the mean temperature of the coldest quarter (ranging from −12.04 to −0.07 ◦C),
precipitation of the coldest quarter (ranging from 0 to 15.17 mm), and precipitation of the
warmest quarter (ranging from 0 to 269.50 mm). Combined with other environmental
factors used for modeling, it is evident that O. glabra can adapt to cold, dry climates and
poor soils, consistent with its known resilience to drought and cold, and vigorous growth
characteristics in arid and semi-arid regions [35]. Wang et al. [36] analyzed the soil in
several areas within the Alxa Left Banner in Inner Mongolia where O. glabra thrives, finding
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an average pH of approximately 8. In the study, the soil pH suitability threshold ranged
from 5.11 to 8.88, indicating that O. glabra can adapt to both mildly alkaline and mildly
acidic soils. Moreover, Flora of China noted that O. glabra grows at elevations around
2000 m [37]; however, the MaxEnt model suggests a broader range of suitable elevations
from 715.00 to 4341.35 m. This discrepancy suggests that some suitable habitats identified
by the model may not have been documented previously, indicating a broader elevation
range for O. glabra than previously recognized.

4.3. Suitable Habitat of O. glabra under Different Climate Conditions

Under the current climatic conditions, the suitable habitats for O. glabra are primarily
located in provinces such as Xinjiang, Inner Mongolia, Gansu, Qinghai, Ningxia, and Tibet,
consistent with previous literature [7]. Additionally, there are potential suitable areas in
parts of Sichuan, Shanxi, and Hebei provinces. Under four future climate scenarios, the
overall distribution of suitable habitats for O. glabra is projected to shift northwestwards and
to higher elevations. This shift is likely in response to anticipated increases in temperature
and precipitation in northwestern China as the climate warms [38]. Similar trends have been
observed in past research; for instance, Lenoir et al. [39] noted that with global warming,
the geographical distribution of most European plants is shifting towards higher latitudes
and elevations. Beckage et al. [40] reported that the boundary between the broadleaf forests
and northern coniferous forests in Vermont, USA, ascended at least 90 m between 1962
and 2005. In China, Wang et al. [41] and Xu et al. [42] predicted a similar northward shift
for several common fruit tree species. Notably, under all four future climate scenarios, the
total area of suitable habitats for O. glabra is expected to increase, with the most significant
expansion predicted under the SSP370 scenario for the 2070s, reaching 157.84% of the
current suitable area. As depicted in Figure 5, during both future periods under the four
climate scenarios, vast regions in central Tibet, central Qinghai, northern Xinjiang, and
central Inner Mongolia are likely to become suitable for O. glabra, coinciding with areas
where grazing is highly prevalent. Given its toxic effects on grazing industries, this finding
warrants caution.

4.4. Research Significance and Limitations

The introduction highlights O. glabra as a significant toxic weed that adversely affects
the grassland livestock industry in China. Its deleterious impacts are threefold: (1) It
causes livestock poisoning and death. Swainsonine, a toxic alkaloid in O. glabra, inhibits
α-mannosidase within animal tissues, leading to vacuolar degeneration and ultimately
organ failure and death [6]. (2) It negatively impacts livestock reproduction and impedes
breed improvement. Poisoning from O. glabra results in infertility, miscarriage, and weak
offspring in females, while simultaneously reducing libido and breeding capabilities in
males [6]. (3) It impacts the ecological balance of grasslands. With traits like drought
resistance, cold tolerance, and strong adversity resistance, O. glabra fiercely competes with
superior forage for sunlight, soil nutrients, and water [35]. Traditional control measures for
such toxic plants include manual removal, herbicides, competitive planting, and biological
control, along with preventative measures like medicated feeds, vaccinations, and enhanced
pasture management [43]. Additionally, Tao et al. [44] discovered that ensiling O. glabra
with whole corn in certain proportions reduces its toxic component levels, making it suitable
for ruminant feed. Understanding the suitable habitats for toxic plants and how climate
change affects their distribution, and visualizing these aspects, are crucial for managing,
utilizing, and controlling these plants in pasture management strategies, such as selecting
pasture locations, deploying preventive medications and vaccines, and establishing silage
feed production bases and control strategies.

Furthermore, the scarcity of O. glabra occurrence records in online databases that
meet modeling criteria resulted in reduced model accuracy, potentially limiting habitat
modeling studies. In this study, we obtained substantial O. glabra distribution data through
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field surveys and employed optimization techniques to develop a robust model, thereby
addressing gaps in previous research.

However, this study also presents certain limitations. While the MaxEnt model exhibits
high accuracy, this does not imply that the modeled habitats align perfectly with the actual
species distribution [45]. Beyond climatic, topographic, and soil factors, other elements such
as interspecies interactions, adaptive capabilities of the species, and grazing activities also
impact the distribution of toxic weeds. With current technology, it is challenging to quantify
or statistically analyze these factors for model integration. Additionally, predictions about
future events are inherently subject to a degree of uncertainty, typically related to the
temporal distance of the forecast. These limitations should be considered when referencing
and utilizing the model. Nevertheless, species distribution models (SDMs) remain vital
tools for predicting suitable habitats under the backdrop of climate change [46].

5. Conclusions

In summary, the optimized MaxEnt model robustly simulates and predicts the dis-
tribution of suitable habitats for O. glabra. The mean temperature of the coldest quarter
(bio11), precipitation of the coldest quarter (bio19), and precipitation of the warmest quarter
(bio18) are the critical environmental variables influencing the distribution of O. glabra.
Currently, O. glabra is predominantly found in provinces such as Xinjiang, Inner Mongolia,
Gansu, Qinghai, Ningxia, and Tibet. Projections indicate that under four future climate
scenarios, the area of suitable habitats for O. glabra will increase and shift towards higher
latitudes and elevations. This study provides essential data and a theoretical basis for the
prevention and control of O. glabra and grassland grazing management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture14060850/s1, Table S1: Occurrence data; Table S2:
Environmental variables and their type and description; Figure S1: Degree of suitability and occur-
rence records for O. glabra. Figure S2: Projections of the habitat suitability for O. glabra in the 2050s
and 2070s.
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