Biochemical and Physical Screening Using Optical Oxygen-Sensing and Multispectral Imaging in Sea Oats Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Materials
2.2. Quantification of Biochemical Traits
2.2.1. Total Protein
2.2.2. Antioxidants Analysis
2.3. Seed Germination
2.4. Tetrazolium (Tz) Staining
2.5. Multispectral Imaging Analysis
2.6. Seed Mass and Volume
2.7. Respiration and Metabolic Analysis
2.8. Controlled Deterioration Test
2.9. Data Analysis
2.9.1. Physical and Biochemical Data
2.9.2. Aging Stress Survival Analysis
2.9.3. Relationship of Seed Traits with Aging Stress Survival
3. Results
3.1. Seeds Exhibited Variability of Physical Traits among Sea Oat Populations
3.2. Respiration and Metabolic Characteristics Vary among Seeds from Sea Oat Populations
3.3. Seed Aging Stress Deterioration Varies among Sea Oat Populations
3.4. Depletion of Antioxidants Accentuates as Aging Conditions Progresses
3.5. Physical and Biochemical Traits of Seeds Predict Aging Stress Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Seeds; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-4692-7. [Google Scholar]
- Saatkamp, A.; Cochrane, A.; Commander, L.; Guja, L.K.; Jimenez-Alfaro, B.; Larson, J.; Nicotra, A.; Poschlod, P.; Silveira, F.A.O.; Cross, A.T.; et al. A Research Agenda for Seed-trait Functional Ecology. New Phytol. 2019, 221, 1764–1775. [Google Scholar] [CrossRef] [PubMed]
- Rajjou, L.; Debeaujon, I. Seed Longevity: Survival and Maintenance of High Germination Ability of Dry Seeds. C. R. Biol. 2008, 331, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.H. Temporal Patterns of Seed Quality Development, Decline, and Timing of Maximum Quality during Seed Development and Maturation. Seed Sci. Res. 2019, 29, 135–142. [Google Scholar] [CrossRef]
- Long, R.L.; Gorecki, M.J.; Renton, M.; Scott, J.K.; Colville, L.; Goggin, D.E.; Commander, L.E.; Westcott, D.A.; Cherry, H.; Finch-Savage, W.E. The Ecophysiology of Seed Persistence: A Mechanistic View of the Journey to Germination or Demise: The Ecophysiology of Seed Persistence. Biol. Rev. 2015, 90, 31–59. [Google Scholar] [CrossRef] [PubMed]
- Walters, C. Orthodoxy, Recalcitrance and in-between: Describing Variation in Seed Storage Characteristics Using Threshold Responses to Water Loss. Planta 2015, 242, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Walters, C.; Berjak, P.; Pammenter, N.; Kennedy, K.; Raven, P. Preservation of Recalcitrant Seeds. Science 2013, 339, 915–916. [Google Scholar] [CrossRef] [PubMed]
- Walters, C.; Ballesteros, D.; Vertucci, V.A. Structural Mechanics of Seed Deterioration: Standing the Test of Time. Plant Sci. 2010, 179, 565–573. [Google Scholar] [CrossRef]
- Kibinza, S.; Vinel, D.; Côme, D.; Bailly, C.; Corbineau, F. Sunflower Seed Deterioration as Related to Moisture Content during Ageing, Energy Metabolism and Active Oxygen Species Scavenging. Physiol. Plant. 2006, 128, 496–506. [Google Scholar] [CrossRef]
- Ballesteros, D.; Walters, C. Solid-State Biology and Seed Longevity: A Mechanical Analysis of Glasses in Pea and Soybean Embryonic Axes. Front. Plant Sci. 2019, 10, 920. [Google Scholar] [CrossRef] [PubMed]
- Olesen, M.H.; Nikneshan, P.; Shrestha, S.; Tadayyon, A.; Deleuran, L.C.; Boelt, B.; Gislum, R. Viability Prediction of Ricinus Cummunis L. Seeds Using Multispectral Imaging. Sens. Switz. 2015, 15, 4592–4604. [Google Scholar] [CrossRef] [PubMed]
- Rego, C.H.Q.; França-Silva, F.; Gomes-Junior, F.G.; de Moraes, M.H.D.; de Medeiros, A.D.; Silva, C.B. da Using Multispectral Imaging for Detecting Seed-Borne Fungi in Cowpea. Agriculture 2020, 10, 361. [Google Scholar] [CrossRef]
- ElMasry, G.; Mandour, N.; Wagner, M.-H.; Demilly, D.; Verdier, J.; Belin, E.; Rousseau, D. Utilization of Computer Vision and Multispectral Imaging Techniques for Classification of Cowpea (Vigna Unguiculata) Seeds. Plant Methods 2019, 15, 24. [Google Scholar] [CrossRef] [PubMed]
- Mihailova, A.; Liebisch, B.; Islam, M.D.; Carstensen, J.M.; Cannavan, A.; Kelly, S.D. The Use of Multispectral Imaging for the Discrimination of Arabica and Robusta Coffee Beans. Food Chem. X 2022, 14, 100325. [Google Scholar] [CrossRef] [PubMed]
- Duncan, K.E.; Czymmek, K.J.; Jiang, N.; Thies, A.C.; Topp, C.N. X-Ray Microscopy Enables Multiscale High-Resolution 3D Imaging of Plant Cells, Tissues, and Organs. Plant Physiol. 2022, 188, 831–845. [Google Scholar] [CrossRef] [PubMed]
- Salimi, Z.; Boelt, B. Classification of Processing Damage in Sugar Beet (Beta Vulgaris) Seeds by Multispectral Image Analysis. Sens. Switz. 2019, 19, 2360. [Google Scholar] [CrossRef] [PubMed]
- Vrešak, M.; Halkjaer Olesen, M.; Gislum, R.; Bavec, F.; Ravn Jørgensen, J. The Use of Image-Spectroscopy Technology as a Diagnostic Method for Seed Health Testing and Variety Identification. PLoS ONE 2016, 11, e0152011. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.A.E.; Hay, F.R.; Carstensen, J.M. A Virtual Seed File: The Use of Multispectral Image Analysis in the Management of Genebank Seed Accessions. Plant Genet. Resour. 2016, 14, 238–241. [Google Scholar] [CrossRef]
- Boelt, B.; Shrestha, S.; Salimi, Z.; Jørgensen, J.R.; Nicolaisen, M.; Carstensen, J.M. Multispectral Imaging—A New Tool in Seed Quality Assessment? Seed Sci. Res. 2018, 28, 222–228. [Google Scholar] [CrossRef]
- Mahajan, P.V.; Luca, A.; Edelenbos, M. Development of a Small and Flexible Sensor-Based Respirometer for Real-Time Determination of Respiration Rate, Respiratory Quotient and Low O2 Limit of Fresh Produce. Comput. Electron. Agric. 2016, 121, 347–353. [Google Scholar] [CrossRef]
- Bello, P.; Bradford, K.J. Single-Seed Oxygen Consumption Measurements and Population-Based Threshold Models Link Respiration and Germination Rates under Diverse Conditions. Seed Sci. Res. 2016, 26, 199–221. [Google Scholar] [CrossRef]
- Silva, J.G.D.; Gadotti, G.I.; Moraes, D.M.D.; Silva, A.H.M.; Cavalcante, J.A.; Meneghello, G.E. Equipment to Assess Vigor in Soybean Seeds Using CO2 Produced during Respiration. Rev. Bras. Eng. Agríc. E Ambient. 2021, 25, 353–358. [Google Scholar] [CrossRef]
- Dalziell, E.L.; Tomlinson, S. Reduced Metabolic Rate Indicates Declining Viability in Seed Collections: An Experimental Proof-of-Concept. Conserv. Physiol. 2017, 5, cox058. [Google Scholar] [CrossRef]
- Sano, N.; Rajjou, L.; North, H.M.; Debeaujon, I.; Marion-Poll, A.; Seo, M. Staying Alive: Molecular Aspects of Seed Longevity. Plant Cell Physiol. 2016, 57, 660–674. [Google Scholar] [CrossRef]
- Stegner, M.; Wagner, J.; Roach, T. Antioxidant Depletion during Seed Storage under Ambient Conditions. Seed Sci. Res. 2022, 32, 150–156. [Google Scholar] [CrossRef]
- Pehlivan, F.E. Free Radicals and Antioxidant System in Seed Biology. In Advances in Seed Biology; Jimenez-Lopez, J.C., Ed.; InTech: London, UK, 2017; ISBN 978-953-51-3621-7. [Google Scholar]
- Parkhey, S.; Naithani, S.C.; Keshavkant, S. ROS Production and Lipid Catabolism in Desiccating Shorea Robusta Seeds during Aging. Plant Physiol. Biochem. 2012, 57, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Begcy, K.; Walia, H. Drought Stress Delays Endosperm Development and Misregulates Genes Associated with Cytoskeleton Organization and Grain Quality Proteins in Developing Wheat Seeds. Plant Sci. 2015, 240, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Begcy, K.; Liu, K.; Folsom, J.J.; Wang, Z.; Zhang, C.; Walia, H. Heat Stress Yields a Unique MADS Box Transcription Factor in Determining Seed Size and Thermal Sensitivity. Plant Physiol. 2016, 171, 606–622. [Google Scholar] [CrossRef] [PubMed]
- Egesa, A.O.; Pérez, H.E.; Begcy, K. Environmental Conditions Predetermine Quality, Germination, and Innate Antioxidants Pool in Sea oats (Uniola Paniculata L.) Seeds. Front. Environ. Sci. 2023, 11, 1263300. [Google Scholar] [CrossRef]
- Genna, N.G.; Walters, C.; Pérez, H.E. Viability and Vigour Loss during Storage of Rudbeckia Mollis Seeds Having Different Mass: An Intra-Specific Perspective. Seed Sci. Res. 2020, 30, 122–132. [Google Scholar] [CrossRef]
- Satya Srii, V.; Nagarajappa, N.; Vasudevan, S.N. Is Seed Coat Structure at Fault for Altered Permeability and Imbibition Injury in Artificially Aged Soybean Seeds? Crop Sci. 2022, 62, 1573–1583. [Google Scholar] [CrossRef]
- Pérez, H.E.; Kane, M.E. Different Plant Provenance Same Seed Tolerance to Abiotic Stress: Implications for Ex Situ Germplasm Conservation of a Widely Distributed Coastal Dune Grass (Uniola Paniculata L.). Plant Growth Regul. 2017, 82, 123–137. [Google Scholar] [CrossRef]
- Lonard, R.I.; Judd, F.W.; Stalter, R. Biological Flora of Coastal Dunes and Wetlands: Uniola paniculata L. J. Coast. Res. 2011, 276, 984–993. [Google Scholar] [CrossRef]
- Center for Plant Conservation. CPC Best Plant Conservation Practices to Support Species Survival in the Wild; Center for Plant Conservation: Escondido, CA, USA, 2018. [Google Scholar]
- Bonner, F.T. Storage of Seeds. In The Woody Plant Seed Manual; Bonner, F.T., Karrfalt, R.P., Eds.; Agricultural Handbook 727; USDA: Washington, DC, USA, 2008; pp. 85–97. [Google Scholar]
- Newton, R.; Hay, F.; Probert, R. Protocol for Comparative Seed Longevity Testing; Millennium Seed Bank Partnership: Ardingly, UK, 2014. [Google Scholar]
- Kalaman, H.; Wilson, S.B.; Mallinger, R.E.; Knox, G.W.; Kim, T.; Begcy, K.; Van Santen, E. Evaluation of Native and Nonnative Ornamentals as Pollinator Plants in Florida: II. Floral Resource Value. HortScience 2022, 57, 137–143. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Begcy, K.; Sandhu, J.; Walia, H. Transient Heat Stress During Early Seed Development Primes Germination and Seedling Establishment in Rice. Front. Plant Sci. 2018, 9, 1768. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Lanham, B. Tetrazolium Testing Handbook, Contribution No. 29 to the Handbook on Seed Testing; Association of Official Seed Analysts: Wichita, KS, USA, 2000. [Google Scholar]
- Cantrell, K.; Erenas, M.M.; De Orbe-Payá, I.; Capitán-Vallvey, L.F. Use of the Hue Parameter of the Hue, Saturation, Value Color Space As a Quantitative Analytical Parameter for Bitonal Optical Sensors. Anal. Chem. 2010, 82, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Ly, B.C.K.; Dyer, E.B.; Feig, J.L.; Chien, A.L.; Del Bino, S. Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. J. Invest. Dermatol. 2020, 140, 3–12.e1. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yang, L.; Zhang, Z. Non-Destructive Identification of Single Hard Seed via Multispectral Imaging Analysis in Six Legume Species. Plant Methods 2020, 16, 116. [Google Scholar] [CrossRef] [PubMed]
- Hay, F.R.; Adams, J.; Manger, K.; Probert, R. The Use of Non-Saturated Lithium Chloride Solutions for Experimental Control of Seed Water Content. Seed Sci. Technol. 2008, 36, 737–746. [Google Scholar] [CrossRef]
- Harvey, D.T.; Hanson, B.A. A Comparison of Functions for PCA. Available online: https://cran.r-project.org/web/packages/LearnPCA/vignettes/Vig_07_Functions_PCA.pdf (accessed on 20 February 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Ellis, R.H.; Roberts, E.H. The Quantification of Ageing and Survival in Orthodox Seeds. Seed Sci. Technol. 1981, 9, 373–409. [Google Scholar]
- Fricke, E.C.; Wright, S.J. The Mechanical Defence Advantage of Small Seeds. Ecol. Lett. 2016, 19, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.L.; Fagundes, M. Seed Size as Key Factor in Germination and Seedling Development of Copaifera langsdorffii (Fabaceae). Am. J. Plant Sci. 2014, 05, 2566–2573. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Savage, V.M.; Allen, A.P.; Gillooly, J.F. Allometry and Metabolic Scaling in Ecology. In Encyclopedia of Life Sciences; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-0-470-01617-6. [Google Scholar]
- Carta, A.; Bottega, S.; Spanò, C. Aerobic Environment Ensures Viability and Anti-Oxidant Capacity When Seeds Are Wet with Negative Effect When Moist: Implications for Persistence in the Soil. Seed Sci. Res. 2018, 28, 16–23. [Google Scholar] [CrossRef]
- Wiebach, J.; Nagel, M.; Börner, A.; Altmann, T.; Riewe, D. Age-dependent Loss of Seed Viability Is Associated with Increased Lipid Oxidation and Hydrolysis. Plant Cell Environ. 2020, 43, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Roach, T.; Nagel, M.; Börner, A.; Eberle, C.; Kranner, I. Changes in Tocochromanols and Glutathione Reveal Differences in the Mechanisms of Seed Ageing under Seedbank Conditions and Controlled Deterioration in Barley. Environ. Exp. Bot. 2018, 156, 8–15. [Google Scholar] [CrossRef]
- Triboi, E. Environmentally-Induced Changes in Protein Composition in Developing Grains of Wheat Are Related to Changes in Total Protein Content. J. Exp. Bot. 2003, 54, 1731–1742. [Google Scholar] [CrossRef] [PubMed]
Population | Increasing Metabolism Time (IMT) Hours | The Inverse Time to 50% of the Seeds Reaching 50% Oxygen Level (Hours) | Individual Seed Area under the Curve to 50% Oxygen Level (Hours) | Relative Germination Time for Seeds (RGT), Hours |
---|---|---|---|---|
BBFL | 28.17 | 137.77 | 111.23 | 290.08 |
DWFL | 28.40 | 141.52 | 118.22 | 343.28 |
FCFL | 25.50 | 132.92 | 105.83 | 249.39 |
FPFL | 26.10 | 119.02 | 96.21 | 249.09 |
HIFL | 29.70 | 152.81 | 128.09 | 383.43 |
VEFL | 27.86 | 143.02 | 117.99 | 318.05 |
Population | Ki | 1/-Sigma | p50 | |
---|---|---|---|---|
BBFL | 5.79 ± 0.11 | −0.02948 ± 0.0025 | 26.37 ± 1.92 a | Effect size. η2 = 0.90 Population 95% CI (0.76, 1.00) |
DWFL | 6.68 ± 0.63 | −0.06466 ± 0.0197 | 25.00 ± 1.83 a | |
FCFL | 5.62 ± 0.13 | −0.05317 ± 0.0068 | 11.45 ± 0.96 b | |
FPFL | 6.06 ± 0.09 | −0.04510 ± 0.0012 | 23.50 ± 1.69 a | |
HIFL | 5.90 ± 0.21 | −0.03501 ± 0.0072 | 25.46 ± 0.90 a | |
VEFL | 5.64 ± 0.15 | −0.04771 ± 0.0085 | 13.18 ± 0.87 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egesa, A.O.; Davidson, M.T.; Pérez, H.E.; Begcy, K. Biochemical and Physical Screening Using Optical Oxygen-Sensing and Multispectral Imaging in Sea Oats Seeds. Agriculture 2024, 14, 875. https://doi.org/10.3390/agriculture14060875
Egesa AO, Davidson MT, Pérez HE, Begcy K. Biochemical and Physical Screening Using Optical Oxygen-Sensing and Multispectral Imaging in Sea Oats Seeds. Agriculture. 2024; 14(6):875. https://doi.org/10.3390/agriculture14060875
Chicago/Turabian StyleEgesa, Andrew Ogolla, Maria Teresa Davidson, Héctor E. Pérez, and Kevin Begcy. 2024. "Biochemical and Physical Screening Using Optical Oxygen-Sensing and Multispectral Imaging in Sea Oats Seeds" Agriculture 14, no. 6: 875. https://doi.org/10.3390/agriculture14060875
APA StyleEgesa, A. O., Davidson, M. T., Pérez, H. E., & Begcy, K. (2024). Biochemical and Physical Screening Using Optical Oxygen-Sensing and Multispectral Imaging in Sea Oats Seeds. Agriculture, 14(6), 875. https://doi.org/10.3390/agriculture14060875