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Abstract: Photosynthesis is one of the essential processes for life on the planet. Photosynthesis
cannot be measured directly because this complex process involves different variables; therefore, if
some variables of interest are integrated and measured, photosynthesis can be inferred through a
mathematical model. This article presents a fuzzy mathematical model to estimate photosynthesis.
This approach uses as input variables: Soil moisture, ambient temperature, incident radiation,
relative humidity, and leaf temperature. The fuzzy system was trained through data obtained from
experiments with jalapeño pepper plants and then validated against the LI-COR Li-6800 equipment.
The correlation coefficient (R2) obtained was 0.95, which is a higher value than some published
in the literature. Based on the Takagi-Sugeno method, the proposed model was designed and
implemented on the MATLAB platform using ANFIS (adaptive neuro-fuzzy inference system) to
determine the parameters, thus achieving a high-precision model. In addition, the fuzzy model
can predict photosynthesis at different temperature changes, soil moisture levels, and light levels.
The results of this study indicate the possibility of modeling photosynthesis using the fuzzy logic
technique, whose performance is much higher than other methods published in recent articles.

Keywords: fuzzy logic technique; infrared gas analyzer (IRGA); mathematical model; non-invasive
measurements; photosynthesis

1. Introduction

Photosynthesis is a physiological process by which plants convert light energy into
chemical energy to obtain sugar as a final product [1]. The photosynthesis of a leaf is
conditioned by more than 50 individual reactions, each one presenting its response to
each environmental variable. This photosynthetic rate can widely vary between days and
throughout seasons, due to environmental factors such as light and temperature. It can also
vary in the longer term during the coming decades as a response to increasing atmospheric
CO2 levels. The increase in CO2 and other greenhouse gases in the atmosphere can cause
global climate change. As can be understood, each of the aforementioned environmental
factors affects the photosynthesis rate differently, depending on the time scale.

From humanity’s point of view, photosynthesis is important because it produces food
and oxygen; therefore, it is often studied in its end products. Many of the methods for
inferring photosynthesis are invasive; they physically or chemically interfere with the plant,
altering its natural process during measurement. Noninvasive methods do not alter the
plant’s natural processes since there is no contact with the specimen [2].

Photosynthesis can be inferred through a mathematical model, which measures and
integrates variables of interest involved in this process. By describing the theory with a
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mathematical model and comparing the calculated results with experimental data, we can
judge whether the model describes the data well [3]. The study of mathematical modeling
focused on the importance of the photosynthetic process in the agricultural sector, since it is
a direct indicator of a plant’s health. Mathematical models can be classified into mechanistic
(white box), empirical (black box), and hybrid (gray box):

• Empirical models, also called black box models, mainly describe a system’s responses
by using mathematical or statistical equations without any scientific content, restric-
tions, or scientific principle. Depending on particular goals, this may be the best type
to build. Its construction is based only on experimental data and does not explain
dynamic mechanisms; this refers to the fact that the system’s process is unknown.

• Mechanistic models, also called white-box models, provide a degree of understanding
or explanation of the modeled phenomena. The term “understanding” implies a causal
relationship between quantities and mechanisms (process).

• An intermediate model is classified as the semi-empirical or semi-mechanistic model
between the black box and white box models. These models are also called gray box or
hybrid models; they consist of a combination of empirical and mechanistic models [2].

There are different mathematical models related to biochemical, physiological, and
physical variables that estimate photosynthesis at the leaf, individual plant, or plant
community level. These models require adequate calibration, and most are based on
Farquhar et al.’s model [4–17]. Unfortunately, the parameters in the Farquhar et al. [4]
model are difficult to estimate, since they use several biochemical reactions and thus use
invasive measurement techniques for plants. Another disadvantage is that it involves
a long and complex mathematical calculation (Equation (1)), which is not favorable for
implementation in measurement electronic systems.

A = VCmax
C − Γ∗

C + Kc

(
1 − O

Ko

) − Rd (1)

where A is CO2 assimilation, VCmax is the maximum carboxylation rate, C is carbon dioxide
in the leaf, Γ∗ is the CO2 partial pressure for the compensation of oxygenation and carboxy-
lation reactions, Kc is the Michaelis constant for carboxylation, Ko is the Michaelis constant
for oxygenation, O is oxygen in the leaf, and Rd is dark respiration.

In recent years, a wide variety of trends and innovative practices have emerged that
have revolutionized agriculture [18]. Recently, researchers have developed models in the
field of soft computing, providing a new opportunity to model complex systems such as
photosynthesis. As a promising solution, many current works use artificial intelligence as
a regression method to model phenomena from experimental data collected from repre-
sentative tests. In particular, fuzzy modeling is an artificial intelligence tool with a simple
structure, designed to extract the knowledge of an expert and describe it with a mathe-
matical model naturally and intuitively [19]. Dubois et al. [20] state that fuzzy logic is like
a tool to model sets with poorly defined or soft boundaries. A fuzzy system transforms
information in linguistic terms into real numbers and vice versa. A fuzzy model offers
essential advantages since it allows the representation of a natural system in how humans
perceive it; therefore, it is easily understandable. Furthermore, it is possible to modify it to
incorporate new phenomena. If its behavior differs from what is expected, it is usually easy
to determine which rule/term should be changed and how. For these reasons, fuzzy logic
often turns out to be among the best options, because, as Lotfi Zadeh, considered the father
of fuzzy logic, once pointed out: “In almost every case you can build the same product
without fuzzy logic, but fuzzy is faster and cheaper” [21].

Systems with uncertainty, lack of information, complicated modeling, or ill-defined
processes use fuzzy models. Fuzzy models have the advantage of not containing math-
ematical equations or conventional logical formulas; instead, these models use simple
rules based on fuzzy logic to describe a model in a linguistic way [22]. As a result, fuzzy
modeling describes the behavior of a system using natural language. Specifically, it would
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explain the procedure using fuzzy quantities expressed in numbers or fuzzy sets associated
with a linguistic label. These sets are associated using fuzzy control rules derived from a hu-
man operator’s experience and engineering knowledge, mainly based on their qualitative
understanding of the target system. This approximation resembles an expert system [23],
which is considered a black box mathematical model [21]. Thus, fuzzy modeling allows re-
searchers to build mathematical models at breakneck speed, focusing on the “what” rather
than the “how” [19]. For these reasons, it is possible to model biological processes, such as
photosynthesis, using fuzzy logic. Although to be estimated, photosynthesis depends on
various factors such as light intensity, assimilated carbon dioxide (CO2), hydrogen from
water, nutrients, minerals, and temperature, among others.

In previous studies, Center and Verma [24] focused on developing a fuzzy model to
predict the tomato crop canopy’s total photosynthesis (TotPHT). The fuzzy model uses
qualitative relationships to describe the effects of temperature, carbon dioxide concentration,
and light intensity on three canopy layers to determine TotPHT. The Center and Verma
model [24] was compared with the experimental data, obtaining an R2 value of 0.947. These
results indicate that fuzzy logic can provide another possibility for modeling cultivation
processes. Valenzuela et al. [25] developed an adaptive neuro-fuzzy inference system
to predict the photosynthetic rate of the lettuce crop as a function of temperature, light
intensity, and CO2. Thus, generating the rules for fuzzy logic, where the inputs are the
outputs of the trained neural network. Based on the result, the system was able to predict
the photosynthetic rate of the lettuce crop based on the three input parameters. The error
rate found in the ANFIS (adaptive neuro-fuzzy inference system) model was approximately
2.7843 × 10−5. As can be seen in the literature, fuzzy models have been used effectively in
optimizing photosynthesis parameters, producing high crop yields.

Capsicum annuum L. “Don Benito” pepper plants (commonly known in the area as
Jalapeño pepper) are the most widespread and cultivated species in subtropical and tem-
perate countries. Jalapeño peppers are produced throughout the year and are grown
throughout the world. These plants are primarily used for food preparation due to their
flavor and nutritional properties, but they are also used in the pharmaceutical, cosmetic,
and military industries worldwide [26,27].

This article presents a mathematical model of photosynthesis in jalapeño pepper plants
using fuzzy logic as a function of soil moisture (SM), ambient temperature (AT), incident
radiation (R), relative humidity (HR), and leaf temperature (LT). Each of these variables can
be measured using non-invasive techniques, allowing measurements to be stress-free.

2. Materials and Methods
2.1. Data Collection and Experimental Setup

The present study used Jalapeño pepper plants to maintain similarities between the
analytes regarding average age, size, height, and nutrition; all plants were grown under
the same conditions. The plants had 13 h of light and 11 h of darkness per day, at an
average temperature of 28 ◦C, in plastic pots. Nine plants in the 8-leaf stage were used
for the experimentation. The experiment used three leaves per plant with a size of 2 cm2.
The experiments were carried out between 12:00 p.m. and 7:00 p.m. on consecutive
days with different percentages of soil moisture: three plants at 100%, three plants at
50%, and three plants at 20%; where 100% corresponds to field capacity in the soil, and
20% corresponds to the level just before the wilting point. In contrast, 50% corresponds
to a midpoint [28]. Regarding ambient temperature, the levels implemented were 30,
28, 26, 24, 22, and 20 ◦C, since at higher or lower temperatures, problems are generated
in the physiological processes in plants [29]. Based on the experimentation carried out
by Espinosa et al. [30], before the measurement sessions, each plant must be subjected
to a stabilization process. The stabilization process consists of placing the plant in a
completely dark chamber, with the corresponding air temperature for the treatment, for
30 min. Therefore, the experiment used 7 levels of incident radiation (the applied light
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intensity ranged from 0.50 to 1000 µmol m−2s−1, with increments of 200 µmol m−2s−1). In
total, 6 repetitions were carried out for each temperature level.

Gas analysis, also called IRGA (infrared gas analysis system), is the most referenced
technique for commercial and research applications worldwide in the estimation of photosyn-
thesis [16,17,30–33]. Due to the importance and popularity of this method [26,27,30,32–36],
we used LI-COR Li-6800 [10] as a validator to obtain the data of the variables of interest
and the estimation of photosynthesis.

Figure 1 shows the general methodology of our experiment.
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Figure 1. Methodology of experimentation with jalapeño pepper plants for data collection with
the LI-COR Li-6800 photosynthesis measurement equipment. Methodology based on reference
experimentation [37].

2.2. Fuzzy Modeling

Among the soft computing methodologies, the ones that currently have the most
significant relevance are fuzzy logic and neurocomputing, which lead to neuro-fuzzy
systems. Within fuzzy logic, these methods are essential to induce rules from observations,
allowing the creation of fuzzy systems from experimental observations. The main objective
of this study is to predict the variation of the photosynthetic rate in chili plants through a
fuzzy mathematical model. The proposed model is based on the following input variables:

• Soil moisture (SM). It influences the health of plants by providing the conditions
required to transport nutrients from the roots to the stems, leaves, and fruits [38,39].

• Ambient temperature (AT). It affects plant temperature, although they are generally
different [16,39].

• Incident radiation (R). Also known as light intensity (LI), it is a reference for climatic
conditions and a key factor for internal processes such as photosynthesis, temperature
regulation, and transpiration. It is the primary source of energy for photosynthesis [36].

• Leaf relative humidity (RH). It is a plant response related to its transpiration [36].
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• Leaf temperature (LT). It is one of the main factors related to photosynthesis. The
photosynthetic capacity decreases as the temperature of the leaves increases due to an
increase in the respiration rates of the plant. Therefore, the enzymes are inactivated,
reducing carbon fixation [30].

The mathematical model presented in this study uses fuzzy logic techniques since it
is conceptually easy to understand, is flexible with any given system, tolerates inaccurate
data, and models non-linear functions of arbitrary complexity. The goal of fuzzy logic is to
map an input space to an output space, and the primary mechanism for doing this is a list
of (if -then) statements called rules [21].

According to Wang [40], fuzzy systems are those systems that contain relations with
terms and fuzzy logic. The fuzzy system, known as Takagi-Sugeno, was proposed in 1985.
In this system, the rules are the main distinction. A typical rule in a fuzzy Sugeno model is
shown in Figure 2.
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Figure 2. Block diagram of the Takagi–Sugeno fuzzy model rule, with two inputs: Input 1 is x and
Input 2 is y, the associated rule weights W, and the output level Z.

According to Figure 2, if Input 1 is x and Input 2 is y, then the output is Equation (2):

Z = ax + by + c (2)

For a zero-order Sugeno model, the output level Z is a constant (a = b = 0). Each rule
weights its output level Zi by the rule’s firing power, Wi. The final result of the system
(Equation (3)) is the weighted average of all the results of the rule, calculated as:

Fuzzy system output =
∑N

i=1 Wi Zi

∑N
i=1 Wi

(3)

where N is the number of rules, Wi is the normalized degree of rule contribution, and Zi is
the output level [21].

The fuzzy photosynthesis model in jalapeño peppers used Equation (3) since it is
flexible with any given system. The resulting model was a Sugeno-based model of sixth
degree. The output level (Z) is a constant multiplied by each rule’s normalized degree of
contribution (W). Finally, the parameters allowed us to calculate the weighted average of
the system’s output.

Figure 3 shows the diagram of the fuzzy model for estimating photosynthesis in
jalapeño pepper, composed of the input variables SM, AT, R, RH, and LT, as explained
at the beginning of Section 2.2. In addition, the model includes an input variable P-1 to
generate feedback and thus establish a dynamic model that depends on the previous state
of photosynthesis.
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2.3. Methodology for the Fuzzy Model

This research used a systematic approach. The steps to develop the fuzzy model of
jalapeño pepper photosynthesis based on the Takagi-Sugeno model are as follows:

1. Model training. Once the input/output data from the experimentation have been
collected, we must start by loading a training data set. This set must be 85% of the
total input/output data collected [41]. Any dataset you load must be a matrix, with
the data arranged as column vectors and the output data in the last column. Therefore,
the ANFIS tool is used to train the FIS (fuzzy inference system) model and can emulate
the training data presented to it by modifying the parameters of the membership
function according to a chosen error criterion.

2. Validation of the model. For this task, the validation used a different data set than the
ones used in the training. In this case, it was 15% of the total input/output data [41].
Such a dataset was tested by the MATLAB function evalfis and the MATLAB code
generated with our proposal.

3. Inference system. The fuzzy logic toolbox GUI tool is helpful for building, editing,
and viewing the FIS model generated in step 2.

4. Fuzzy logic designer (fuzzification). Declare the input and output variables of the
fuzzy inference system.

5. Membership functions. Define the forms of all membership functions associated with
each input and output variable for the entire fuzzy inference system.

6. Fuzzy rules. Build the rule statements that define the behavior of the system.
7. Fuzzy inference diagram. Use the rule viewer as a diagnostic to see how the shapes of

individual membership functions influence the results.
8. Simulation. After obtaining the inference system, simulate the fuzzy model based on

Equation (3) and compare its output with the outputs of the LI-COR Li-6800 apparatus
for model fitting.

9. Verification. Compare the output of the implemented fuzzy model with the results of
the simulations using experimental data.

To train an FIS, you must start by loading the training dataset. Therefore, specify a
structure for the FIS model. Once the software obtains the structure of the model, it begins
to train the FIS. In this step, we chose the hybrid optimization method, which consists of
a combination of least squares and the backpropagation gradient descent method. The
software stops training if it reaches the designated epoch number or if it reaches the
error target.
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A FIS comprises inputs, a knowledge base, inference rules, and outputs. For the
Takagi–Sugeno model, membership functions that can be triangular, and Gaussian, among
others, are used as inputs. Each entry should have as few membership functions as possible
to speed up processing. The knowledge base contains the information necessary for the
inference rules to decide the weight given to each input value. Finally, the output will be
the weighted average of the inputs.

3. Results
3.1. Results of Data Collection and Experimental Setup

Forty-eight response curves were obtained and analyzed from the measured data.
Figure 4 shows that jalapeño pepper tends to photosynthesize more at temperatures of 24 ◦C,
with 100% soil moisture, because these are the most suitable environmental conditions
for these plants. The negative behavior of photosynthesis is the result of the absence of
light, because photosynthesis is not active. This reaction allows the start of a process called
photorespiration. Photorespiration is a process contrary to photosynthesis, since instead of
fixing carbon, it causes carbon loss [42].
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Figure 4. The behavior of photosynthesis in jalapeño pepper plants at different levels of light
intensity, ambient temperature, and soil moisture. (a) Soil moisture 100%, (b) soil moisture 50%,
(c) Soil moisture 20%.

Leaf temperature is one of the main factors related to photosynthesis and is closely
related to ambient temperature; Figure 5 verifies this. Then the ambient temperature and
the leaf temperature have a proportional relationship, since as the ambient temperature
increases, the leaf temperature also increases.
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Regarding the leaf, environmental factors such as those of the plant influence transpira-
tion efficiency. Relative humidity is a plant response related to its transpiration. A reduction
in relative humidity causes an increase in transpiration and a decrease in photosynthesis,
which reduces transpiration efficiency [43]. Therefore, at high air temperatures, relative
humidity decreases, thus reducing transpiration efficiency (Figure 6).
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3.2. Fuzzy Modeling Results

The design of the present photosynthesis model, which implements fuzzy logic,
consists of two membership functions for each input variable with an output of constant
type. The FIS model with two membership functions was chosen because, if the number
of membership functions increases, then the number of rules that define the system’s
behavior also increases, resulting in the generation of a fuzzy system that is more complex
to implement (which is undesirable). After testing several options and achieving the
minimum training error, the chosen number of training epochs was 300, since the tolerance
to training error was zero at this level. The mean square error (RMSE) [43] of the training
data set at each epoch was 1.0129. Figure 7 shows the structure of the resulting model. The
ANFIS application graphical interface generates the FIS parameters automatically. In our
case, the result of the method yielded a structure of six input variables with two membership
functions each, one output variable, and a total of 64 fuzzy rules.
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Figure 7. Structure of the FIS model to estimate photosynthesis, with 6 input variables with two mem-
bership functions each, one output variable and a total of 64 fuzzy rules, using the ANFIS tool
in MATLAB.

Figure 8 shows the diagram of the fuzzy inference system loaded in the neuro-fuzzy
designer tool with the names of each input variable on the left and the output variable on
the right. In the case of this investigation, the FIS membership functions associated with
the input variables are triangular. This triangular function is a set of three points that form
a triangle, so it has the advantage of simplicity.
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Figure 8. Diagram of the fuzzy inference system, which consists of the input variables (SM, AT, R, LT,
RH, P-1), the Sugeno model, and the output (the estimation of photosynthesis).

The rule viewer allows users to experiment with individual membership features to
select the best option. In Figure 9, each column is an input variable, each row is an inference
rule, and the yellow plots show the output membership functions corresponding to each
rule’s antecedent. The last column (blue graph) represents the aggregate weighted decision
for the given inference system. This decision will depend on the input values for the system.
Also, Figure 9 shows the variables and their current values at the top of the columns. There
is a text field at the bottom left where you can enter specific input values for the FIS to
perform tests and verify the operation of the model.
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Figure 9. Rule viewer that interprets the entire fuzzy inference process, applying specific test values
to the input variables, and verifying the operation of the model.

Figure 10 shows the FIS file created with the support of the ANFIS tool. This figure
describes part of the ranges of each variable, the functions, the constant outputs, and
the rules.

Agriculture 2024, 14, 909 10 of 18 
 

 

 
Figure 9. Rule viewer that interprets the entire fuzzy inference process, applying specific test values 
to the input variables, and verifying the operation of the model. 

 
(a) 

Figure 10. Cont.



Agriculture 2024, 14, 909 11 of 17Agriculture 2024, 14, 909 11 of 18 
 

 

(b) 

 
(c) 

Figure 10. FIS file generated with the ANFIS tool. (a) Input parameters, (b) constant type output 
levels, (c) fuzzy system rules. 
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levels, (c) fuzzy system rules.
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ANFIS needs some hyperparameters to find the parameters of the FIS model. These
hyperparameters are the number of membership functions in each input, types of member-
ship functions in each input, training epochs, a constant or linear output, and training stop
error, among others. The literature suggests taking 85% of the data for training and the
remaining 15% for model validation to generate reliable models [41]. Figure 11 shows the
comparison graph between the LI-COR Li-6800 and the proposed FIS model. The statistical
analysis shows a correlation coefficient (R2) of 0.95.
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Figure 12 shows that the estimated photosynthesis obtained by the proposed fuzzy
system correctly fits the shape of the data obtained with the LI-COR Li-6800. The evaluation
from the experimentation with jalapeño pepper plants and the quantitative analysis of
the graphs shown in Figure 12 arise from comparing the measurements obtained with
the LI-COR Li-6800 equipment and the proposed fuzzy model. The statistical data show
a coefficient of determination (R2) of 0.95, proving that the fuzzy model for measuring
photosynthesis is a reliable option for estimating this variable in jalapeño pepper plants.
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4. Discussion

Estimating photosynthesis is not easy since many factors influence its approach. There
are many efforts to evaluate photosynthesis through different mathematical models [2]
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that allow us to contribute to this objective. One of the most prominent is the Farquhar
et al. model [4,44], the pioneer in estimating photosynthesis. The input variables used
for this photosynthesis estimation model in C3 species are ambient temperature, CO2
concentration in the leaf, light intensity, and oxygen concentration in the leaf. Unfortunately,
the parameters in Farquhar et al.’s model are difficult to estimate because they use various
biochemical reactions and also use invasive measurement techniques for plants. Another
disadvantage is that it involves a long and complex mathematical calculation, which is
unfavorable for its implementation [2].

Liu et al. [45] present a model of the photosynthetic light response of the Olgensis L.
tree canopy; it was constructed by linking leaf temperature, vapor pressure deficit, leaf mass
per area, and the relative depth in the cup. The model performed well, with a coefficient of
determination (R2) value of 0.883; however, it showed some weakened physiological and
biochemical processes during photosynthesis. The LI-COR Li-6400 portable photosynthesis
system validated this model.

Sánchez et al. [46] analyzed the influence of culture conditions (irradiation, tempera-
ture, pH, and dissolved oxygen) on photosynthesis in microalgae. It was possible to adjust
the model to the experimental results in the range of culture conditions tested, and they
were validated using the data obtained by the simultaneous modifications of the variables.
The Statgraphics Centurion XVI software package analyzed the data in which non-linear
regression fitted the experimental data to the model. This model presented a determina-
tion coefficient (R2) of 0.873 between experimentally measured photosynthesis and the
approximate one. The mathematical calculation regarding this model is simple, unlike
those mentioned previously; despite this, it presents a lower coefficient of determination
than the model presented in this document.

In Shimada et al.’s study [47], an empirical photosynthetic model was constructed,
which was the product of variables such as photosynthetic photon flux density, air tem-
perature, soil temperature, vapor pressure deficit, soil water content, and age to estimate
the photosynthetic rate of P. pumila. The model analysis used the data recorded by the
LI-COR Li-6400. The non-linear regression analysis estimated all the constants, obtaining a
correlation coefficient (R2) of 0.86. The disadvantage is that the model developed in this
study is not sufficient to predict photosynthetic production under climate change due to
acclimatization to long-term temperature changes.

García et al. [37] present a black-box mathematical model to estimate net photosyn-
thesis and its digital implementation. The model uses variables such as leaf temperature,
relative leaf humidity, and incident radiation. The model was elaborated with data obtained
from Capsicum annuum L. plants and calibrated using genetic algorithms. According to the
evaluation, the correlation coefficient is greater than 0.98, resulting from the comparison
with the LI-COR Li-6800 equipment. The digital implementation consists of an FPGA
(field programmable gate array) for data acquisition and processing, as well as a Rasp-
berry Pi for Internet of Things (IoT) and in situ interfaces; thus, generating a useful net
photosynthesis measurement device with non-invasive sensors. García et al. [37] present
an innovative, portable, and low-scale way to estimate the photosynthetic process in vivo,
in situ, and in vitro, using non-invasive techniques. The mathematical model referring
to García et al.’s [37] methodology demonstrated a good correlation with photosynthetic
measurements from gas analysis; however, it is possible to refine it. The photosynthesis
process involves a large number of variables, of which two have an important influence:
soil humidity and ambient temperature. However, these two variables were not considered
in the model proposed by García et al. [37], since it was developed under controlled condi-
tions of constant ambient temperature and constant soil humidity. This scenario does not
occur in the natural habitat of plants. Therefore, this model behaves unstable when altering
such environmental conditions. Due to this, the fuzzy model that we present in this article
results in an improvement of the mathematical model developed by García et al. [37]. It
is important to remark that the authors of this article are aware that the proposed model
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does not attempt to cover all the steps of this important and complex process, which is
photosynthesis, but does attempt to simplify it.

A helpful statistic to measure the global quality of a model is the coefficient of determi-
nation (R2) since it measures the proportion or percentage of variability in the experimental
data [2]. To interpret these coefficients, R2 should have a value close to 1. The models
previously described [4,45–47] proved to have an acceptable R2 (see Table 1); however,
their techniques for measuring the input variables are invasive, altering the species’ photo-
synthesis process. These models are also non-adaptive, which means that it is difficult to
add more functionality since it would imply starting the model generation from scratch.
In contrast, the fuzzy model presented in this document uses non-invasive techniques to
measure the variables of interest. This approach may allow us, in future experiments, to
move away from invasive measurements of photosynthesis and map the real physiological
parameters of interest. Non-invasiveness is expected to greatly reduce stress on plants
during testing [37]. The non-invasive techniques that can be used to measure the variables
of interest are the following:

• Soil moisture (SMA). Some sensors measure soil moisture by the variation in its
conductivity or capacitance. These sensors are considered semi-invasive since, for
measurement, they have direct contact with the soil but not necessarily with the plant.

• Ambient temperature (AT). This variable can be measured using different kinds of
sensors, for example bandgap, thermocouple, or RTD (resistance temperature detector)
sensors. The measurement only requires bringing the sensor a considerable distance
from the plant.

• Light intensity (LI). The measurement device for this variable can be a light sensor
that combines a configurable silicon photodiode and a current to frequency converter
in an integrated circuit. The measurement technique does not require any contact with
the plant since, to detect the light intensity, it only needs to be placed in an area close
to the light.

• Leaf relative humidity (RH). A capacitive sensor element is used to measure the
relative humidity around the leaf. The measurement technique consists of bringing
the sensor closer to a suitable distance to avoid stress on the plant.

• Leaf temperature (LT). The thermopile is a transducer that takes the IR light radiated
by different bodies (which is proportional to the temperature of the body) and converts
it into a voltage. The thermopile is a sensor that absorbs infrared energy from an object
at wavelengths between 4 µm and 16 µm. In this way, thermopiles are non-invasive
temperature sensors.

Table 1. Comparison of the proposal with other photosynthesis estimation works.

Reference R2 Invasive Inputs

Farquhar et al. [4] - Yes Ambient temperature, CO2 concentration in the leaf, light
intensity, and oxygen concentration in the leaf.

Liu et al. [45] 0.883 Yes Light, leaf temperature, vapor pressure deficit, leaf mass per area,
and relative depth in the canopy.

Sánchez et al. [46] 0.873 Yes Irradiation, temperature, pH, and dissolved oxygen.

Shimada et al. [47] 0.86 Yes Photosynthetic photon flux density, air temperature, soil
temperature, vapor pressure deficit, soil water content, and age.

García et al. [37] 0.98 No Leaf temperature, relative leaf humidity, and incident radiation.

Proposed strategy 0.95 No Soil moisture, ambient temperature, leaf temperature, relative
humidity, and incident radiation.

Furthermore, the developed model used fuzzy logic because the mathematical con-
cepts behind fuzzy reasoning are elementary, it is easy to incorporate more functions
without having to start over from scratch, it tolerates inaccurate data, it models non-linear
functions of arbitrary complexity, can be combined with conventional control techniques,
and is based on the qualitative description structures used in everyday language [40].
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The developed fuzzy model can predict photosynthesis at different temperatures, soil
moisture levels, and light levels. The fuzzy model adequately predicted the output values
of the validation dataset (Figure 11).

The comparison made in Figure 12 shows that the estimation of photosynthesis in
the jalapeño pepper plant, obtained using the fuzzy model, adequately approximates the
behavior of the photosynthesis estimation from LI-COR Li-6800.

The statistical data in Table 1 prove that the fuzzy model for measuring photosynthesis
is a reliable option for estimating this variable in jalapeño pepper plants.

The fuzzy system implemented addition, multiplication, division, and if statements.
These operations allow the model to be implemented in several embedded electronic
systems, such as microcontrollers, FPGAs, or others.

5. Conclusions

This study presents a mathematical model of photosynthesis in jalapeño pepper plants
using fuzzy logic as a function of soil moisture (SM), ambient temperature (AT), incident
radiation (R), relative humidity (RH), and temperature of the leaf (LT). These variables can
be measured using non-invasive techniques, avoiding stress generation in the plant. It is
essential to highlight that the relative humidity involved in the estimation of photosynthesis
in the fuzzy model is a variable that has not been considered in the development of previous
models [2], which implies something atypical in the literature.

An experimental study with jalapeño pepper plants (Capsicum annuum L.) proved that
the model yielded the expected results. The proposed model was referenced and validated
with measurements using the LI-COR Li-6800 apparatus based on a gas analysis method,
which is the most referenced principle for measuring photosynthesis in commercial and
research activities [16,32,33,48].

The proposed model was resolved from the measurements of nine plants. The ex-
perimentation consisted of three levels of soil moisture (100, 50, and 20%), six ambient
temperature levels (30, 28, 26, 24, 22, and 20 ◦C), and seven light intensity levels. (0, 50, 250,
450, 650, 850 y 1000 µmol m−2s−1).

The proposed model reached a correlation coefficient (R2) of 0.95 compared to the
LI-COR Li-6800, which means that the fuzzy model correctly follows the form of photosyn-
thesis measured experimentally in the plants of the case study. It can also be noted that this
R2 statistic obtained is better compared to other models reported in the literature (Table 1).

The results of this study demonstrate the effectiveness of modeling photosynthesis
using the fuzzy logic technique. Fuzzy logic is characterized by simplicity, robustness, and
low solution costs. Therefore, in the future, it could play an increasingly important role in
the conception and design of systems whose performance is superior to that of systems
designed by conventional methods.

The present development has potential use in the agricultural and greenhouse sectors,
aligning with strategic projects, as well as highly important economic activities, both at the
national and state level.
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