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Abstract: Accurately segmenting grape clusters and detecting grape varieties in orchards is beneficial
for orchard staff to accurately understand the distribution, yield, growth information, and efficient
mechanical harvesting of different grapes. However, factors, such as lighting changes, grape overlap,
branch and leaf occlusion, similarity in fruit and background colors, as well as the high similarity
between some different grape varieties, bring tremendous difficulties in the identification and seg-
mentation of different varieties of grape clusters. To resolve these difficulties, this study proposed an
improved Mask R-CNN model by assembling an efficient channel attention (ECA) module into the
residual layer of the backbone network and a dual attention network (DANet) into the mask branch.
The experimental results showed that the improved Mask R-CNN model can accurately segment
clusters of eight grape varieties under various conditions. The bbox_mAP and mask_mAP on the
test set were 0.905 and 0.821, respectively. The results were 1.4% and 1.5% higher than the original
Mask R-CNN model, respectively. The effectiveness of the ECA module and DANet module on other
instance segmentation models was explored as comparison, which provided a certain ideological
reference for model improvement and optimization. The results of the improved Mask R-CNN
model in this study were superior to other classic instance segmentation models. It indicated that
the improved model could effectively, rapidly, and accurately segment grape clusters and detect
grape varieties in orchards. This study provides technical support for orchard staff and grape-picking
robots to pick grapes intelligently.

Keywords: grape; instance segmentation; Mask R-CNN; efficient channel attention; dual attention
network

1. Introduction

As deep learning technology continues to evolve, deep learning shows great prospects
in the field of agriculture, which can effectively improve agricultural productivity and
promote economic growth [1]. For example, accurate detection and segmentation of fruits in
complex orchard environments can realize automatic growth monitoring, yield estimation,
fruit grade evaluation, and disease diagnosis of fruits. Efficient picking, cultivation, and
growth monitoring of different grape varieties in complex orchard environments have a
certain degree of difficulty. The similarity of some varieties of grapes leads to the difficulty
in recognizing the grape varieties. Therefore, a more rapid and accurate method is explored
to help the staff and grape-picking robots segment and identify the grape clusters in the
orchard, upgrading the productiveness and quality of the orchard operations.

Researchers have carried out a lot of studies on fruit segmentation and classification,
including grape. The traditional machine learning theory has been studied in the tasks
of segmentation and classification of grapes for a long time. Maleki et al. proposed a
robust algorithm based on an artificial neural network and genetic algorithm. It used
color features as the basis of vineyard image segmentation. The grape clusters were
segmented from foliage and background by using the near-harvested color features [2].
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Liu et al. [3] used an image processing algorithm combining color and texture information
to segment grapes. The proposed algorithm was combined with support vector machine
to segment the grapes in the field for yield estimation. Chauhan et al. [4] used an open-
source computer vision library and random forest algorithm to count, detect, and segment
the blue grape clusters. However, the abovementioned grape image feature extraction
methods have limitations such as generalization ability. Due to the complexity of the
growing environment of grapes in the orchard, it is accompanied by natural factors such
as different light intensities, fruit overlap, branch and leaf shading, etc. When there are
many varieties of grape clusters in the orchard, accurate segmentation and classification
of grape clusters will be greatly hindered.

As one of the symbolic algorithms of deep learning, convolutional neural network,
has been successfully applied to the important aspects of fresh fruit production [5]. The
convolutional neural network is the primary deep learning framework for image classifica-
tion. It has many applications for the tasks of categorizing, quality control, and detection of
fruits [6]. Deep learning technology has been broadly used in segmenting and classifying
fruits due to its high precision and fast speed. In contrast to conventional image processing
methods, deep learning technology directly takes the image as input and automatically
performs feature learning and feature extraction [7]. Mohimont et al. [8] segmented white
grape varieties through existing machine learning-based algorithms and encoder–decoder
segmentation models such as U-Net. Santos et al. proposed a proximal sensing method
combining cameras and computer vision to detect, track, and count wine grapes in vine-
yards. They also proposed a fruit counting method that used three-dimensional correlation
to integrate and locate the detections in space, avoiding multiple counts and solving the
occlusions [9]. Wang et al. proposed a new fruit segmentation method called SE-COTR
to realize precise and real-time segmentation of green apples. This method effectively
solved the problem of low precision and over-complexity of the segmentation model in
which the fruit has the same color as the background [10]. Wang et al. [11] proposed a
Transformer-based mask region-based convolution neural network (R-CNN) model for
tomato detection and segmentation. The results show that this method could not only
accurately detect and segment tomatoes, but also effectively identify tomato varieties and
maturity stages. In the research of accurately segmenting grapes and detecting their matu-
rity, Li et al. [12] proposed an improved Mask R-CNN algorithm. It built a grape clusters
segmentation and maturity detection model by integrating different attention modules
such as the squeezing and excitation attention (SE) module, etc. In summary, it can be
seen that convolutional neural networks have a lot of applications in fruit recognition,
segmentation, and classification tasks.

Techniques for segmentation and recognition of images mainly include semantic
segmentation and instance segmentation. The goal of semantic segmentation methods is to
classify each pixel in the image into a specific object class without caring about the specific
instances of each object in the picture. Instance segmentation is to classify each pixel of each
object while detecting and locating objects and generate different masks for different objects
in the picture. In the complex vineyard environment, there are many overlapping grape
fruits. Therefore, instance segmentation is needed to accurately segment different grape
clusters. Mask R-CNN [13] is one of the most classical instance segmentation methods.
It has been widely used in target recognition and segmentation of agricultural fruits and
other related tasks. For example, Wang et al. [14] introduced the attention mechanism and
deformable convolution into the residual blocks in the backbone network to enhance the
ability of feature extraction. Jia et al. [15] replaced the backbone network with MobileNetV3
to speed up the model and improve the precision of the Mask R-CNN model. Yu et al. [16]
introduced the Mask R-CNN network into a strawberry-picking robot to detect strawberry
maturity. These studies all had achieved good results.

In the image segmentation task, the introduction of the attention module in the
network can effectively enhance the network’s ability to select and extract features. In
recent years, some scholars have applied the relevant attention modules to the segmentation
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task of grapes. Chen et al. proposed an improved algorithm based on the Pyramid Scene
Parsing Network, which embedded the convolutional block attention module (CBAM)
attention module and the dilated convolution into the PSPNet model’s network. The
improved PSPNet model can segment grape bunches of different varieties quickly and
accurately in a natural field environment [17]. Shen et al. proposed a new backbone
network called ResNet50FPN-ED to improve the segmentation performance of Mask R-
CNN. The effective channel attention module and dense upsampling convolution were
introduced into ResNet50FPN-ED. It provides a reference for precise grape cultivation [18].
Therefore, when improving the Mask R-CNN network model, it is advisable to consider
optimizing the network that fuses high-level and low-level features, the detection head,
and the segmentation head.

The main objective of this study was to provide a fast and accurate effective method
for detecting and segmenting different kinds of grapes in complex orchard environments.
Based on the successful studies of previous researchers, an improved Mask R-CNN method
for grape cluster instance segmentation was proposed. The main objectives to be accom-
plished are as follows:

(1) The ECA attention module was integrated into the ResNet-50 backbone network
of Mask R-CNN to strengthen the feature selection and extraction capabilities of
the network.

(2) To further improve the precision of segmentation, the dual attention network (DANet)
was introduced at the head of the mask to enhance the segmentation capability.

(3) In this study, a homemade orchard grape dataset was used to validate the validity
of the modified Mask R-CNN model and compare it with other classical instance
segmentation models.

(4) This study explored the impact of ECA and DANet modules on other classic instance
segmentation models, providing some reference for model improvement.

2. Materials and Methods
2.1. Image Dataset

In this study, the grape images were collected in a local orchard in Huzhou, Zhejiang
Province, China, and were captured using a mobile phone (Redmi Note 12 Turbo, Xiaomi
Communication Technology Co., Ltd., Shenzhen, Guangdong Province, China). The image
acquisition time was 12:00 to 14:30. The image resolution was 3472 × 4624 pixels, and
they were saved in JPG format. To improve computational effectiveness and decrease
training time, the images were uniformly scaled to 1024 × 1024 pixels by the region
interpolation method of the resize() function in OpenCV. The purpose of this study was
to identify and segment grape clusters in a complex orchard environment. The collected
grape dataset contains 8 varieties (based on the labels in the orchard). Some grape varieties
were very similar, and their colors were similar to the background color. Even with manual
recognition, they were difficult to accurately identify in a short period. One issue that
should be addressed was that the maturity degrees of these grape varieties were different.
Therefore, this study attempted to identify similar types of grapes and other grape varieties
with similar colors to the growing environment.

A total of 1166 grape pictures were taken in this study. Due to the factors such as the
unstructured environment of the orchard and weather, etc., these images were collected
under varying light, fruit overlap, branch and leaf shading, different shooting angles and
distances, etc.

2.2. Image Annotation and Preprocessing

The acquired grape images were labeled by the geometric annotation tool in the
LabelMe [19] software package 3.16.7. The annotated messages were saved in JSON
format in the file. The outline of grape clusters was annotated by the geometric annotation
tool using a series of points. The standard used in the annotation process was to create
a complete closed mask for every grape cluster in the image. The annotated instance
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objects were named according to the names of eight varieties of grapes, and the unmarked
part was regarded as the background. The images annotated in this study included a
variety of complex situations in the orchard environment, such as grape fruit overlap,
trunk branches and leaves occlusion, and background color similar to grape color, etc.
For different grape instance objects of an image, different IDs were added during naming
to distinguish them.

Due to the imbalance in the number of images between some grape varieties, and to
enrich the dataset and improve the generalization ability of the model, the original grape
data were enhanced by data augmentation. The imaging library [20] function was used
to process the original segmentation dataset by randomly adjusting the image contrast,
Gaussian blur, random horizontal flip, and random left–right rotation within 6◦. After
the above processing, the number of images of each grape species showed a relatively
balanced situation. The number of all images in the grape segmentation dataset after
data augmentation had increased from 1166 to 3944. The enhanced dataset was divided
into three parts in the ratio of 7:2:1 for training, validation, and testing sets. The specific
information is shown in Table 1.

Table 1. Grape segmentation dataset information for this study.

Category Number 1 Number 2 Training Validation Testing

Hongdiqiu 100 500 357 89 54
Jumeigui 160 480 345 94 41
Nantaihu 126 504 362 91 51

Xiahei 170 510 360 108 42
Xianfeng 160 480 321 98 61

Yalishanda 120 480 327 105 48
Yongyouyihao 170 510 353 107 50

Zaotian 160 480 335 97 48
Total 1166 3944 2760 789 395

Number 1 represents the number of original datasets. Number 2 represents the number of datasets after data
augmentation.

2.3. Grape Cluster Instance Segmentation Based on Improved Mask R-CNN

Mask R-CNN is an advanced model for image instance segmentation. Compared to
some traditional region-based convolutional neural networks, Mask R-CNN has a faster
training speed and achieves end-to-end object detection and instance segmentation tasks.
This end-to-end training approach helps the model learn features better and simplifies the
training process. For complex scenes like orchards, it has higher accuracy in segmentation
tasks and can accurately identify and segment different object instances in orchard images.
It is transformed and expanded based on the target detection network Faster R-CNN [21].
First, the RoiPool layer is replaced by the RoiAlign layer. The RoiAlign layer uses the
bilinear interpolation method to map the pixel values within the ROI to a fixed-size feature
map thus reducing the error. Then the mask branch that splits the object mask is added
to the prediction branch on the original Faster R-CNN architecture, which can realize
pixel-level mask segmentation. In this study, an improved grape cluster instance segmen-
tation method based on Mask R-CNN was presented to quickly and precisely segment
different kinds of grape clusters in the orchard. Firstly, the efficient channel attention (ECA)
module was incorporated into the ResNet-50 network. The purpose was to strengthen
the ability of network mining orchard fruit characteristics. Then, the DANet module was
introduced in the mask branch to improve the ability of fruit segmentation. The feature
maps obtained through the backbone network were input into the region proposal network
(RPN), and candidate regions were generated through the region proposal network. Then,
the feature was extracted from each candidate region through the RoIAlign layer to align
the feature with the input correctly. Finally, the grape clusters were classified, and the
boundary box regression was carried out through the full connection layer. Additionally,
the segmentation masks of the grape clusters will be created by a mask branch consisting
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of a fully convolutional network. Figure 1 shows the model architecture of the improved
Mask R-CNN for grape clusters instance segmentation. Detailed information is elaborated
in the following sections.
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2.3.1. Backbone Network

The role of the backbone network is to extract features from the input image so
that they can be fed into subsequent branches of the network to carry out related tasks.
In the feature mining process of the network, due to the continuous deepening of the
network depth, the model performance will gradually decline. And even the problem of
gradient disappearance or gradient explosion may occur. The deep residual network can
effectively solve such problems. Therefore, it is introduced into the Mask R-CNN model
for feature extraction.

In this study, the collected orchard grape pictures contained multiple varieties and
various complex environmental factors of the orchard. Inputting grape images into the
network will produce different layers of features, and the underlying features have richer
detailed information, such as the outline and color of the grape pictures. High-level
features have richer semantic information such as the category of grape pictures. However,
high-level features lose a lot of image detail information compared to low-level features.
Therefore, to better extract features of orchard grapes, the feature pyramid network [22]
is used based on ResNet-50 [23] to fuse the high-level and underlying features, to better
realize the feature extraction of feature maps with different scales.

In the complex environment of the orchard, the images of some of the eight grape
varieties had high similarity. In addition, fruit overlapping, branch and leaf shading, and
light changes in the orchard environment brought some problems to the detection and
segmentation of grape clusters. Therefore, the efficient channel attention module was
introduced to strengthen the extraction of effective feature information and inhibit the
extraction of unimportant features. It improved the robustness of the model for identifying
and segmenting grape clusters in different complex orchard environments. It was also
conducive to better identification of grape varieties. The modified backbone network
structure is shown in Figure 2.
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2.3.2. ECA

The ECA [24] module incorporates the strengths and compensates for the weaknesses
of the SE [25] module. The ECA module utilizes one-dimensional convolution to achieve
a local cross-channel interaction strategy without the need for dimensionality reduction.
Its structure is shown in Figure 3. First, the input feature map is subjected to the global
average pooling (GAP). Local cross-channel interactions for each channel of the feature
vector and next to it are then achieved by one-dimensional convolution. At the same time,
the interdependence between each channel is also obtained. The convolution kernel size k
is used to determine the extent of local cross-channel interactions, which is proportional to
the feature channel. It is adaptively selected by Formula (1). Among them, |x|odd represents
the nearest odd number of x, C refers to the channel dimension, and γ and b represents
relevant parameters. Finally, the channel weights after the activation function are then
multiplied with the original input feature map to obtain a more refined feature map.

ψ(C) =
∣∣∣∣ log2 C

γ
+

b
γ

∣∣∣∣
odd

(1)
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2.3.3. DANet

To further improve the precision of grape cluster segmentation in the orchard,
DANet [26] was introduced into the primitive mask head in this study. The DANet’s
architecture is shown in Figure 4. It is a dual attention network. By introducing the location
attention module and channel attention module, the modeling ability of global semantic
information and local detail information is enhanced to improve the segmentation perfor-
mance. It uses these two attention modules to separately obtain the spatial relationship
between feature maps at any two positions and the channel dependency relationship be-
tween channel maps. Finally, the outputs of both are summed to ascertain finer features,
which is helpful to obtain more accurate instance segmentation results.

Agriculture 2024, 14, 918 7 of 21 
 

 

architecture is shown in Figure 4. It is a dual attention network. By introducing the loca-
tion attention module and channel attention module, the modeling ability of global se-
mantic information and local detail information is enhanced to improve the segmentation 
performance. It uses these two attention modules to separately obtain the spatial relation-
ship between feature maps at any two positions and the channel dependency relationship 
between channel maps. Finally, the outputs of both are summed to ascertain finer features, 
which is helpful to obtain more accurate instance segmentation results. 

 
Figure 4. DANet network structure diagram. 

2.4. Grape Clusters Instance Segmentation and Loss Function 
The feature maps of five sizes outputted by the backbone network are inputted into 

the RPN network for candidate region screening. Then, the candidate areas of different 
sizes are mapped to the feature maps through the RoIAlign layer for alignment, so that 
accurate feature extraction can be performed in these areas. Next, the feature map output 
from the RoIAlign layer is fed into the three branch networks. The fully connected layer 
in the branch network is used for grape cluster localization and classification, while the 
fully convolutional layer is used to produce its instance mask. The loss function allows for 
the model to fit the data better and strengthen predictive precision. The improved Mask 
R-CNN loss function consists of two main parts: RPN loss and loss of three branches. 

Figure 4. DANet network structure diagram.

2.4. Grape Clusters Instance Segmentation and Loss Function

The feature maps of five sizes outputted by the backbone network are inputted into
the RPN network for candidate region screening. Then, the candidate areas of different
sizes are mapped to the feature maps through the RoIAlign layer for alignment, so that
accurate feature extraction can be performed in these areas. Next, the feature map output
from the RoIAlign layer is fed into the three branch networks. The fully connected layer
in the branch network is used for grape cluster localization and classification, while the
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fully convolutional layer is used to produce its instance mask. The loss function allows for
the model to fit the data better and strengthen predictive precision. The improved Mask
R-CNN loss function consists of two main parts: RPN loss and loss of three branches.

The branch loss includes classification, bounding box regression, and mask segmenta-
tion loss. The information is shown in Formula (2).

L = LRPN + LThree−Branch (2)

Among them, L represents the overall loss of the improved Mask R-CNN model, and
LRPN represents the loss of RPN, whose calculation information is shown in Formula (3).

LRPN =
1

NRPN_cls
∑

i
LRPN_cls(pi, p∗i ) + λ

1
NRPN_box

∑
i

p∗i LRPN_box(ti, t∗i ) (3)

Among them, LRPN_cls and LRPN_box refer to the classification loss and bounding box
regression loss of RPN, respectively; λ is the weighting argument that balances these two
losses. NRPN_cls and NRPN_box represent the quantities of samples in a small batch and the
quantities of anchor positions; pi refers to the probability of the category of anchor i; p*

i
represents the probability of the ground truth label of anchor i. When the ground truth
label is positive, it represents 1. And when it is a negative label, it represents 0. ti stands for
the discrepancy between the predicted bounding box and the ground truth labeled box, t*

i
denotes the discrepancy between the ground truth labeled box and the positive label of
anchor. The definition of p*

i in the above Formula (3) is shown in Formula (4).

p∗i =

{
0, negative label
1, positive label

(4)

LThree−Branch represents the loss of the three branches of the Mask R-CNN model. It is
the summation of the losses of three task branches. The specific information of LThree−Branch
is shown in Formula (5).

LThree−Branch = Lcls + Lbox + Lmask (5)

Among them, Lcls is the classification loss, Lbox is the bounding box loss, and Lmask
is the mask loss for the segmentation mask. This research uses the same loss function as
the baseline Mask R-CNN model. In addition, the classification branch will determine
the category for each ROI (region of interest), the bounding box branch will determine its
specific location, and the mask branch will create a fixed-size mask for each ROI.

2.5. Model Training

The whole process of this experimental study involved data acquisition, resolution
reduction, dataset creation, data augmentation, model training, and model testing. The
detailed experimental flowchart is shown in Figure 5. This experiment used open source
platform OpenMMLab [27], Pytorch version 1.8.1, an NVIDIA RTX3090 graphics card,
CUDA version 11.1, python version 3.8, and 24 GB of graphics memory. The model was
trained and tested on the Windows 11 operating system. In order to promote the training
and testing of the model, the labelling results of the grape segmentation dataset were
converted into the labelling style of the COCO dataset. To expedite the training of the
model, it was initialized by using the official weights pre-trained on the COCO dataset.
Then, the data-enhanced orchard grape segmentation dataset was used to train and test the
improved Mask R-CNN model. The number of training rounds and batch size were 100
and 4, respectively, the initial learning rate was 0.02, the decay weight was set to 0.0001, and
the momentum was set to 0.9. In addition, the stochastic gradient descent [28] approach
was used for parameter updating and training optimization.



Agriculture 2024, 14, 918 9 of 21

Agriculture 2024, 14, 918 9 of 21 
 

 

 
Figure 5. Overall experimental flow chart based on improved Mask R-CNN model. 

2.6. Model Evaluation Metrics 
Choosing the right assessment methods and evaluation metrics during the research 

process can help the model perform better when dealing with specific tasks. This study used 
COCO competitive metrics [29] involving average precision (AP) and average recall (AR) to 
evaluate the performance of the proposed instance segmentation model for the orchard 
grape cluster. The evaluation metrics also include the mean average precision for bounding 
box detection (bbox_mAP), the mean average precision of the segmentation mask 
(mask_mAP), and the average time for testing a single image. The necessary indicators in 
the calculation of the above evaluation indicators AP and AR include precision (P) and recall 
(R) are shown in Formula (6), and the calculation formula of mAP is shown in Formula (7). 𝑃 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃  ,       𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (6)

𝑚𝐴𝑃 = 1𝐶  𝐴𝑃ሺ𝑖ሻ
ୀଵ  (7)

TP, FP, and FN in the above formula stand for true positive, false positive, and false 
negative samples, respectively. In instance segmentation, when the IoU of the predicted 
object is greater than the selected threshold, the predicted object is considered to be a true 
positive sample. Otherwise, it is considered a false positive sample. AP denotes the aver-
age precision of pixel segmentation and detection, and C is the total quantity of categories 
for instance segmentation. Some evaluation indicators of the COCO dataset used in this 
study are shown in Table 2. 

Table 2. COCO dataset evaluation metrics. 

Metric Definition 𝐴𝑃ூୀ.ହ:.ଽହ Calculate the average value of AP for every 0.05 change 
from IoU = 0.5 to IoU = 0.95, and use it as the final AP value 𝐴𝑃ூୀ.ହ Calculate AP using a threshold of IoU of 0.5 𝐴𝑃ூୀ.ହ Calculate AP using a threshold of IoU of 0.75 𝐴𝑅ூୀ.ହ:.ଽହ Calculate the average value of AR for every 0.05 change 
from IoU = 0.5 to IoU = 0.95, and use it as the final AR value 

Figure 5. Overall experimental flow chart based on improved Mask R-CNN model.

2.6. Model Evaluation Metrics

Choosing the right assessment methods and evaluation metrics during the research
process can help the model perform better when dealing with specific tasks. This study
used COCO competitive metrics [29] involving average precision (AP) and average recall
(AR) to evaluate the performance of the proposed instance segmentation model for the
orchard grape cluster. The evaluation metrics also include the mean average precision for
bounding box detection (bbox_mAP), the mean average precision of the segmentation mask
(mask_mAP), and the average time for testing a single image. The necessary indicators
in the calculation of the above evaluation indicators AP and AR include precision (P)
and recall (R) are shown in Formula (6), and the calculation formula of mAP is shown in
Formula (7).

P =
TP

TP + FP
, R =

TP
TP + FN

(6)

mAP =
1
C

C

∑
i=1

AP(i) (7)

TP, FP, and FN in the above formula stand for true positive, false positive, and false
negative samples, respectively. In instance segmentation, when the IoU of the predicted
object is greater than the selected threshold, the predicted object is considered to be a true
positive sample. Otherwise, it is considered a false positive sample. AP denotes the average
precision of pixel segmentation and detection, and C is the total quantity of categories for
instance segmentation. Some evaluation indicators of the COCO dataset used in this study
are shown in Table 2.
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Table 2. COCO dataset evaluation metrics.

Metric Definition

APIoU=0.5:0.95
Calculate the average value of AP for every 0.05 change from IoU = 0.5 to

IoU = 0.95, and use it as the final AP value
APIoU=0.5 Calculate AP using a threshold of IoU of 0.5
APIoU=0.75 Calculate AP using a threshold of IoU of 0.75

ARIoU=0.5:0.95
Calculate the average value of AR for every 0.05 change from IoU = 0.5 to

IoU = 0.95, and use it as the final AR value

3. Results
3.1. Instance Segmentation of Grape Clusters Using the Improved Mask R-CNN Model

To assess the performance of the improved Mask R-CNN model for grape cluster
identification and segmentation under sophisticated background environments, the seg-
mentation datasets of eight varieties of grapes in the orchard after data augmentation were
used as the experimental datasets. The bbox_mAP and mask_mAP of the improved Mask
R-CNN method on all types of grape test sets were 0.905 and 0.821, respectively. The aver-
age derivation time for a single test set image was 21.5 ms. When the IoU was 0.5 and 0.75,
its (bbox_mAP, mask_mAP) could reach (0.982, 0.982) and (0.963, 0.959), respectively. The
mean average recall of each category in the bounding box detection and segmentation mask
were 0.933 and 0.861. The relevant results are shown in Table 3. Compared with the baseline
model, the improved model has greater advantages. In the bounding box detection task, its
AP value was 1.4% higher than the baseline Mask R-CNN model. When the IoU was 0.5
and 0.75, its AP value increased by 0.6% and 0.8%, respectively, compared with the baseline
model. In the task of segmenting masks, the AP value of the improved Mask R-CNN
model increased by 2.3% over the baseline model. For more stringent indicators, when
IoU was 0.5 and 0.75, its AP value was increased by 0.8% and 2.1%, respectively, compared
with the baseline model. Figure 6A,B show the comparison between the improved Mask
R-CNN model and the baseline model in segm_mAP and bbox_mAP evaluation metrics,
respectively. The results of the two methods showed a similar mode. The detection and
segmentation precision of the first 30 epochs of the Mask R-CNN baseline model increased
faster than that of the improved Mask R-CNN model. As the number of epochs increases,
the detection and segmentation precision of the improved Mask R-CNN model gradually
improved compared to the baseline model, and the precision of the two methods gradually
stabilized after 80 epochs. It could be concluded that the improved model has a great
improvement in the task of instance segmentation.

Table 3. Experimental results of the original model and improved Mask R-CNN model.

Metric Mask R-CNN Ours

bbox_map0.5:0.95 0.891 0.905
bbox_map0.5 0.976 0.982
bbox_map0.75 0.955 0.963

bbox_AR 0.925 0.933
segm_map0.5:0.95 0.806 0.821

segm_map0.5 0.974 0.982
segm_map0.75 0.938 0.959

segm_AR 0.852 0.861
Derivation time/ms 21.7 21.5

Parameters 44.01 M 44.4 M
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To further analyze the detection and segmentation results of different grape cluster
varieties, the experimental results of eight grape cluster varieties are summarized in Table 4.
Table 4 shows the test comparison results between the baseline Mask R-CNN model and
the improved Mask R-CNN model. The category names in the first row of the Table 4 are
abbreviations of the eight grape varieties. The hdg, jmg, nth, xh, xf, ylsd, yyyh, and zt
refer to hongdiqiu, jumeigui, nantaihu, xiahei, xianfeng, yalishanda, yongyouyihao, and
zaotian grape, respectively. From the results in Table 4, the detection and segmentation
precision of these eight grape varieties can be seen. In the experimental results of the
baseline Mask R-CNN model, the segmentation precision of hongdiqiu, jumeigui, and
zaotian grapes will be relatively lower than other grape varieties. It also can be found
that only the xiahei grape variety has a slight decrease in detection and segmentation
precision in the improved model. However, the detection and segmentation precision of
other grape varieties improved. The improvement was more obvious in jumeigui, xianfeng,
and zaotian grapes, especially the xianfeng variety. Compared with the baseline model,
the precision of boundary box detection and mask segmentation for xianfeng grape of
the improved model were improved by 3.9% and 3.4%, respectively. The detection and
instance segmentation visualization results of the improved Mask R-CNN for these eight
grape cluster varieties are shown in Figure 7. It can be demonstrated that the improved
Mask R-CNN model can accurately segment different types of grape clusters. In addition,
the improved model can also achieve satisfactory detection and segmentation results for
grapes in different complex orchard environments. The relevant visualization results are
shown in Figure 8. The improved Mask R-CNN model can accurately detect, classify, and
segment grape clusters in many cases, such as fruit overlap, branch and leaf occlusion,
different light changes, fruit and background color similarity, etc.

Table 4. Comparative experimental results of detection and segmentation for eight grape varieties.

Method Metric hdq jmg nth xh xf ylsd yyyh zt

Mask
R-CNN

bbox_map 0.897 0.889 0.905 0.886 0.876 0.922 0.882 0.874
segm_map 0.792 0.784 0.836 0.828 0.806 0.841 0.816 0.746

Ours
bbox_map 0.897 0.906 0.922 0.881 0.915 0.927 0.900 0.889
segm_map 0.812 0.804 0.848 0.819 0.840 0.849 0.832 0.766
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From the visualization results of the instance segmentation model (shown in Figure 8),
the results indicated that our proposed method can accurately segment grape clusters
within a variety of conditions such as uneven color (Figure 8(A1,C2,C3)), shadow influence
(Figure 8(A2,A3,C2,E1,E3)), and uneven lighting (Figure 8(A2,A3,C1,C3,E2)). At the same
time, this method can effectively detect and segment grape clusters that are obstructed by
branches and leaves (Figure 8(C3,E1,E2)) and have overlapping fruits (Figure 8(C1,C2,E2))
accurately. It can also effectively recognize and segment the grape clusters which are
divided into several parts by branches and leaves. Satisfactory detection and segmentation
results can also be obtained for grape clusters with strong illumination (Figure 8(A1)) and
extremely dark illumination (Figure 8(E3)).
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ments: (A,C,E) Original images. (B,D,F) Visualization results of detection and segmentation of
original images. (A1,B1) Grapes are affected by close-up shots, uneven color, and direct sunlight.
(A2,B2) Grapes affected by uneven lighting, shadows, and similar background colors. (A3,B3) Grapes
affected by uneven light and shadow. (C1,D1) Grapes are affected by density, overlapping fruit, and
different light variations. (C2,D2) Grapes affected by overlapping fruit, uneven shading, and color.
(C3,D3) Grapes affected by branches and leaves, uneven light, and uneven color. (E1,F1) Grapes
affected by foliage and shadow. (E2,F2) Grapes affected by overlapping fruit, shading of branches
and leaves, and uneven lighting. (E3,F3) Grapes affected by shadow, backlight shot.

From the comprehensive results shown in Tables 3 and 4 and Figures 7 and 8, it can be
clearly illustrated that our optimized and improved Mask R-CNN model can effectively
complete the segmentation and identification of eight grape varieties. It was promising
to overcome the influence of various natural factors such as orchard lighting, occlusion,
overlap, and shadows. It can accurately and effectively detect grape clusters with various
natural factors. It also can segment and classify different grape cluster varieties accurately
and has good generalization ability.

3.2. Comparison with Other Methods

To further validate the improved Mask R-CNN model, the proposed model was
compared with the SOLO [30] model, Cascade Mask R-CNN [31] model, HTC [32] model,
and the original Mask R-CNN model. These comparison models were also trained in
the same model configuration conditions as the improved Mask R-CNN model. The
comparison models were initialized with their respective official training weights on the
COCO dataset. The usage configurations of these five methods are shown in Table 5. In the
comparative experiment, the relevant evaluation indicators in the COCO dataset format
were also used. These comparison models used the same grape segmentation dataset,
divided in the same proportions as the improved Mask R-CNN model. Table 6 shows the
detection and instance segmentation results of these five methods, among which the SOLO
model itself did not include bounding box detection function.
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As can be observed in Table 6, in comparison with the other four methods, the im-
proved method based on Mask R-CNN can effectively improve the bbox_mAP, segm_mAP,
segm_AR, and other evaluation indicators in grape cluster detection and segmentation.
In addition, compared with the baseline Mask R-CNN model, the parameters of the new
model are only slightly increased, but the precision of boundary box detection and mask
segmentation has been greatly improved. This verified the effectiveness of our improved
ECA attention module in the model, which can effectively improve the precision of grape
recognition and segmentation. Due to the addition of the dual attention network in the
new model, the segmentation effect of grape masks was greatly improved. And the phe-
nomenon of recognizing overlapping grape clusters as a whole and incorrectly recognizing
grape varieties was reduced. These results indicated that the new model was effective in
decreasing misdetections and omissions in grape clusters. Through the above comparative
analysis, the improved Mask R-CNN method was superior to the other four methods and
can achieve accurate detection and segmentation of grape clusters in complex backgrounds.
Based on the results shown in Figure 9 and Table 6, the Mask R-CNN and Cascade Mask
R-CNN models had poor performance in segmenting grape edges, and the segmentation
effect on grape cluster edges was not complete. Mask R-CNN was prone to identify over-
lapping grapes many times. In addition, these two models had more false detection of
grape varieties. Secondly, the segmentation effect of the HTC model on grape masks was
general, and there were also many false detections of grape varieties. The SOLO model
performs well in grape mask segmentation, but it is also prone to false detection of grape
varieties. Figure 10 shows the comparison results of these five methods in segm_mAP
evaluation metrics. It shows that the improvement model proposed before 40 epochs has a
lower increase in segm_mAP evaluation metrics than the other four models. As the number
of epochs continues to increase, the precision metric of the improved model gradually
surpasses that of the other four models and tends to stabilize around 80 epochs. The
improved method proposed in this paper had greater improvements compared to the other
models, not only improving the mask segmentation effect on grapes but also significantly
reducing the false detection of grape types. The optimized Mask R-CNN model had the
advantages of accurate detection, precise segmentation, and good segmentation quality,
which was conducive to promoting the intelligent development of orchards.

Table 5. Parameter configuration of each instance segmentation model.

Method Backbone Initial
Learning Rate Momentum Weight Decay Training Epochs Batch Size

Mask R-CNN ResNet-50-FPN 0.02 0.9 1 × 10−4 100 4
SOLO ResNet-50-FPN 0.02 0.9 1 × 10−4 100 4

Cascade Mask R-CNN ResNet-50-FPN 0.02 0.9 1 × 10−4 100 4
HTC ResNet-50-FPN 0.02 0.9 1 × 10−4 100 4
Ours ResNet-50-FPN 0.02 0.9 1 × 10−4 100 4

Table 6. Detection and instance segmentation results of five methods.

Method bbox_
map0.5:0.95

bbox_
map0.5

bbox_
map0.75

segm_
map0.5:0.95

segm_
map0.5

segm_
map0.75

segm_
AR Parameters

Mask R-CNN 0.891 0.976 0.955 0.806 0.974 0.938 0.852 44.01 M
SOLO / / / 0.811 0.974 0.938 0.851 36.14 M

Cascade Mask R-CNN 0.894 0.970 0.953 0.791 0.972 0.927 0.832 77.05 M
HTC 0.902 0.980 0.959 0.812 0.979 0.942 0.849 77.18 M
Ours 0.905 0.982 0.963 0.821 0.982 0.959 0.861 44.4 M

The ‘/’ means that the SOLO model does not have a detection function.
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3.3. Statistical Analysis

As shown in Tables 3 and 4, the newly proposed optimized Mask RCNN model had
greatly improved the detection, segmentation precision, and recall rate of grape clusters
without significantly increasing the model parameters. In terms of the recognition precision
of the eight grape varieties, some grape varieties were detected and segmented with
relatively low precision, which was related to the similarity in appearance and color of
the grapes. The grape color was mainly affected by grape maturity. Some grape varieties
showed a variety of colors at different maturities, and some grape varieties showed a
single color at different maturities. These will affect the final experimental results of the
model. In the model comparison experiment and visualization results, it could be found
that the proposed Mask-RCNN model was superior to other models in segmentation
detection precision and identification of grape cluster varieties. This also showed that the
ECA module and DANet module had good roles in promoting the task of detecting and
segmenting grape clusters.

4. Discussion
4.1. Analysis of Orchard Grape Clusters Detection and Segmentation Results

The complexity of the orchard environment and the wide variety and similarity of
grape varieties in the orchard brought challenges to the accurate segmentation and recogni-
tion of orchard grapes. This study proposed an improved Mask R-CNN method to solve
these problems. To further improve the ability of the model to extract the characteristics of
orchard grapes, the residual network combined with the ECA attention module was used.
It enabled the network to better mine the subtle features of grapes, and effectively ignore
the background and other irrelevant features. At the same time, a dual attention network,
DANet, was added to the head of the segmentation mask to strengthen the segmentation
performance of the network. It further enhanced the segmentation precision of the orchard
grape cluster mask. The experimental results of the improved Mask R-CNN model show
that this method can validly identify and segment grape clusters in different environments
of orchards accurately.

There were also false identifications of grape species when using the improved Mask
R-CNN model, as shown in Figure 11. One of the main reasons was that there were several
types of grapes with high similarity. The other was that the blurred grape object in the
depth of field in the picture would interfere with grape recognition. The hongdiqiu grape
shown in Figure 11A was similar to the zaotian grape. Due to the factors such as the
shadow of the environment itself and the similarity of the environment and fruit color,
grapes belonging to the hongdiqiu variety were mistakenly detected as zaotian grapes.
In the image shown in Figure 11B, the grape objects in the depth of field in the picture
were relatively blurry, and there were high similarity of some grape varieties. The grapes
originally belonging to the zaotian variety in the image were mistakenly detected as the
jumeigui variety. Among the original grapes, the jumeigui, zaotian, and hongdiqiu grape
varieties themselves had a high degree of similarity. The mean average segmentation
precision of the baseline model results in Table 4 were lower than other grape varieties. In
this study, although the improved Mask R-CNN method also had the phenomenon of false
identification of grape varieties, comopared with the baseline model, there was a significant
reduction in the occurrence of variety recognition errors.

Compared with other classic instance segmentation methods, the proposed improved
Mask R-CNN model significantly improved the precision of grape cluster detection and
segmentation, and its model parameter quantity was not large compared to other models.
For evaluation metrics ranging from APIoU=0.5 to APIoU=0.75 and then to APIoU=0.5:0.95, as
the model metric requirements continued to increase, the decrease in evaluation metrics
of the improved Mask R-CNN model was smaller compared to other models. For the
visualization results of the model test set, the improved Mask R-CNN model and some
other instance segmentation can obtain a relatively complete grape cluster mask. But the
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improved Mask R-CNN model had better accuracy in identifying grape cluster variety
than other segmentation models.
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4.2. Effect of the Model Improvement on Grape Detection and Segmentation

An improved model was proposed by optimizing the original Mask R-CNN model.
First, ResNet-50 integrated the ECA attention module combined with FPN as the backbone
network. Then, the DANet module was inserted into the mask head and played a segmen-
tation role in the original Mask R-CNN. Table 7 shows the ablation experimental results of
these modules added to the original Mask R-CNN network on the test set. First, the results
in Table 7 were analyzed separately from these two modules. The ECA attention module
significantly improved the detection precision of bounding boxes. When the IoU was 0.75,
its bounding box detection precision was improved by 1.7% compared to the baseline
Mask R-CNN model. The DANet module effectively improved the segmentation effect of
grape masks. When the IOU increased from 0.5 to 0.95 at 0.05 intervals, the mean average
precision(mAP) for all grape varieties at different IoU thresholds was 0.816. It had increased
by 1% compared with the baseline Mask R-CNN model. As can be found in Table 7, the
combination of ECA and DANet was better than that of individual modules. Among the
six evaluation metrics in Table 7, five metrics achieved the best results after integrating
the ECA and DANet modules. The experimental results of our improved Mask R-CNN
model are shown in the last row, and there is a greater improvement in the precision of
bounding box detection and mask segmentation compared to the original Mask R-CNN
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model. For example, when the IoU was 0.75, the precision of bounding box detection and
mask segmentation was improved by 0.8% and 2.1% compared to the original baseline
model, respectively. This further demonstrated the effectiveness of the ECA module and
DANet module in improving the Mask R-CNN model. Figure 12 shows the comparison of
segm_mAP evaluation metric results in the ablation experiment of the DANet module and
ECA module.

Table 7. Results of ablation experiments of Mask R-CNN model using different modules.

Method ECA DANet bbox_
map0.5:0.95

bbox_
map0.75

bbox_AR segm_
map0.5:0.95

segm_
map0.75

segm_AR

Mask R-
CNN(ResNet-50)

0.891 0.955 0.925 0.806 0.938 0.852
✓ 0.898 0.972 0.931 0.804 0.948 0.849

✓ 0.894 0.955 0.927 0.816 0.953 0.858
✓ ✓ 0.905 0.963 0.933 0.821 0.959 0.861

The bold numbers in Table 7 indicate the optimal results of the evaluating metrics.
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4.3. The Impact of Model Improvement Module on Other Instance Segmentation Models

Based on the existing research mentioned above, an experimental exploration of the
model improvement modules on other instance segmentation models was conducted. We
conducted ablation experiments on the Cascade Mask R-CNN, HTC, and SOLO network
models. The above ECA attention module and DANet module were also integrated into
their backbone networks and their respective mask heads. The impact of the ECA attention
module and DANet module on the three instance segmentation models is shown in Table 8.
To reduce computing power and adapt to the limitations of computer memory, the batch
size of the three instance segmentation models was set to 1. A conclusion can be drawn
from the comparison of the results in Tables 6 and 8. As the batch size was reduced from 4
to 1, the baseline detection and segmentation precision of the Cascade Mask R-CNN, HTC,
and SOLO network models increased significantly. As shown in Table 8, it can be seen that
after adding the ECA attention module and DANet module, the bounding box detection
precision and average recall of HTC model remained unchanged compared to the original
model. However, there is a minimal improvement in segmentation precision and average
recall. For the Cascade Mask R-CNN model, after incorporating the ECA attention module
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and DANet module on the model baseline, its output evaluation metrics showed a small
improvement in both bounding box detection and segmentation precision. The average
recall of bounding box detection and mask segmentation also showed a small improvement.
For the SOLO model, the performance was reduced after integrating the ECA attention
module and the DANet module. This indicates that DANet and ECA attention modules
may interfere with the original feature processing method of the SOLO algorithm and the
design of the instance segmentation header. Based on the above results, it can be concluded
that the ECA module and DANet module have a positive impact when integrated into the
backbone network and segmentation head of the HTC model and Cascade Mask R-CNN
model, respectively, while incorporating them into the SOLO model has a negative impact.
This also indicated that the integration of DANet and ECA attention modules into instance
segmentation models may not achieve improved results.

Table 8. Experimental results of other instance segmentation models fused ECA and DANet modules.

Method bbox_
map0.5:0.95

bbox_
map0.75

bbox_AR segm_
map0.5:0.95

segm_
map0.75

segm_AR

HTC 0.939 0.979 0.957 0.846 0.971 0.878
HTC + ECA + DANet 0.937 0.980 0.957 0.847 0.973 0.880
Cascade Mask R-CNN 0.930 0.972 0.948 0.837 0.963 0.869

Cascade Mask R-CNN + ECA + DANet 0.933 0.975 0.951 0.843 0.964 0.876
SOLO / / / 0.826 0.940 0.960

SOLO + ECA + DANet / / / 0.781 0.911 0.827

The ‘/’ means that the SOLO model does not have a detection function.

5. Conclusions

In this study, an improved Mask R-CNN model is proposed for the accurate detection
and segmentation of orchard grape clusters. Firstly, to strengthen the ability of the backbone
network to extract the characteristics of orchard grapes, the ECA module was introduced
into the original Mask R-CNN backbone network. The DANet module was then incorpo-
rated into the convolutional networks of the mask branches to enhance the segmentation
precision of the grape cluster masks. In addition, the ECA attention module and DANet
module were also used to explore their impact on other instance segmentation network
models. The results showed that the idea of module fusion and replacement of network
structure can effectively strengthen the performance of other instance segmentation models.
Compared with the baseline Mask R-CNN model, the improved Mask R-CNN model could
effectively and accurately detect and segment grape clusters of different varieties in the
orchard. It also reduced the phenomenon of false detection of grape cluster varieties and
showed good robustness. On the test set of the divided grape segmentation dataset, the
bbox_mAP, segm_AP, bbox_AR, segm_AR, and average derivation time for each test set
image were 0.905, 0.821, 0.933, 0.861, and 21.5 ms, respectively. The experimental results
of different classical instance segmentation models proved that the proposed method was
progressive. However, this improved Mask R-CNN model was relatively large. In addition,
the precision of grape cluster mask segmentation and the correct identification of high-
similarity orchard grape varieties need to be further improved. In the future, more grape
varieties and grape images under different environmental conditions will be collected to
further expand the dataset. Future research will be based on reducing the network model
parameters, improving grape clusters detection and segmentation precision, and reducing
the false detection of grape clusters with high similarity.
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