Seed Priming with Poly-Gamma-Glutamic Acid (γ-PGA) Improves Rice Germination Performance under Drought Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Materials
2.2. Seed Priming Treatments
2.3. Soil Drought Stress System
2.4. Germination Parameters
2.5. Statistical Analyses
3. Results
3.1. The Indica and Japonica Varieties Are Characterized by Different Levels of Responsiveness to Priming and Drought at the Germination Stage
3.2. Drought Stress Indices Calculated at Germination Indicate Distinct Behaviors of Indica and Japonica Varieties in Response to Priming
3.3. Integrative Analyses Support the Distinct Behavior in Response to Priming and Soil Drought Stress Based on Genetic Variability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Najar, I.N.; Das, S. Poly-glutamic acid (PGA)-Structure, synthesis, genomic organization and its application: A Review. Int. J. Pharm. Sci. 2015, 6, 2258–2280. [Google Scholar]
- Osera, C.; Amati, G.; Calvio, C.; Galizzi, A. SwrAA activates poly-ɣ-glutamate synthesis in addition to swarming in Bacillus subtilis. Microbiology 2009, 155, 2282–2287. [Google Scholar] [CrossRef] [PubMed]
- Ogunleye, A.; Bhat, A.; Irorere, V.U.; Hill, D.; Williams, C.; Radecka, I. Poly-γ-glutamic acid: Production, properties and applications. Microbiology 2015, 161, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Shi, W.; Li, J.; Zhai, Z. Effects of poly-γ-glutamic acid and poly-γ-glutamic acid super absorbent polymer on the sandy loam soil hydro-physical properties. PLoS ONE 2021, 16, e0245365. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, X.; Xu, T.; Ma, H.; Xia, T. The combined application of γ-PGA-producing bacteria and biochar reduced the content of heavy metals and improved the quality of tomato (Solanum lycopersicum L.). Environ. Sci. Pollut. Res. Int. 2022, 29, 88938–88950. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, X.; Gao, D.; Wang, L.; Li, J.; Wei, Z.; Shi, Y. Effects of poly-γ-glutamic acid (γ-PGA) on plant growth and its distribution in a controlled plant-soil system. Sci. Rep. 2017, 7, 6090. [Google Scholar] [CrossRef] [PubMed]
- Bai, N.; He, Y.; Zhang, H.; Zheng, X.; Zeng, R.; Li, Y.; Li, S.; Lv, W. γ-polyglutamic acid production, biocontrol, and stress tolerance: Multifunction of Bacillus subtilis a-5 and the complete genome analysis. Int. J. Environ. Res. Public Health 2022, 19, 7630. [Google Scholar] [CrossRef] [PubMed]
- Ho, G.H.; Ho, T.I.; Hsieh, K.H.; Su, Y.C.; Lin, P.Y.; Yang, J.; Yang, K.H.; Yang, S.C. γ-Polyglutamic acid produced by Bacillus subtilis (natto): Structural characteristics, chemical properties and biological functionalities. J. Chin. Chem. Soc. 2006, 53, 1363–1384. [Google Scholar] [CrossRef]
- Li, Y.; Ye, W.; Wang, M.; Yan, X. Climate change and drought: A risk assessment of crop-yield impacts. Clim. Res. 2009, 39, 31–46. [Google Scholar] [CrossRef]
- Berg, A.; Sheffield, J. Climate change and drought: The soil moisture perspective. Curr. Clim. Change Rep. 2018, 4, 180–191. [Google Scholar] [CrossRef]
- Xue, D.; Zhang, X.; Lu, X.; Chen, G.; Chen, Z.H. Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front. Plant Sci. 2017, 8, 621. [Google Scholar] [CrossRef] [PubMed]
- Chadha, A.; Florentine, S.K.; Chauhan, B.S.; Long, B.; Jayasundera, M. Influence of soil moisture regimes on growth, photosynthetic capacity, leaf biochemistry and reproductive capabilities of the invasive agronomic weed; Lactuca serriola. PLoS ONE 2019, 14, e0218191. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Szczepaniec, A.; Finke, D. Plant-vector-pathogen interactions in the context of drought stress. Front. Ecol. Evol. 2019, 7, 262. [Google Scholar] [CrossRef]
- Elert, E. Rice by the numbers: A good grain. Nature 2014, 514, S50. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Wang, Y.; Sun, W.; Lou, Q.; Mei, H.; Shen, S.; Chen, H. Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. J. Plant Physiol. 2012, 169, 336–344. [Google Scholar] [CrossRef]
- Palanog, A.D.; Swamy, B.M.; Shamsudin, N.A.A.; Dixit, S.; Hernandez, J.E.; Boromeo, T.H.; Cruz, P.C.S.; Kumar, A. Grain yield QTLs with consistent-effect under reproductive-stage drought stress in rice. Field Crops Res. 2014, 161, 46–54. [Google Scholar] [CrossRef]
- Swamy, B.P.M.; Shamsudin, N.A.A.; Rahman, S.N.A.; Mauleon, R.; Ratnam, W.; Sta Cruz, M.T.; Kumar, A. Association mapping of yield and yield-related traits under reproductive stage drought stress in rice (Oryza sativa L.). Rice 2017, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dwivedi, S.K.; Basu, S.; Kumar, G.; Mishra, J.S.; Koley, T.K.; Rao, K.K.; Choudhary, A.K.; Mondal, S.; Kumar, S.; et al. Anatomical, agro-morphological and physiological changes in rice under cumulative and stage specific drought conditions prevailed in eastern region of India. Field Crops Res. 2020, 245, 107658. [Google Scholar] [CrossRef]
- Macovei, A.; Pagano, A.; Leonetti, P.; Carbonera, D.; Balestrazzi, A.; Araújo, S.S. Systems biology and genome-wide approaches to unveil the molecular players involved in the pre-germinative metabolism: Implications on seed technology traits. Plant Cell Rep. 2017, 36, 669–688. [Google Scholar] [CrossRef]
- Reed, R.C.; Bradford, K.J.; Khanday, I. Seed germination and vigor: Ensuring crop sustainability in a changing climate. Heredity 2022, 128, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Ganie, S.A.; Ahammed, G.J. Dynamics of cell wall structure and related genomic resources for drought tolerance in rice. Plant Cell Rep. 2021, 40, 437–459. [Google Scholar] [CrossRef] [PubMed]
- Manikanta, C.L.; Beena, R.; Stephen, R.; Manju, R.V.; Viji, M.M.; Alex, S. Physio morphological plasticity of rice (Oryza sativa L.) genotypes exposed to water-stress. J. Trop. Agric. 2020, 58, 139–145. [Google Scholar]
- Graeber, K.; Linkies, A.; Müller, K.; Wunchova, A.; Rott, A.; Leubner-Metzger, G. Cross-species approaches to seed dormancy and germination: Conservation and biodiversity of ABA-regulated mechanisms and the brassicaceae DOG1 genes. Plant Mol. Biol. 2010, 73, 67–87. [Google Scholar] [CrossRef] [PubMed]
- Kadam, N.N.; Tamilselvan, A.; Lawas, L.M.F.; Quinones, C.; Bahuguna, R.N.; Thomson, M.J.; Dingkuhn, M.; Muthurajan, R.; Struik, P.C.; Yin, X.; et al. Genetic control of plasticity in root morphology and anatomy of rice in response to water deficit. Plant Physiol. 2017, 174, 2302–2315. [Google Scholar] [CrossRef] [PubMed]
- Raj, A.B.; Raj, S.K. Seed priming: An approach towards agricultural sustainability. J. Appl. Nat. Sci. 2019, 11, 227–234. [Google Scholar] [CrossRef]
- Paul, S.; Dey, S.; Kundu, R. Seed priming: An emerging tool towards sustainable agriculture. Plant Growth Regul. 2022, 97, 215–234. [Google Scholar] [CrossRef]
- Paparella, S.; Araújo, S.S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed priming: State of the art and new perspectives. Plant Cell Rep. 2015, 34, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
- Pagano, A.; Macovei, A.; Balestrazzi, A. Molecular dynamics of seed priming at the crossroads between basic and applied research. Plant Cell Rep. 2023, 42, 657–688. [Google Scholar] [CrossRef]
- Nakao, Y.; Sone, C.; Sakagami, J.I. Genetic diversity of hydro priming effects on rice seed emergence and subsequent growth under different moisture conditions. Genes 2020, 11, 994. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.M.; Ahmad, N.; Murtaza, G. Enhancing the performance of transplanted coarse rice by seed priming. Paddy Water Environ. 2009, 7, 55–63. [Google Scholar] [CrossRef]
- Alharbi, B.M.; Abdulmajeed, A.M.; Hassan, H. Biochemical and molecular effects induced by triacontanol in acquired tolerance of rice to drought stress. Genes 2021, 12, 1119. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, C.; Pagano, A.; Calvio, C.; Srikanthan, D.S.; Slamet-Loedin, I.; Balestrazzi, A.; Macovei, A. Genotype-specific germination behavior induced by sustainable priming techniques in response to water deprivation stress in rice. Front. Plant Sci. 2024, 15, 1344383. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.; Farooq, M. Rice physiology. In Rice Production Worldwide; Chauhan, B., Jabran, K., Mahajan, G., Eds.; Springer International Publishing: New York, NY, USA, 2017; Volume 8, pp. 455–485. [Google Scholar]
- Islam, M.M.; Kayesh, E.; Zaman, E.; Urmi, T.A.; Haque, M.M. Evaluation of rice (Oryza sativa L.) genotypes for drought tolerance at germination and early seedling stage. Agriculturists 2018, 16, 44–54. [Google Scholar] [CrossRef]
- Cui, G.; Zhao, Y.; Zhang, J.; Chao, M.; Xie, K.; Zhang, C.; Sun, F.; Liu, S.; Xi, Y. Proteomic analysis of the similarities and differences of soil drought and polyethylene glycol stress responses in wheat (Triticum aestivum L.). Plant Mol. Biol. 2019, 100, 391–410. [Google Scholar] [CrossRef] [PubMed]
- Palanog, A.D.; Calayugan, M.I.C.; Descalsota-Empleo, G.I.; Amparado, A.; Inabangan-Asilo, M.A.; Arocena, E.C.; Cruz, P.C.S.; Borromeo, T.H.; Lalusin, A.; Hernandez, J.E.; et al. Zinc and iron nutrition status in the Philippines population and local soils. Front. Nutr. 2019, 6, 81. [Google Scholar] [CrossRef] [PubMed]
- Susanto, U.; Gunarsih, C.; Rohaeni, W.R. Interaction of genetic and Zn fertilizer application on rice yield and grain zinc content. IOP Conf. Ser. Earth Environ. Sci. 2021, 715, 012043. [Google Scholar] [CrossRef]
- Trijatmiko, K.R.; Dueñas, C.; Tsakirpaloglou, N.; Torrizo, L.; Arines, F.M.; Adeva, C.; Balindong, J.; Oliva, N.; Sapasap, M.V.; Borrero, J.; et al. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci. Rep. 2016, 6, 19792. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, Y.; Dueñas, C., Jr.; Arcillas, E.; Macalalad-Cabral, R.J.; Kohli, A.; Reinke, R.; Slamet-Loedin, I.H. CRISPR-mediated promoter editing of a cis-regulatory element of OsNAS2 increases Zn uptake/translocation and plant yield in rice. Front. Genome Ed. 2024, 5, 1308228. [Google Scholar] [CrossRef]
- Dueñas, C.J.; Slamet-Loedin, I.; Macovei, A. Transcriptomics view over the germination landscape in biofortified rice. Genes 2021, 12, 2013. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.M.A.; Cheema, M.A.; Afzal, I. Integration of pre-sowing soaking, chilling and heating treatments for vigour enhancement in rice (Oryza sativa L.). Seed Sci. Technol. 2006, 34, 499–506. [Google Scholar] [CrossRef]
- Earl, H.J. A precise gravimetric method for simulating drought stress in pot experiments. Crop Sci. 2003, 43, 1868–1873. [Google Scholar] [CrossRef]
- Marchin, R.M.; Ossola, A.; Leishman, M.R.; Ellsworth, D.S. A simple method for simulating drought effects on plants. Front. Plant Sci. 2020, 10, 1715. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, P.; Das, B.S.; Sen, S.K. Soil water potential and recoverable water stress in drought tolerant and susceptible rice varieties. Agric. Water Manag. 2015, 152, 110–118. [Google Scholar] [CrossRef]
- Voroney, P. Soils for horse pasture management. In Horse Pasture Management; Sharpe, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 65–79. [Google Scholar]
- Ahmad, M.S.; Wu, B.; Wang, H.; Kang, D. Field screening of rice germplasm (Oryza sativa L. ssp. japonica) based on days to flowering for drought escape. Plants 2020, 9, 609. [Google Scholar] [CrossRef] [PubMed]
- Ladányi, Z.; Barta, K.; Blanka, V.; Pálffy, B. Assessing available water content of sandy soils to support drought monitoring and agricultural water management. Water Resour. Manag. 2021, 35, 869–880. [Google Scholar] [CrossRef]
- Kader, M.A. A comparison of seed germination calculation formulae and the associated interpretation of resulting data. J. Proc. R. Soc. N. S. W. 2005, 138, 65–75. [Google Scholar] [CrossRef]
- Ranal, M.A.; Santana, D.G.D. How and why to measure the germination process? Braz. J. Bot. 2006, 29, 1–11. [Google Scholar] [CrossRef]
- Mahmood, T.; Iqbal, M.S.; Li, H.; Nazir, M.F.; Khalid, S.; Sarfraz, Z.; Hu, D.; Baojun, C.; Geng, X.; Tajo, S.M.; et al. Differential seedling growth and tolerance indices reflect drought tolerance in cotton. BMC Plant Biol. 2022, 22, 331. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Siddique, K.H. Drought stress in wheat during flowering and grain-filling periods. Crit. Rev. Plant Sci. 2014, 33, 331–349. [Google Scholar] [CrossRef]
- Nxele, X.; Klein, A.; Ndimba, B.K. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. S. Afr. J. Bot. 2017, 108, 261–266. [Google Scholar] [CrossRef]
- Hou, D.; Bi, J.; Ma, L.; Zhang, K.; Li, D.; Rehmani, M.I.A.; Tan, J.; Bi, Q.; Wei, Y.; Liu, G.; et al. Effects of soil moisture content on germination and physiological characteristics of rice seeds with different specific gravity. Agronomy 2022, 12, 500. [Google Scholar] [CrossRef]
- Elmaghrabi, A.M.; Rogers, H.J.; Francis, D.; Ochatt, S. Toward unravelling the genetic determinism of the acquisition of salt and osmotic stress tolerance through in vitro selection in Medicago truncatula. Methods Mol. Biol. 2018, 1822, 291–314. [Google Scholar] [CrossRef] [PubMed]
- Soboleva, A.; Frolova, N.; Bureiko, K.; Shumilina, J.; Balcke, G.U.; Zhukov, V.A.; Tikhonovich, I.A.; Frolov, A. Dynamics of reactive carbonyl species in pea root nodules in response to Polyethylene Glycol (PEG)-induced osmotic stress. Int. J. Mol. Sci. 2022, 23, 2726. [Google Scholar] [CrossRef] [PubMed]
- Parati, M.; Khalil, I.; Tchuenbou-Magaia, F.; Adamus, G.; Mendrek, B.; Hill, R.; Radecka, I. Building a circular economy around poly(D/L-γ-glutamic acid)-a smart microbial biopolymer. Biotechnol. Adv. 2022, 61, 108049. [Google Scholar] [CrossRef] [PubMed]
- Desmaison, A.M.; Tixier, M. Amino acids content in germinating seeds and seedlings from Castanea sativa L. Plant Physiol. 1986, 81, 692–695. [Google Scholar] [CrossRef]
- Fukao, T.; Yeung, E.; Bailey-Serres, J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 2011, 23, 412–427. [Google Scholar] [CrossRef] [PubMed]
- Samota, M.K.; Sasi, M.; Awana, M.; Yadav, O.P.; Amitha Mithra, S.V.; Tyagi, A.; Kumar, S.; Singh, A. Elicitor-induced biochemical and molecular manifestations to improve drought tolerance in rice (Oryza sativa L.) through seed-priming. Front. Plant Sci. 2017, 8, 934. [Google Scholar] [CrossRef] [PubMed]
- Samota, M.K.; Awana, M.; Krishnan, V.; Kumar, S.; Tyagi, A.; Pandey, R.; Mithra, S.V.A.; Singh, A. A novel micronutrients and methyl jasmonate cocktail of elicitors via seed priming improves drought tolerance by mitigating oxidative stress in rice (Oryza sativa L.). Protoplasma 2024, 261, 553–570. [Google Scholar] [CrossRef]
- Narayanasamy, S.; Thangappan, S.; Uthandi, S. Plant growth-promoting Bacillus sp. cahoots moisture stress alleviation in rice genotypes by triggering antioxidant defense system. Microbiol. Res. 2020, 239, 126518. [Google Scholar] [CrossRef]
- Ali, L.G.; Nulit, R.; Ibrahim, M.H.; Yien, C.Y.S. Efficacy of KNO3, SiO2 and SA priming for improving emergence, seedling growth and antioxidant enzymes of rice (Oryza sativa), under drought. Sci. Rep. 2021, 11, 3864. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Formula of Calculation | Description of Formula |
---|---|---|---|
Germination Indices | |||
G% | % | G% = (no of seeds germinated/to number sown) ∗ 100 | |
GI | - | GI = (7 × n1) + (6 × n2) + · · · + (1 × n10) | n1, n2… n7 = No. of germinated seeds on the first and subsequent days until the last day; 7, 6 … and 1 are weights given to the number of germinated seeds |
MGT | day | MGT = ∑ f ·x/∑ f | f = seed germinated on day x |
Z | - | Z = ∑cni,2/∑ ni ∗ ∑ (ni − 1/2) | where Cni,2 = ni (ni − 1)/2 while ni is the number of germinated seeds per day |
Seedling Trait | |||
Root | mm | measured using ImageJ program | |
Shoot | mm | measured using ImageJ program | |
VII | - | VII = (Root + Shoot) ∗ G% | |
Drought stress Tolerance Indices | |||
GMaxDTI | % | (G% at maximum day under stress conditions/G% at maximum day under non stressed condition) ∗ 100 | |
SLDTI | % | (StLn under stress conditions/StLn under non-stressed condition) ∗ 100 | |
RLDTI | % | (RtLn under stress conditions/RtLn under non-stressed condition) ∗ 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dueñas, C., Jr.; Calvio, C.; Slamet-Loedin, I.H.; Susanto, U.; Macovei, A. Seed Priming with Poly-Gamma-Glutamic Acid (γ-PGA) Improves Rice Germination Performance under Drought Conditions. Agriculture 2024, 14, 926. https://doi.org/10.3390/agriculture14060926
Dueñas C Jr., Calvio C, Slamet-Loedin IH, Susanto U, Macovei A. Seed Priming with Poly-Gamma-Glutamic Acid (γ-PGA) Improves Rice Germination Performance under Drought Conditions. Agriculture. 2024; 14(6):926. https://doi.org/10.3390/agriculture14060926
Chicago/Turabian StyleDueñas, Conrado, Jr., Cinzia Calvio, Inez Hortense Slamet-Loedin, Untung Susanto, and Anca Macovei. 2024. "Seed Priming with Poly-Gamma-Glutamic Acid (γ-PGA) Improves Rice Germination Performance under Drought Conditions" Agriculture 14, no. 6: 926. https://doi.org/10.3390/agriculture14060926
APA StyleDueñas, C., Jr., Calvio, C., Slamet-Loedin, I. H., Susanto, U., & Macovei, A. (2024). Seed Priming with Poly-Gamma-Glutamic Acid (γ-PGA) Improves Rice Germination Performance under Drought Conditions. Agriculture, 14(6), 926. https://doi.org/10.3390/agriculture14060926