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Abstract: Agricultural production contributes to the increase in global carbon emissions. It is crucial
to improve output and reduce carbon emissions in the context of agricultural modernization, for
which improved carbon emission efficiency is key. However, the role of agricultural modernization
in promoting agricultural carbon emission efficiency is not clear. Hence, the aim of this article
is to analyze the spatiotemporal evolution of agricultural modernization and agricultural carbon
emission efficiency in China from 2000 to 2019 and to reveal the relationship between agricultural
modernization and agricultural carbon emission efficiency. The results showed that (1) in China, the
overall level of agricultural modernization has been steadily increasing, and the regional differences
are widening, showing a spatial pattern characterized by a gradual decline from the eastern and
central regions to the western region. (2) China’s agricultural carbon emission efficiency continues to
grow but has not achieved a data envelopment analysis (DEA) effect, with the eastern and western
regions having higher agricultural carbon efficiency than the central region. The regional differences
first narrow and then expand. (3) Agricultural modernization significantly promotes agricultural
carbon emission efficiency in both the province and the neighboring provinces, and the interprovincial
spillover effect exceeds the direct effect within the province. A nonlinear correlation exists between
agricultural modernization and agricultural carbon emission efficiency.

Keywords: agricultural modernization; agricultural carbon emission efficiency; spatial spillover
effect; spatial threshold effect

1. Introduction

Agriculture provides the material basis for human survival, as well as employment and
income for agricultural workers. It guarantees food security as well as social stability and
development. Despite facing challenges posed by urbanization and arable land degradation,
China’s agriculture feeds 21% of the world’s population on 7% of the world’s arable
land [1] and maintains an agricultural GDP growth rate of 4.6% per year [2]. Meanwhile,
China has a high production of vegetables and fruits and is now the world’s largest
exporter of vegetables [3]. Although China has a high self-sufficiency rate in food, it is
predicted that [4] the increased imports over the next 10 years will account for 3–5% of total
consumption, with little impact on the sustainability of Chinese agriculture. However, it is
worth mentioning that Chinese agriculture is also facing challenges due to climate change,
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urbanization, and aging, and thus agricultural modernization (AM) plays a crucial role
in the sustained increase in agricultural production. However, the pursuit of agricultural
output is accompanied by challenges to agricultural sustainability. Traditional Chinese
agriculture is constrained by smallholder economic production methods and is therefore
highly dependent on resource consumption and infrastructure inputs [5]. Thus, Chinese
agriculture generates some environmental problems, and agricultural carbon emissions, in
particular, contribute to climate change. As a major carbon emitter, China’s agricultural
carbon emissions account for 16–17% of GHG [6], which is higher than the U.S. (6–7%) [7]
and the global average (10–12%). Although there are differences in land use between China
and the U.S., agricultural output and productivity in the U.S. have reached a high level, so
the modernization of agricultural production in the U.S. can provide a certain reference
experience for China’s agricultural production. Despite China’s commitment to aim for a
2030 carbon emission peak and carbon neutrality by 2060 [2], considering that agricultural
development in the past has long been in a “high-carbon” mode, indicating high inputs,
consumption, and pollution, there are numerous obstacles to reducing this extent of carbon
emissions in a short period of time [8]. Therefore, China needs to enhance AM, increase
its expected agricultural output, reduce carbon emissions, and enhance the agricultural
carbon emission efficiency (ACEE), thus building a low-carbon agriculture and achieving
China’s “dual-carbon” goal.

AM is the process of using advanced science and technology, managerial techniques,
and ideology to elevate traditional, backward agriculture to a sophisticated level [9]. AM
should take green development as its premise, upgrade the production and management
system as its foundation, and improve quality and efficiency as its key attributes; moreover,
technical support is required to guarantee AM. Currently, China is implementing the
strategy of rural revitalization, which provides the impetus for the further implementation
of AM. In fact, agricultural production generates large volumes of carbon emissions [10], so
it is important to use the techniques of AM to increase agricultural output, reduce carbon
emissions, and improve the ACEE. Scholars usually consider the ACEE as the level of
agricultural productivity under the constraint of carbon emissions [11], indicating that
the higher its value, the more rational the allocation of resources, while the goal of AM
is to increase the utilization of agricultural resources, and the two have a close intrinsic
relationship. Recently, there has been abundant research on AM as well as the ACEE and
the factors influencing them, but the main focus has been on evaluating the level of both
individually, with fewer studies on the relationship between the two.

Developing AM and reducing carbon emissions by improving the ACEE are two
important directions in future agricultural development, and in order to achieve a “win–
win” outcome, the relationship between the two needs to be clarified [12]. Meanwhile, it is
worth noting that the research on how AM affects the ACEE is currently insufficient. In
addition, most of the previou studies measure ACEE using the slack-based measure (SBM)—
Undesirable model, with the disadvantage that the optimal decision-making units (DMUs)
cannot be compared [13]. Therefore, the aims of this paper are as follows: (1) Building on
past studies, we analyze the temporal and spatial distribution characteristics of AM and
ACEE in China by constructing scientific indicators and applying the super-efficient SBM-
Undesiable model. (2) Investigating the impact of AM on ACEE, reveal the spatial spillover
effect and nonlinear relationship between the two, and put forward policy suggestions
to realize the sustainable development of Chinese agriculture. This paper briefly reviews
the previous literature on AM and ACEE in Section 2, lists the data and methodology in
Section 3, provides the results in Section 4, discuss the current problem and future works in
Section 5, and summarizes the conclusion and policy implications in Section 6.

2. Literature Review

AM is an important topic in academic research; however, currently, China’s AM is still
at the primary stage of development [10], while foreign research began in the mid-20th
century [14,15]. Rich results have been obtained from the quantitative examination and
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analysis of the AM level. In terms of research objectives, AM emphasizes green develop-
ment and sustainability [16–18], technical support [19,20], business models [21], etc. In
terms of the selection and construction of indicators, the indicators of AM in developed
countries focus on four dimensions: economic, environmental, pollution, and develop-
ment [22,23]. Lobão et al. [24] constructed the Agricultural Modernization Index (AMI) to
analyze AM in the Brazilian Amazon. Kansanga et al. [25] found that the machinery level
can accelerate AM. Based on the definition and connotation of AM, domestic scholars have
established detailed measurement systems. Yang et al. [10] divided AM into ecological
modernization, management modernization, and production modernization. Xia et al. [26]
constructed five first-level indices covering management practices. Yet, the choice of the
AM index varies from province to province due to the different development conditions
and current situation. In terms of measurement, the TOPSIS method [27,28], the entropy
method [23,27], the DEA method [29], and the multi-index measurement method are often
used, among which the multi-index measurement is the most objective and therefore the
most widely used [29].

Carbon emission efficiency (CEE) is an indicator that combines economic inputs and
outputs with carbon emissions, as undesired outputs affect economic inputs associated
with land, capital, and labor; therefore, CEE is applied in different sectors [8]. For the
conceptualization of CEE, Kaya defined CEE as GDP output per unit of CO2 [30], while
Mielnik [31] defined it as CO2 per unit of energy consumption. With regard to methodology,
the ACEE is usually measured by Malmquist [32] and DEA [33]. Currently, scholars’ studies
on the ACEE include the evaluation indexes [34], influences [35], and the decoupling effect
from economic growth [36].

ACEE research is closely linked to the definition of carbon emission sources. John-
son [37] suggested that agriculture carbon emissions mainly originate from agricultural
fossil fuel use, animal enteric fermentation and manure management, paddy fields and
croplands, deforestation and agricultural burning, and fertilizer use. Tian et al. [38] selected
23 major carbon emission sources from agricultural production species, with enteric fer-
mentation, manure management, paddy fields, and agricultural material inputs accounting
for a high proportion of carbon emissions. Fertilizers, pesticides, animal manure, biomass
fuel, and changes in soil structure [39] are the major global sources of agricultural carbon
emissions. Regarding the factors influencing ACEE, some scholars [11] have found that
labor size suppresses agricultural carbon emissions, and agricultural industry structure
and urbanization promote ACEE. Ye [40] found that agricultural industrial agglomeration
has an inverted U-shaped nonlinear effect on agricultural environmental efficiency. Fur-
thermore, Xie [41] analyzed technical efficiency by using the urban–rural integration index
and found that it has a detrimental effect on frontier technological progress, and is hence
inimical to the promotion of ACEE and that regional economic development is a significant
factor constraining urban–rural integration and ACEE. Agriculture is highly dependent
on regional resource endowments, but similarities in regional production conditions make
ACEE spatially relevant. Wu et al. [42] measured the ACEE of crop production through
GB-US-SBM, showing a decreasing and then increasing trend, and also suggested that agri-
cultural materials account for the highest share of carbon emissions in China. Additionally,
they concluded that the ACEE of the eastern and western regions showed σ-convergence,
whereas the whole country showed conditional β-convergence. This indicated that the
development of neighboring regions affected the regional ACEE.

In summary, the ACEE is limited by the labor force size, regional production condi-
tions, technology, urbanization, and the structure of the agricultural industry, while in the
process of AM, more advanced production technologies and national policies indirectly
affect these factors [26,43], which in turn have an impact on the ACEE [44]. Therefore,
there is an inevitable relationship between AM and agricultural production. Nevertheless,
the literature on relationships between AM and ACEE is very limited. Considering the
above background, while promoting AM and achieving carbon peaking and neutrality
targets are priorities for future development in China, current studies on AM and ACEE
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focus on evaluating the two separately, and relatively few systematic studies have explored
the interrelationships between AM and ACEE. Therefore, to guarantee agricultural sus-
tainability, it is imperative to investigate the correlation between AM and ACEE in the
agricultural sector.

3. Materials and Methods

Since data for Tibet, Taiwan, Hong Kong, and Macau were not available, we studied
30 provincial units in China. Based on the current situation, the national development
policies, and the classification criteria of previous scholars [45], we divided the studied
regions into eastern, central, and western regions.

Data for the evaluation index system of AM levels come from the officially released
yearbook and EPS database. Due to a lack of data, we estimated the agricultural carbon
emissions in 30 Chinese provinces, which were calculated using Equation (3).

3.1. Calculation of AM

The Communist Party of China’s 19th National Congress put forward the goal of AM
construction; based on the connotation of AM, we built an evaluation index system of AM
level using 4 first-class index components: production and management system, quality
benefits, green development, and support and protection. As shown in Table 1, the weight
of indexes is identified using the entropy method. The formula is as follows:

AM = ∑m
j=1 wj pij (1)

where m is the number of indicators, and wj is the weight of the j-th indicator; pij =
Yij

∑n
i=1 Yij

,

and Yij = Xij + 1, Xij is obtained by normalizing the positive and negative values.
The agricultural production and management system is a symbol of the degree of

organization, socialization, and marketization; the level of modern agricultural produc-
tivity; and guaranteed food security and the red line of arable land. The indicators for
measuring the agricultural production and management system include 6 second-class
indexes, namely stability in rice and wheat production; the proportion of livestock pro-
duction value in the total agricultural output value; the proportion of the added value
of agriculture, animal husbandry, forestry, and fishing industry services to the added
value of agriculture, animal husbandry, forestry, and fishing industry sectors; the added
value of primary production as % of GDP; agricultural mechanization; and the effective
irrigation rate. In terms of the quality benefits produced by AM, a total of 4 second-class
indexes were selected. Agricultural labor productivity and the agricultural land output
rate were selected to measure production efficiency and rural residents’ disposable income
per capita, and the rural Internet penetration rate reflected the effectiveness of AM. The
old development model of high yield and high pollution can no longer be adapted to
the new era, and AM involves the realization of sustainability. Accordingly, evaluating
AM needs to cover green development as first-class index; therefore, water and energy
consumption attributed to CNY 10,000 of the added value of agriculture, forestry, animal
husbandry, and fishing industry, and the extent of pesticide and fertilizer reduction were
selected as measures. Due to the weakness and uncertainty of the agricultural sector, the
development and diffusion of agricultural technologies require government support. The
proportion of expenditure on agriculture, forestry, and water conservancy of the added
value of agriculture, forestry, animal husbandry, and fishing; agricultural loan inputs for
fishing, forestry, animal husbandry, and agriculture per unit; and the depth of agricultural
insurance were used as second-class indexes to measure the extent of local government
support for agricultural development.
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Table 1. Evaluation index system of AM level.

First-Class Index Second-Class Index Description Attribution Weights (%)

Agricultural
production and

management system

Stability in rice and wheat
production (%)

Rice and wheat production in the
current year/Average production

over the last five years
+ 2.20

Proportion of livestock production
value in total agricultural output

value (%)

(Animal husbandry output value +
fishing industry output

value)/Total output value of
agriculture, animal husbandry,
forestry and fishing industry

+ 8.43

The proportion of added value of
agriculture, animal husbandry,
forestry, and fishing industry
services to the added value of
agriculture, animal husbandry,

forestry, and fishing industry sectors
(%)

Added value of agriculture,
animal husbandry, forestry, and

fishing industry services/Added
value of agriculture, animal

husbandry, forestry, and fishing
industry

+ 4.64

Added value of primary production
as % of GDP (%)

Added value of primary
sector/GDP + 8.30

Agricultural mechanization
(kw/hm2)

Total power of agricultural
machinery/cultivated land area + 11.56

Effective irrigation rate (%) Effective irrigated area/cultivated
land area + 6.20

Quality benefits

Agricultural labor productivity
(10,000 CNY/person)

Added value of agriculture,
animal husbandry, forestry, and

fishing industry/number of
primary industry workers

+ 8.83

Agricultural land output rate(10,000
CNY/hm2)

Added value of agriculture,
animal husbandry, forestry, and

fishing/sown area
+ 5.62

Rural residents’ disposable income
per capita (CNY 10,000) Obtained directly + 9.11

Rural Internet penetration rate (%) Rural telephone subscribers at
year-end/Total rural households + 7.56

Green development

Water consumption of CNY 10,000
of the added value of agriculture,
forestry, animal husbandry, and

fishing industry (m3)

Agricultural water use/Value
added in agriculture, forestry,

animal husbandry, fishing
− 2.05

Energy consumption of CNY 10,000
of the added value of agriculture,
forestry, animal husbandry, and
fishing industry (ton of standard

coal)

Total energy consumption/Value
added in agriculture, forestry,
animal husbandry, and fishing

industry

− 1.94

Proportion of pesticide reduction
(%)

(Current year’s pesticide
use—previous year’s pesticide

use)/previous year’s pesticide use
− 1.86

Proportion of fertilizer reduction (%)
(Current year’s fertilizers

use—previous year’s fertilizers
use)/previous year’s pesticide use

− 1.47
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Table 1. Cont.

First-Class Index Second-Class Index Description Attribution Weights (%)

Support and protection

The proportion of expenditure on
agriculture, forestry, and water

conservancy of the added value of
agriculture, forestry, animal
husbandry, and fishing (%)

Spending on agriculture, forestry,
and water conservancy/Added

value of agriculture, forestry,
animal husbandry, and fishing

+ 3.97

Agricultural loan inputs for fishing,
forestry, animal husbandry, and

agriculture per unit (%)

Balance of agriculture-related
loans/Added value of agriculture,

forestry, animal husbandry, and
fishing industry

+ 10.48

Depth of insurance in
agriculture (%)

Agricultural premium
income/Added value of

agriculture, forestry, animal
husbandry, and fishing industry

+ 5.78

Note: + indicates the direction of action is positive; − indicates the direction of action is negative.

3.2. Calculation of ACEE

The traditional DEA method is a nonparametric boundary analysis method based
on a radial perspective that does not take into account slack variables, cannot deal with
non-desired outputs, and does not give a true reflection of the value of ACEE. Tone put
forth a nonradial approach (SBM) to improve the reliability of efficiency evaluations, which
measures slack variables as well. However, to solve errors due to slack variables [46], which
result from the existence of “undesired outputs”, and to meet the need to effectively separate
several DMUs, they then proposed the super-efficiency SBM—Undesirable model. The
super-efficient SBM—Undesirable model was adopted to measure ACEE in this research.
The specific formula is as follows [47]:

Xj =
{

x1j, x2j, . . . , xij, . . . , xmj
}
∈ Rm×n,

Yj =
{

y1j, y2j, . . . , yij, . . . , yq1 j
}
∈ Rq1×n,

Bj =
{

b1j, b2j, . . . , bij, . . . , bq2 j
}
∈ Rq2×n,

ACEE = min
1 +

1
m ∑m

i=1 s−i
xik

1 − 1
q1+q2

(
∑

q1
r=1 s+r
yrk

+
∑

q2
t=1 sb−

t
btk

) (2)

s.t.



∑n
j=1,j ̸=k λjxj + s− ≤ xk , i = 1, ···, m

1
∑n

j=1,j ̸=k λjyj − s+ ≤ yk , r = 1, ···, q1

1
∑n

j=1,j ̸=k λjbj + sb− ≤ bk , t = 1, ···, q2

1

1 − 1
q1+q2

(
∑

q1
r=1 s+r
yrk

+
∑

q2
t=1 sb−

t
btk

)
> 0

1
λj, s−i , s+r , sb−

t ≥ 0 , j = 1, ···n , j ̸= k

where s−i , s+r , andsb−
t are slack variables for input factors, desired output, and undesired

output factors, respectively; xik, yrk, andbtk are the i-th input factor of the k-th DMU, the
r-th desired output, and the t-th undesired output element. i = 1, 2, 3, . . ., m; r = 1, 2, 3, . . .
, q1; t = 1, 2, 3, . . ., q2; j = 1, 2, 3, . . ., n; λ are the constraint conditions.

Agricultural carbon emission was considered an undesirable output variable, accord-
ing to the literature [38,48,49]. Carbon emissions in this paper were considered mainly



Agriculture 2024, 14, 939 7 of 27

those generated by agricultural production, including three main categories: CH4 and
N2O emissions from enteric fermentation and fecal management during ruminant farming;
CH4 from rice growth; and CO2 from agricultural land use, including carbon emissions
resulting from activities such as agricultural fertilizers, pesticides, mulch films, diesel use
in agricultural machinery, land plowing, and irrigation. They did not include natural soil
CO2 emissions. The formula is as follows:

C = ∑Ci = ∑Ti × δi (3)

where C denotes the total agricultural carbon emissions in tonnes, Ci denotes total carbon
emissions from various carbon sources (livestock and poultry farming, rice cultivation,
and land use), Ti denotes the i-th source’s activity level, and δi denotes the i-th source’s
emission coefficients. The carbon emission coefficients for different carbon sources have
been studied [50–52].

Drawing on existing research, we selected 8 input indicators, the added value of
agricultural output, and the desired and undesired outputs of carbon emissions for ACEE
measurement [53,54]. The selected input–output indicators were all direct data to maintain
the uniformity of statistical caliber. Since measuring ACEE in eastern, central, and western
regions individually is not in line with the principle of DEA model measurement [55],
the national data of 30 provinces were uniformly selected for measurement. Specific
input–output indexes and index descriptions are provided in Table 2.

Table 2. Evaluation index system of ACEE.

Index Variables Description

Resource input

Land input Crop sown area/1000 hm2

Pesticides inputs Pesticides use/10,000 t

Labor input Employment in the primary
sector/10,000 people

Mechanical input Gross power of agricultural
machinery/10,000 kw

Water input Effective irrigated area/1000 hm2

Fertilizer input Agricultural fertilizer
applications/10,000 t

Agricultural film input Agricultural film use/10,000 t

Energy input Agricultural diesel use/10,000 t

Expected output Agricultural output
Added value of agriculture, forestry,

animal husbandry, and fishing
industry/CNY 100 million

Undesirable output Carbon emission Agricultural carbon emission/10,000 t

3.3. Spatial Correlation

The core idea of spatial correlation stems from Waldo Tobler: A correlation exists
between all things, and the correlation grows stronger with proximity [56]. The global
spatial correlation presents the overall spatial distribution property [57,58]. The subsystems’
spatial distribution property is determined using the local spatial correlation test, which is
usually tested using Moran’s I scatter plot and LISA agglomeration plot.

3.3.1. Global Spatial Correlation

Moran′s I =
∑n

i=1 ∑n
j=1 Wij

(
Yi − Y

)(
Yj − Y

)
S2 ∑n

i=1 ∑n
j=1 Wij

(4)
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where S2 = 1
n ∑n

i=1 (Yi − Y)Y = 1
n ∑n

i=1 Yi, n values represent the 30 provinces, Yi and
Yj denote ACEE in provinces, and Wij is a geospatial weight matrix that describes the
neighboring relationship between regions.

3.3.2. Local Spatial Correlation

Anselin [58] proposed a local Moran’s I, or LISA index, which measures the extent
to which neighboring regions are spatially correlated with the region. There is a localized
situation of high–high aggregation and low–low aggregation when local Moran’s I > 0.
Otherwise, it indicates the high–low aggregation and low–high aggregation. It is expressed
as follows:

Moran′s Ii =

(
Yi − Y

)
∑n

j=1 Wij
(
Yj − Y

)
S2 (5)

3.3.3. Setting of the Spatial Weighting Matrix

Since agricultural carbon emissions are influenced by similar climatic and geographic
environments, as well as by the economic policies of neighboring economic units, a spatial
weight function is needed to characterize the interrelated effects. Based on geographic adja-
cency and spatial distance proximity, we set 0–1 adjacency weight matrix and geographic
distance weight matrix.

According to spatial adjacency, an adjacency can have both a common boundary and
a common vertex. The 0–1 adjacency weight matrix is a Queen-based first-order adjacency
matrix with the following expression:

w01 =

{
1, i and j are adjacent
0, i and j are not adjacent

(6)

The spatial weight matrix was constructed using Geoda software 1.22 platform, and
Hainan was set to be neighboring Guangdong due to its special geographical location in
southern China.

Geographic distance weight matrix: The inverse of the distance can reflect the atten-
uation of spatial unit associations in relation to geographic distance, based on which the
power of the distance can be increased depending on whether the role of distance is to
be emphasized or not; the higher the weight, the greater the role of the closer point. To
emphasize distance, the inverse of the distance squared is used, and the distance between
the geographic centers of the two regions is denoted by d, with the following expression:

wij =

{ 1
dij

2 , i ̸= j

0, i = j
(7)

3.4. Kernel Density Estimation

Kernel density estimation is a nonparametric method used to study the characteristics
of random variables such as the number of distributions, the orientation of distributions,
and the distribution of agglomerations in a certain region; it is a tool for studying the
uneven spatial distribution and dynamic evolution laws [59]. The function is expressed
as follows:

f (x)=
1

Nh∑N
i=1 K

(
Xi − x

h

)
K(x) =

1√
2Π

exp
(
− x2

2

)
(8)

where K (·) represents the kernel function, N is the number of observations, X is the number
of observations, and x is the mean average of the observations; h is the bandwidth, the
choice of which affects the estimation results as it determines the smoothness of the kernel
density curve and the estimation accuracy. The curve is smoother, and the estimation
accuracy decreases with increasing bandwidth.
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3.5. Empirical Model

The agricultural carbon emission has spatial autocorrelation, as indicated by Moran’s
I. Therefore, the Spatial Durbin Model was constructed to examine their influencing factors.
As SDM incorporates SAR and SEM, which include the dependent and independent
variables’ spatial correlation, it can well reflect the externality and spatial spillover effects
triggered by different influencing factors. To ensure that SDM cannot be simplified to SAR
and SEM models, before estimating the model, the Wald and LR tests were run. The results
of the parameter analysis reject the null hypothesis and support SDM as the optimal model.
The basic expression of the SDM is as follows:

yit = ρ∑n
j=1 wijyit + β xit + δ∑n

j=1 wijxit + µi + γt + εit (9)

where y represents the explained variable, ρ is the spatial regression coefficient; δ is the
independent variable’s spatial lag coefficient; wij is the geo-spatial matrix; x is the explana-
tory variable; β, µ, and γ are the parameters to be estimated, the individual effect, and the
time effect, respectively; and ε is the disturbance term. If δ = 0 and ρ ̸= 0, the SDM model
can be simply reduced to SAR; otherwise, SDM can be simply reduced to SEM.

In this study, ACEE was selected as an explained variable, which was calculated by
the super-efficient SBM—Undesirable model. AM in each province was selected as the core
explanatory variable, which was calculated through the entropy method.

3.6. Panel Threshold Model (PTM)

ACEE varies throughout provinces, such as Hainan, Guangdong, Beijing, and other
provinces where ACEE has reached the level of super-efficiency, while Gansu, Jilin, and
other provinces are still in the initial stage. Therefore, we chose the panel threshold model
proposed by Hansen [60] to identify the threshold effect of AM on ACEE. The specific
formula is as follows:

aceit = α + Xitδ + β1amit I(amit ≤ γ1) + β2amit I(γ1 ≤ amit ≤ γ2) + · · ·
+ βnamit I(amit > γn) + εit

(10)

where aceit is the explained variable; amit is the core explanatory variable, which is the
threshold value; Xit denotes the control variable; and εit is the random error term.

We selected the level of economic development, urbanization rate, industrialization,
technological innovation, the openness of agricultural products, and the disaster’s scope
as control variables. The level of economic development (gdp) is represented by GDP;
the urbanization rate (urb) is represented by the ratio of the urban population to the total
population; industrialization (indus) is represented by the ratio of the value added of the
industry to GDP; technological innovation (rdjf) is represented by the ratio of the internal
R&D expenditure to GDP; the openness of agricultural products (open) is represented by
the total amount of import and export of the agricultural products; and the disaster’s scope
(dis) is represented by the area of the affected area of the agriculture.

4. Results
4.1. General Characteristics of AM
4.1.1. Overall Trend of AM

To directly determine the changes in China’s AM, we applied the kernel density to
examine the unevenness of AM and the overall kernel density map was obtained, as shown
in Figure 1.

In terms of distribution position, the curve as a whole shifts to the right, but the shift
is small, indicating that AM, on the whole, exhibits a slow growth trend. In terms of
time distribution, the height of the curve decreases significantly, and the width expands
significantly from 2000 to 2019, indicating that the overall gap in AM has continued to
widen with the passage of time. In terms of curve distribution, the curve shows different
degrees of “double peaks” or even “triple peaks”, indicating that China’s AM has a multi-
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peak pattern, which shows the phenomenon of multi-polarization and demonstrates that
regional variations exist in AM growth. Additionally, the right tail of the kernel density
curve lengthens each year. The distribution has a tendency to spread to a certain extent,
implying that the spatial gap in AM is gradually widening nationwide.
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4.1.2. Spatiotemporal Evolution Characteristics of AM

Figure 2 shows that the level of AM increased, but the pace of development was
slow. The level of AM increased from 0.201 in 2000 to 0.349 in 2019, with a slow upward
trend and an average annual increase of 2.94%, which could be roughly divided into two
phases. In the first phase (2000–2015), AM grew at a faster rate, with an average annual
growth rate of 3.21%. However, in the second phase (2015–2019), the growth rate of AM
slowed down with an average yearly growth rate of 1.95%. Regionally, AM in the three
major regions grew steadily, showing a gradually decreasing spatial pattern from eastern
to central and western regions. Throughout the study period, AM in the eastern region
was greater than the national average level, followed by the central and western regions,
both of which were lower than the national level. The central region had an AM of 0.18
in 2000 and 0.32 in 2019, while the western region had 0.17 in 2000 and 0.30 in 2019. In
contrast, the eastern region’s agricultural development was more rapid, as evidenced by
the fact that the region had an AM of 0.24 in 2000 and 0.42 in 2019, with a higher average
yearly growth rate of 2.99% compared to the central (2.89%) and western regions (2.91%).
Similarly, only the eastern region had an average yearly growth rate that exceeded the
national average, further indicating that AM in the eastern region was developing well.
With the advantage of reform and opening up, the eastern region has faster economic
development, better infrastructure conditions, more investment in agriculture and industry,
more opportunities to attract investment in the countryside, and a more advanced level of
agricultural technology, all of which drive the development of AM.

To further reveal the spatial changes in China’s AM, using ArcGIS 10.8 to visualize
the AM, the data from 2000, 2005, 2010, 2015, and 2019 were selected. The natural break
method is based on the distribution pattern of the data and avoids the interference of
human factors, so we selected this method to analyze the spatial distribution and defined it
according to the five levels divided into low, medium–low, medium, medium–high, and
high levels. Figure 3 presents the results.



Agriculture 2024, 14, 939 11 of 27

Agriculture 2024, 14, x FOR PEER REVIEW 11 of 29 
 

 

Figure 2 shows that the level of AM increased, but the pace of development was 
slow. The level of AM increased from 0.201 in 2000 to 0.349 in 2019, with a slow upward 
trend and an average annual increase of 2.94%, which could be roughly divided into two 
phases. In the first phase (2000–2015), AM grew at a faster rate, with an average annual 
growth rate of 3.21%. However, in the second phase (2015–2019), the growth rate of AM 
slowed down with an average yearly growth rate of 1.95%. Regionally, AM in the three 
major regions grew steadily, showing a gradually decreasing spatial pattern from eastern 
to central and western regions. Throughout the study period, AM in the eastern region 
was greater than the national average level, followed by the central and western regions, 
both of which were lower than the national level. The central region had an AM of 0.18 in 
2000 and 0.32 in 2019, while the western region had 0.17 in 2000 and 0.30 in 2019. In con-
trast, the eastern region’s agricultural development was more rapid, as evidenced by the 
fact that the region had an AM of 0.24 in 2000 and 0.42 in 2019, with a higher average 
yearly growth rate of 2.99% compared to the central (2.89%) and western regions (2.91%). 
Similarly, only the eastern region had an average yearly growth rate that exceeded the 
national average, further indicating that AM in the eastern region was developing well. 
With the advantage of reform and opening up, the eastern region has faster economic 
development, better infrastructure conditions, more investment in agriculture and in-
dustry, more opportunities to attract investment in the countryside, and a more advanced 
level of agricultural technology, all of which drive the development of AM. 

 
Figure 2. Variation in China’s AM over time. 

To further reveal the spatial changes in China’s AM, using ArcGIS 10.8 to visualize 
the AM, the data from 2000, 2005, 2010, 2015, and 2019 were selected. The natural break 
method is based on the distribution pattern of the data and avoids the interference of 
human factors, so we selected this method to analyze the spatial distribution and defined 
it according to the five levels divided into low, medium–low, medium, medium–high, 
and high levels. Figure 3 presents the results. 

The overall AM across the studied region is in an upward trend, with a spatial 
cluster distribution and significant regional differentiation, exhibiting a gradual decline 
from the eastern coastal region to the central and western regions. Specifically, high and 
medium–high levels of AM dominate in the eastern coastal region, medium and medi-
um–low levels of AM dominate in the central region, and low levels of AM mainly occur 
in the western region. In terms of spatial and temporal evolution, the differences between 

Figure 2. Variation in China’s AM over time.

Agriculture 2024, 14, x FOR PEER REVIEW 12 of 29 
 

 

regions have become progressively greater. AM in 2000 and 2005 was predominantly at a 
medium level, which accounted for 26.67% and 30%, respectively, and occurred 
throughout the central and western regions, at which point it was relatively balanced 
across regions. In 2010 and 2015, AM was predominantly at a medium–low level, ac-
counting for 36.67% of the total, and all low-value areas were in the central and western 
regions. In 2019, AM occurred at low and medium–low levels, accounting for 56.67%, and  
low-value areas were also all located in central and western regions. From 2000 to 2019, a 
large area centered on Beijing and Zhejiang was basically formed; specifically, in the 
eastern region, AM has occurred at a high level in Beijing, whereas AM efforts in Fujian, 
Zhejiang, Shanghai, and Jiangsu have been at medium–high or high levels. Moreover, 
AM in the central region shifted from a predominantly medium level to a predominantly 
medium–low level. Although AM in the western region has been increasing, Gansu, 
Shaanxi, Chongqing, and Yunnan have undergone growth at a slower pace than other 
provinces, resulting in their low levels of AM. This might be because Gansu, Chongqing, 
Yunnan, and Shaanxi have complex topography and landscapes, with plateaus and 
mountains spread across their territories, and the natural conditions of the land are poor, 
making it difficult to carry out large-scale agricultural production, thus having a con-
straining effect on AM. 

 
Figure 3. Spatiotemporal of AM in China. 

4.1.3. Spatial Agglomeration Characteristics of AM 

Figure 3. Spatiotemporal of AM in China.



Agriculture 2024, 14, 939 12 of 27

The overall AM across the studied region is in an upward trend, with a spatial cluster
distribution and significant regional differentiation, exhibiting a gradual decline from the
eastern coastal region to the central and western regions. Specifically, high and medium–
high levels of AM dominate in the eastern coastal region, medium and medium–low levels
of AM dominate in the central region, and low levels of AM mainly occur in the western
region. In terms of spatial and temporal evolution, the differences between regions have
become progressively greater. AM in 2000 and 2005 was predominantly at a medium level,
which accounted for 26.67% and 30%, respectively, and occurred throughout the central
and western regions, at which point it was relatively balanced across regions. In 2010 and
2015, AM was predominantly at a medium–low level, accounting for 36.67% of the total,
and all low-value areas were in the central and western regions. In 2019, AM occurred
at low and medium–low levels, accounting for 56.67%, and low-value areas were also all
located in central and western regions. From 2000 to 2019, a large area centered on Beijing
and Zhejiang was basically formed; specifically, in the eastern region, AM has occurred
at a high level in Beijing, whereas AM efforts in Fujian, Zhejiang, Shanghai, and Jiangsu
have been at medium–high or high levels. Moreover, AM in the central region shifted
from a predominantly medium level to a predominantly medium–low level. Although
AM in the western region has been increasing, Gansu, Shaanxi, Chongqing, and Yunnan
have undergone growth at a slower pace than other provinces, resulting in their low levels
of AM. This might be because Gansu, Chongqing, Yunnan, and Shaanxi have complex
topography and landscapes, with plateaus and mountains spread across their territories,
and the natural conditions of the land are poor, making it difficult to carry out large-scale
agricultural production, thus having a constraining effect on AM.

4.1.3. Spatial Agglomeration Characteristics of AM

Table 3 shows the Global Moran’s I of AM level from 2000 to 2019. At the 1% signifi-
cance level, AM passed the z-test, and every coefficient was positive, which indicates that
the regions with high levels of AM were spatially neighboring each other, and the regions
with low levels of AM were also spatially neighboring each other. Under the geographical
weight matrix of AM, Moran’s I index fluctuation decreased, indicating a decrease in the
degree of spatial agglomeration, which may be because the choices of the development
path of AM in different regions became diversified by economic growth.

Table 3. Global Moran’s I of AM.

Year 0–1 Neighborhood
Weight Matrix Year 0–1 Neighborhood

Weight Matrix Year
Geographic

Distance Weighting
Matrix

Year
Geographic

Distance Weighting
Matrix

2000 0.517 *** 2010 0.619 *** 2000 0.110 *** 2010 0.163 ***
2001 0.592 *** 2011 0.603 *** 2001 0.124 *** 2011 0.167 ***
2002 0.612 *** 2012 0.612 *** 2002 0.130 *** 2012 0.165 ***
2003 0.568 *** 2013 0.598 *** 2003 0.115 *** 2013 0.171 ***
2004 0.548 *** 2014 0.586 *** 2004 0.123 *** 2014 0.166 ***
2005 0.567 *** 2015 0.584 *** 2005 0.137 *** 2015 0.168 ***
2006 0.515 *** 2016 0.542 *** 2006 0.114 *** 2016 0.152 ***
2007 0.509 *** 2017 0.521 *** 2007 0.125 *** 2017 0.140 ***
2008 0.550 *** 2018 0.469 *** 2008 0.143 *** 2018 0.113 ***
2009 0.595 *** 2019 0.439 *** 2009 0.155 *** 2019 0.099 ***

Note: *** represents the significance at the 1% level.

To further analyze the types of spatial agglomeration and spatial anomalies of AM
in local areas, we used data from 2000, 2005, 2010, 2015, and 2019 to analyze local spatial
correlation patterns, with LISA clustering maps, as shown in Figure 4.
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The LISA maps of AM indicate that H-H are clustered in the eastern region, while
L-L are clustered in central and western regions. Meanwhile, China’s AM resulted in a
high-level agglomeration area with Tianjin as the center and a low-level agglomeration area
on Sichuan, Shaanxi, and Ningxia. Considering these five stages, the Beijing–Tianjin–Hebei
region and Yangtze River Delta are often developed at an H-H, while Shaanxi, Ningxia,
Hunan, Guangxi, Chongqing, Yunnan, and Guizhou are frequently developed at an L-L. In
China, AM has a varied spatial distribution, with significant spatial spillover effects.

4.2. General Characteristics of ACEE
4.2.1. Overall Trend of ACEE

Based on the calculated results of ACEE in the 30 Chinese provinces, 10 time points
were selected at one-year intervals starting from 2000 for kernel density estimation to
analyze the distribution of ACEE (Figure 5). In 2000, the ACEE of all provinces was about
0.2 (except Hainan), and Hainan reached the super-efficiency level in 2000, resulting in
the right-trailing anomaly of the kernel density curve in 2000. In terms of the distribution
position, the density curve of ACEE has a tendency to shift to the right, showing that the
ACEE in 30 provinces is increasing. Regarding the changes in the curve shape, its height
first rises and then falls, and the width of the main peak first narrows and then expands,
indicating that the interprovincial differences in the ACEE first decrease and then increase.
The curve changes from a single peak to a double peak, and the distance between the two
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peaks becomes larger, which means that there is a clear polarization of the ACEE across
provinces.
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4.2.2. Spatiotemporal Evolution Characteristics of ACEE

China’s overall ACEE showed continuous and rapid growth, with an ACEE of 0.19 in
2000 and 0.75 in 2019 and an average annual growth rate of 27.20% (Figure 6); however,
the overall ACEE was below 0.8 during the study period and never reached an effective
threshold in DEA, indicating that although low-carbon agriculture in China is improving
rapidly, there is still immense potential for improving the quality of the agricultural econ-
omy. From a regional perspective, the three main regions’ ACEE steadily increased, but
there were differences in regional development levels, showing a spatial pattern of eastern
regions > western regions > central regions. In the process of sustainable agricultural
development, the eastern area applies stricter design and implementation guidelines and is
at a higher level in terms of the corresponding technical elements and management, while
the western region has richer land resources and diversified types of natural environment,
with a vast area of arable land and fragile ecological conditions of its own, with building
an eco-civilized society being more prioritized. The central region, except Shanxi, is the
primary grain-producing region with a large area of cultivated land; however, the realiza-
tion of comprehensive agricultural production capacity in the main grain-producing area
requires higher input of production materials, resulting in lower ACEE [61].

Based on the data from 2000, 2005, 2010, 2015, and 2019, the ACEE of each province was
ranked using the natural break method and categorized into low, medium–low, medium,
medium–high, and high levels according to the grading results.

According to Figure 7, from 2000 to 2019, China’s ACEE continued to grow and
showed significant spatial differentiation, manifested as relatively high ACEE in the eastern
coastal region and western region and relatively low ACEE in the central region, with an
overall spatial evolution pattern of diffusion from the eastern coastal and western regions
to the central region. Meanwhile, ACEE in the southern region of China was significantly
higher than that in the northern region. Specifically, the high-value areas of ACEE were
mainly distributed in Hainan, Guangdong, and Fujian in the eastern region, as well as
Sichuan, Qinghai, and Xinjiang in the western region, forming high-value agglomerations
centered on the southeastern and northwestern regions. The low-value areas of ACEE
were mainly distributed in Heilongjiang and Shanxi in the central region and Gansu in the
western region, with a cluster of low values centered in the central and northern parts of
China. Among all the provinces, ACEE in Hainan Province was at a high level in all four
time periods, while ACEE in Gansu Province was always at a low level. Thus, its ACEE
needs to be further improved.
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4.2.3. Spatial Agglomeration Characteristics of ACEE

Table 4 shows that the global Moran’s I of China’s ACEE coefficients are all positive and
significant, suggesting that areas with high ACEE are adjacent to each other, and areas with
low ACEE are also spatially adjacent to each other. Moran’s I of ACEE shows fluctuations,
with a gradual increase from 2000 to 2006, indicating that the spatial agglomeration of
ACEE increased, with a fluctuating decrease after reaching the peak in 2006. This is due
to the implementation of targeted low-carbon agricultural policies in various regions,
resulting in a more independent ACEE, which weakened the spatial agglomeration. The
global Moran’s I was 0.211 in 2019, compared with 0.153 in 2000, indicating a more positive
spatial correlation of China’s ACEE.

Table 4. Global Moran’s I of ACEE.

Year 0–1 Neighborhood
Weight Matrix Year 0–1 Neighborhood

Weight Matrix Year
Geographic

Distance Weighting
Matrix

Year
Geographic

Distance Weighting
Matrix

2000 0.153 *** 2010 0.310 *** 2000 0.019 *** 2010 0.054 ***
2001 0.138 *** 2011 0.289 *** 2001 0.013 *** 2011 0.066 ***
2002 0.410 *** 2012 0.253 *** 2002 0.065 *** 2012 0.046 **
2003 0.434 *** 2013 0.217 ** 2003 0.071 *** 2013 0.020 *
2004 0.376 *** 2014 0.226 *** 2004 0.061 *** 2014 0.025 *
2005 0.432 *** 2015 0.272 *** 2005 0.071 *** 2015 0.057 ***
2006 0.462 *** 2016 0.257 *** 2006 0.086 *** 2016 0.073 ***
2007 0.360 *** 2017 0.245 ** 2007 0.048 ** 2017 0.072 ***
2008 0.286 *** 2018 0.249 ** 2008 0.030 ** 2018 0.062 ***
2009 0.359 *** 2019 0.211 ** 2009 0.060 *** 2019 0.025 **

Note: ***, **, and * mean significant at the levels of 1%, 5%, and 10%, respectively.

To further analyze the types of spatial agglomeration and spatial anomalies of ACEE
in local areas, data from 2000, 2005, 2010, 2015, and 2019 were selected to analyze local
spatial correlation patterns, with LISA clustering maps. The results are shown in Figure 8.
From the LISA maps of the ACEE, it was found that H-H aggregation areas were clustered
in the southern region centered on Guangdong, while L-L aggregation areas in the northern
region centered on Hebei and Inner Mongolia.

4.3. Spatial Econometric Analysis of the Impact of AM on the ACEE

To verify whether there was significant collinearity between the variables that affected
the estimation of the model parameters, we used the VIF (variance inflation factor) test
(Table 5). The result of the VIF test showed that all VIF values were less than 10, which
indicated that there was no significant multi-collinearity between the variables.

Table 5. VIF test for variables.

Variables VIF 1/VIF

am 3.09 0.324
gdp 2.62 0.381
urb 3.15 0.318

indus 1.26 0.797
rdjf 2.54 0.394

open 2.84 0.353
dis 1.22 0.816

Mean VIF 2.39
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Since both AM and ACEE are spatially autocorrelated (Tables 3 and 4), selecting an
appropriate spatial econometric model is crucial for the estimation process.

First, we applied the LM (robust) test to select which spatial econometric model to
use. Table 6 shows the LM and robust LM test results, which indicate that the SDM model
is suitable for studying the spatial effect of AM on ACEE. Meanwhile, the Wald test and
the LR test were used to determine whether SDM could be converted into SAR and SEM.
Further, SDM did not degenerate into SAR and SEM models as the spatial lag and spatial
error coefficients were significant at the 1% level, at which time the SDM was the optimal
fit model. Additionally, the Wald test was used for testing, and the p-value was determined,
which led us to reject the null hypothesis, reaffirming SDM’s superiority over the other
models. In addition, the Hausman test (H0: presence of random effects) statistics were
negative at −4.59 and −19.73, respectively, so the fixed-effect model performed better than
the random-effect model; these results were also combined with the R2 results to select the
SDM with individual fixed effects. Therefore, we employed the SDM with a fixed-effect
model to test the spatial spillover effect of AM on ACEE.
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Table 6. Identification test of the spatial econometric model.

Test 0–1 Neighborhood Weight
Matrix

Geographic Distance
Weighting matrix

LM (lag) test 171.180 *** 234.706 ***
Robust LM (lag) test 92.053 *** 116.239 ***

LM (error) test 84.115 *** 132.421 ***
Robust LM (error) test 4.989 ** 13.954 ***
LR test (SDM or SAR) 26.53 *** 34.06 ***
LR test (SDM or SEM) 71.49 *** 87.55 ***

Wald test 63.77 *** 55.45 ***
Note: *** and ** mean significant at the levels of 1% and 5%.

4.3.1. Estimation Results of SDM

According to Table 7, the examination of the spatial spillover effect of ACEE showed
that the spatial autoregressive coefficients of the two matrices were 0.378 and 0.425, re-
spectively, both passing the 1% significance test. This shows that there is a significant
spatial interaction effect of the ACEE between the neighboring provinces. Regions with
a higher ACEE undergo spatial agglomeration and can promote the ACEE in neighbor-
ing provinces through the diffusion of advanced technologies and successful agricultural
production experiences.

Table 7. Estimation of SDM model with two weight matrices.

Variables 0–1 Neighborhood Weight
Matrix

Geographic Distance
Weighting Matrix

am 0.397 *
(0.205)

0.506 ***
(0.191)

gdp 0.000 ***
(0.000)

0.000 ***
(0.000)

urb −0.001
(0.001)

−0.002
(0.001)

indus −0.002 **
(0.001)

−0.002 ***
(0.001)

rdjf −10.669 ***
(1.619)

−8.562 ***
(1.537)

open −0.000 **
(0.000)

−0.000
(0.000)

dis −0.000
(0.000)

−0.000
(0.000)

w×am 0.848 **
(0.363)

0.487 ***
(0.714)

w×gdp 0.000 **
(0.000)

0.000
(0.000)

w×urb 0.002
(0.002)

0.006 **
(0.003)

w×indus −0.004 ***
(0.001)

−0.015 ***
(0.003)

w×rdjf 2.098
(3.228)

4.179
(5.999)

w×open −0.000 **
(0.0000540)

−0.000
(0.000119)

w×dis −0.001 **
(0.000466)

−0.000
(0.000836)

R2 0.484 0.496

ρ
0.378 ***
(0.0513)

0.425 ***
(0.0826)

Note: ***, ** and * mean significant at the levels of 1%, 5% and 10%, respectively.
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AM had a positive effect on ACEE. The direct term coefficients of AM under the
two matrices were 0.397 and 0.506, respectively, and both passed the 10% significance
test. This shows that AM has a positive effect on the improvement in ACEE. Among the
control variables, the ACEE was positively influenced by the economic development and
the urbanization rate, with the disaster’s scope considered not significant for the time being;
by contrast, industrialization, technological innovation, and the openness of agricultural
products had a significant inhibitory effect on ACEE.

The spatial lag-term coefficients of AM under the two matrices were 0.848 and 0.487,
indicating that the development of AM had a significant spatial spillover effect on the
enhancement of the ACEE. The coefficients of the spatial lag terms of the economic devel-
opment level and the urbanization rate were both significantly positive, suggesting that the
increase in these two variables enhanced ACEE in neighboring provinces. The disaster’s
scope, the openness of agricultural products, and industrialization all had spatial lag effects
with significantly negative coefficients, meaning that the increase in these measures reduced
ACEE in the neighboring provinces.

4.3.2. Decomposition of Spatial Spillovers

Due to the existence of spatial lag terms in the SDM, the regression coefficients cannot
describe explanatory variables’ impact on the explained variables, which could lead to
bias in the coefficient estimation. Therefore, we used the variance–covariance matrix
of the SDM estimation results [62] to evaluate how each control variable and the core
explanatory variables combined to determine ACEE in the local and neighboring regions
and categorized the effect into direct and indirect effects.

As can be seen from Table 8, under the 0–1 neighborhood weight matrix, the direct,
indirect, and total effects of AM on ACEE all passed the significance test at 5%, indicating
that every 1% increase in AM directly increased the ACEE of the province by 0.507% and
indirectly increased the ACEE of the neighboring provinces by 1.472%, and the overall
region improved by 1.979%. Under the geographic distance weighting matrix, every
1% increase in AM directly contributed to a 0.535% increase in ACEE while indirectly
contributing to a 1.146% increase in the ACEE of the neighboring provinces and a 1.682%
increase in the ACEE for the entire region. These findings suggest that the interprovincial
spillover of AM to ACEE is obviously stronger than the intraprovincial spillover, indicating
the spatial spillover of AM to ACEE. Additionally, it reveals the existence of a peer effect.

After comparing the regression results under the two spatial weight matrices, it
was found that AM positively affected ACEE in the province under both spatial weight
matrices. This may be because the traditional high-carbon-emission production methods
have gradually been replaced in the process of AM, due to the dual role of the state and
the capital market. This substitution presents new features and technologies in agriculture
and improves land output efficiency and labor productivity. In both weight matrices, the
indirect effect of AM was also significantly positive, and the indirect effect was much
larger than the direct effect, suggesting that while AM rapidly increased, the new features
and technologies it provided and the high-quality factors of production spilled over to
the neighboring regions, spreading across the region through a “learning effect” and a
“trickle-down effect”, thus contributing to improving ACEE in neighboring provinces.

Considering the control variables, the total, direct, and indirect effects of economic
development on ACEE were significantly positive. It has been shown that the relationship
between agricultural resources and the economy has an inverted “U” shape [63]. At present,
China’s agricultural carbon emissions are at an “inflection point” in the environmental
curve, and there is a clear downward trend of agricultural carbon emissions as the agricul-
tural economy develops; the higher the farmers’ incomes, the more money they invest in
agriculture, improving ACEE, enhancing the region’s industrial hierarchy, and rationalizing
its industrial structure.
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Table 8. Decomposition of SDM model effects under two spatial weight matrices.

Effects Variables 0–1 Neighborhood
Weight Matrix

Geographic Distance
Weighting Matrix

Direct effect

am 0.507 **
(2.509)

0.535 ***
(2.676)

gdp 0.000 ***
(7.663)

0.000 ***
(5.681)

urb −0.001
(−0.503)

−0.001
(−1.374)

indus −0.002 ***
(−3.126)

−0.003 **
(−4.088)

rdjf −10.834 ***
(−6.452)

−8.536 ***
(−5.706)

open −0.000 **
(−2.393)

−0.000
(−1.126)

dis −0.000
(−0.542)

−0.000
(−0.629)

Indirect effect

am 1.472 ***
(2.866)

1.146 ***
(0.923)

gdp 0.000 ***
(4.082)

0.000 **
(2.064)

urb 0.002
(1.026)

0.00835 *
(1.894)

indus −0.006 ***
(−3.496)

−0.027 ***
(−4.512)

rdjf −2.677
(−0.528)

1.245
(0.117)

open −0.000 ***
(−2.771)

−0.000 *
(−1.666)

dis −0.002 **
(−2.2290)

−0.001
(−0.3843)

Total effect

am 1.979 ***
(3.7705)

1.682 ***
(1.2921)

gdp 0.000 ***
(5.9812)

0.000 ***
(2.9303)

urb 0.002
(0.7855)

0.007
(1.5343)

indus −0.008 ***
(−4.3348)

−0.029 ***
(−4.7445)

rdjf −13.512 **
(−2.2208)

−7.291
(−0.6521)

open −0.000 ***
(−3.0754)

−0.000 *
(−1.7424)

dis −0.002 **
(−2.1632)

−0.001
(−0.4764)

Note: ***, ** and * mean significant at the levels of 1%, 5% and 10%, respectively.

In the geographic distance weight matrix, the indirect effect of the urbanization
rate on the ACEE was significantly positive, suggesting that the growth of urbanization
in provinces contributed to a reduction in the scale of agricultural production in the
surrounding areas and thus a reduction in carbon emissions. Industrialization had a
significant negative effect on the increase in the ACEE because technological innovations
resulting from the current rapid pace of industrialization are still oriented toward economic
efficiency. As the agricultural economy grows, the demand for input factors increases,
creating a “rebound effect” [64]. As the global trade of agricultural products increases, high
inputs and consumption will boost agricultural production, which has a significant negative
impact on ACEE. The rate of agricultural disasters and ACEE were negatively correlated.
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Because of the dependence of agricultural production on the natural environment, disasters
will decrease agricultural productivity to a higher extent, leading to a decrease in the ACEE.

4.3.3. Threshold Regression Results

When an economic indicator reaches a specific value, it can cause another indicator
to change abruptly, which reflects other forms of development, a phenomenon called the
threshold effect. The test results of threshold variables are shown in Table 9, indicating that
AM had two thresholds for ACEE, which were 0.3987 and 0.4192, respectively.

Table 9. Threshold test and threshold value (BS count of 300).

Single Threshold Double Threshold Triple Threshold

Threshold value 0.3987 *** 0.4192 *** 0.2028
Note: *** represents the significance at the 1% level.

In Figure 9, the dotted line represents the reference line’s 95% significance, and the
part of the curve falling under this line indicates the area where the two threshold estimates
are equal to the accurate threshold values.
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Table 10 shows the threshold effect of the core explanatory variables, indicating that
agriculture modernization had a nonlinear positive impact on ACEE, with differences in the
degree of influence. When the level of AM was lower than 0.3987, the regression coefficient
of AM on ACEE was 1.574. When the AM level was between 0.3987 and 0.4192, the
regression coefficient was 2.120. When the AM level was higher than 0.4192, the regression
coefficient was 1.456, indicating that its impact on enhancing the ACEE decreased.

In dynamic evolution, the marginal effect of AM on improving the ACEE exhibited a
decreasing trend. After AM reached the threshold that reflected a shift to a diminishing
marginal effect, AM still contributed to ACEE, but it was no longer as influential as at the
previous threshold stage.

Considering the control variables, the level of economic development and the urban-
ization rate had a significant contribution to ACEE, whereas industrialization, technological
innovation, the openness of agricultural products, and the disaster’s scope had a detrimen-
tal impact on ACEE. As the economy grows, more funds are allocated to agriculture, and
agricultural production becomes more effective. The increasing rates of the urbanization
rate promote the intensification of rural land, increasing the land output rate. Industrializa-
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tion has provided agriculture with machinery and increased energy consumption, leading
to an increase in agricultural carbon emissions. Although technology and R&D investment
increases, the transformation of achievements is low. As the trade of agricultural products
increases, more products are required, leading to more fertilizer inputs, thus increasing
agricultural carbon emissions. Natural disasters have an impact on crops, which reduces
the effectiveness of measures aimed at reducing agricultural carbon emissions.

Table 10. Threshold value and parameter estimation.

Variable Regression Coefficient T Value

am (am ≤ 0.3987) 1.574 *** 8.20
am (0.3987 < am ≤ 0.4192) 2.120 *** 11.11

am (am > 0.4192) 1.456 *** 9.30
gdp 0.001 *** 11.54
urb 0.005 *** 5.16

indus −0.004 *** −5.97
rdjf −9.098 *** −5.55

open −0.174 *** −3.58
dis −0.001 ** −2.23
R2 0.4946

Note: ***and ** mean significant at the levels of 1% and 5%.

4.3.4. Endogenous Analysis

Since AM and ACEE may be intrinsically related, improvement in AM has a positive
contribution to the enhancement of ACEE, and conversely, ACEE will affect the extent of
AM advances. Therefore, we selected the most commonly used two-order least-square
estimation (2SLS) method using instrumental variables. The lagged one period of the
explanatory variable AM was selected as the instrumental variable and 2SLS estimation
was used for endogenous analysis. The results are shown in Table 11. The F value of the
first stage was 3674.24, which was larger than the critical value, suggesting that there was
no weak instrumental variable. The second-stage results are consistent with the previous
findings, indicating that reverse causality does not significantly affect the conclusions of
this study and that the previous regression results are more reliable.

Table 11. The results of the endogenous analysis.

Variables (1) (2)

L_am 0.984 ***
(0.011)

am 1.484 ***
(0.139)

gdp −0.005
(0.005)

0.799 ***
(0.060)

urb 0.000 **
(0.000)

0.001 *
(0.001)

indus 0.005
(0.006)

−0.728 ***
(0.072)

rdjf 0.054
(0.066)

−6.959 ***
(0.813)

open 0.003
(0.005)

−0.378 ***
(0.056)

dis −0.000
(0.000)

−0.002 ***
(0.000)

_con 0.004
(0.003)

0.232 ***
(0.037)

R2 0.979 0.564
Phase I F value 3674.24

Note: ***, ** and * mean significant at the levels of 1%, 5% and 10%, respectively.
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5. Discussion
5.1. Strategies to Enhance Agricultural Modernization

China has made certain achievements in the agricultural modernization process, but its
growth rate is relatively slow, while the regional imbalance phenomenon is prominent, and
agricultural modernization in the eastern region is at a higher level, which is in line with the
study of Yan [28]. The flat terrain in the eastern region provides a geographical advantage
for agricultural production, and the use of e-commerce and digital agriculture technology
has been effective in promoting the integration of the agricultural industry [65]. Meanwhile,
according to Han [66], the developed regional economy in the eastern region leads to the
diversification of its agricultural production methods, which may also be the reason for the
higher level of agricultural modernization in the eastern region. In contrast, the central and
western regions have backwardness in economic development, agricultural production
technology, and management methods, which constrains agricultural modernization. Since
agricultural modernization has a promoting effect on carbon emission efficiency in the
provinces and neighboring provinces, it is imperative to give full play to the role of regional
linkage, with the eastern region actively exploring new modes and paths, while the central
and western regions fully discovering their own strengths by learning from successful
experiences according to local conditions and enhancing agricultural modernization.

At present, constrained by the dispersal of land parcels, Chinese agriculture is still
dominated by the micro-organizational structure of smallholder farming, which makes it
difficult to achieve large-scale, industrialized, and intensive management. New agricultural
management bodies such as agricultural cooperatives and family farms can enhance the
collective action of farmers through the consolidation of resources and the provision of
technological and financial support [67], thereby promoting the effective convergence of the
smallholder farming economy and agricultural modernization. However, it has also been
pointed out that Chinese cooperatives have the problems of shell cooperatives with irregular
operation [68,69], which is not conducive to carbon emission reduction, so guaranteed
initiatives by the government are crucial to achieving agricultural modernization. In
addition, the establishment of a comprehensive agricultural modernization production
chain allows for an improvement in the quality, efficiency, and overall competitiveness
of agriculture. Increasing the green development level of agricultural modernization;
avoiding blind inputs of chemical fertilizers, pesticides, and other means of production;
and promoting the use of green farmyard fertilizers are some of the strategies that can be
used. These will further restructure the agriculture sector; reduce the scale of cultivation
with high energy consumption and crops with high chemical input; allow for adopting
new varieties that are low-carbon, high-yielding, and resilient to adversity; and improve
plant productivity and carbon sink capacity. To fully acknowledge the significant role that
agricultural technology innovation has for agriculture, innovation should be orientated
toward “low consumption, low emission, and recycling” and should be developed and
applied according to different needs.

5.2. Limitations

The influence mechanism of agricultural modernization on agricultural carbon emis-
sion efficiency is more complex, and this research still needs to be deepened. Since agricul-
ture is not only associated with carbon sources but also carbon sinks, we only considered
carbon sources; therefore, in future research, we will continue to improve the selection of
this indicator system and the influencing factors and establish a scientific and reasonable in-
dicator system for agricultural carbon sinks so that agricultural carbon sources and carbon
sinks can be jointly analyzed.

6. Conclusions

Based on the development level of China’s agricultural modernization and agricultural
carbon emission efficiency from 2000 to 2019, we examined the impact of agricultural
modernization on agricultural carbon emission efficiency.
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Through the analysis above, it was found that (1) agricultural modernization in the
three major regions in China has been developing steadily, but regional differences are
widening. In spatial terms, it generally showed a tendency to spread from the eastern
coastal areas to the central and western regions, and significant spatial clustering charac-
teristics were observed. (2) China’s agricultural carbon emission efficiency continued to
increase, although it never reached DEA efficiency, and its overall difference first decreased
and then increased. Spatially, the pattern of eastern region > western region > central
region was observed, with significant spatial clustering characteristics. (3) Agricultural
modernization had a significant promoting effect on carbon emission efficiency. Mean-
while, the direct, indirect, and total effects were all significantly positive, and the indirect
effect outweighed the direct effect, indicating that the spatial spillover effect was signifi-
cant. Between provinces, the spillover effect surpassed the direct effect within a province,
demonstrating the peer effect and the trickle-down effect. Agricultural modernization had
a nonlinear association with carbon emission efficiency, with a double threshold value, and
the marginal effect showed a decreasing trend. After agricultural modernization reached
the critical value reflecting a change in trend to a diminishing marginal effect, it still had a
promoting effect on carbon emission efficiency, but its influence was not as strong as at the
previous threshold stage.
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