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Abstract: Loop closure detection plays an important role in the construction of reliable maps for
intelligent agricultural machinery equipment. With the combination of convolutional neural networks
(CNN), its accuracy and real-time performance are better than those based on traditional manual
features. However, due to the use of small embedded devices in agricultural machinery and the need
to handle multiple tasks simultaneously, achieving optimal response speeds becomes challenging,
especially when operating on large networks. This emphasizes the need to study in depth the
kind of lightweight CNN loop closure detection algorithm more suitable for intelligent agricultural
machinery. This paper compares a variety of loop closure detection based on lightweight CNN
features. Specifically, we prove that GhostNet with feature reuse can extract image features with
both high-dimensional semantic information and low-dimensional geometric information, which
can significantly improve the loop closure detection accuracy and real-time performance. To further
enhance the speed of detection, we implement Multi-Probe Random Hyperplane Local Sensitive
Hashing (LSH) algorithms. We evaluate our approach using both a public dataset and a proprietary
greenhouse dataset, employing an incremental data processing method. The results demonstrate that
GhostNet and the Linear Scanning Multi-Probe LSH algorithm synergize to meet the precision and
real-time requirements of agricultural closed-loop detection.

Keywords: intelligent agricultural equipment; RGB-D SLAM; loop closure detection; lightweight
convolutional neural networks; multi-probe random-hyperplane locality-sensitive hashing

1. Introduction

In autonomous robotic systems, simultaneous localization and mapping (SLAM) has
been a focal point of research for decades [1–3]. Its primary aim is to map unknown
environments while concurrently localizing the robot within them, which is a critical
function for agricultural robots performing tasks like navigation [4,5], path planning [6],
and manipulation [7,8]. The classic SLAM process comprises four primary tasks: visual
odometry, optimization, loop closure detection and mapping [9,10]. Loop closure detection
serves the function of recognizing previously visited locations. If a loop closure has
occurred, adjustments can be made to the robot’s estimated trajectory based on the error
between the current estimated map point and the same map point that was last visited.
These adjustments correct for inaccuracies stemming from imprecise sensor measurements,
uncertain environmental conditions, and errors in odometry estimation. Therefore, loop
closure detection is crucial for correcting errors and optimizing the local map [11–13].
Common loop closure detection is divided into two steps: feature extraction and feature
matching. Feature extraction is to extract the feature information of the current image,
and feature matching is to use the feature information extracted in the previous step to
match the previously obtained image features to determine whether the current location
has ever been visited. However, the traditional manual features in feature extraction are
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not effective in greenhouse scenes, so the paper uses convolutional neural networks (CNN)
to extract image features. However, because the image features extracted by CNN are
high-dimensional information, it is difficult to use the bag of words matching method, so
the hash algorithm is proposed for feature matching.

With advancements in neural networks, researchers have noticed parallels between
loop closure detection in visual SLAM and image recognition and classification problems
addressed by neural networks. Both tasks boil down to addressing the challenge of
associating image data accurately [14]. Chen et al. introduced a loop closure detection
algorithm based on CNN and spatial-sequential filters, which improved the recall rate by
75% in the dataset [15]. It has been demonstrated that image features extracted from the
neural network outperform manually designed ones, thereby enhancing the accuracy of
loop closure detection.

1.1. Review

The current research on image appearance can be categorized into two main directions:
unsupervised learning of image features using self-encoder, and extraction of image features
through off-the-shelf CNN for loop closure detection. Gao et al. proposed a stacked
denoising auto-encoder model for unsupervised learning, achieving satisfactory precision.
However, the detection time of all frames will be about 2.2 s, which is not suitable for
real-time loop closure detection [16]. Jia Xuewei introduced PCANet-LDA, combining
unsupervised neural networks and linear discriminant analysis, and achieved a 60.2%
reduction in time cost compared with the GoodLeNet network by extracting features based
on network class differentiation [17].

Some approaches to loop closure detection rely on CNN. Hou et al. demonstrated
that AlexNet extracts descriptors three times faster than traditional manual descriptors
like SIFT features and Gist descriptors under significant illumination changes [18]. Xia
et al. proposed using the cascaded neural network model PCANet for better loop closure
detection. It takes more than 19% less time than SIFT features and Gist and guarantees
a minimum average precision of around 75% [19]. They also found that AlexNet fea-
tures trained twice using SVM yield optimal results in loop closure detection experiments,
showing more robustness than manually designed features [20]. Retraining the network
model is a promising approach to improve loop closure detection accuracy. Wang used
PCA for feature compression and sparse constraints on feature vectors before comparing
similarities, achieving that by expressing the features of an image with a 500-dimensional
vector [21]. Lopez-Antequera observed enhanced loop closure detection accuracy by re-
training AlexNet with the places dataset [22]. Similarly, Sünderhauf proposed an integrated
hashing algorithm and semantic search space partitioning technique, which accelerated
loop closure detection by utilizing the Hamming distance, resulting in a 99.6% speed
increase [23]. Shahid fine-tuned pre-trained AlexNet with different distance metrics, con-
cluding that cosine distance works more accurately than Euclidean distance [24]. Overall,
either retraining the off-the-shelf CNN model with a more targeted dataset or directly
using a pre-trained CNN limits the loop closure detection process to feature extraction and
matching, allowing loop closure detection to be performed online in real-time, which is
beneficial for practical engineering applications [25,26].

1.2. Related Work Overview

The aforementioned studies focused on improving the accuracy and real-time per-
formance of loop closure detection based on a CNN. However, in intelligent agricultural
equipment, it is very difficult to apply large CNNs to small embedded devices. Meanwhile,
the high accuracy and real-time requirements required in agricultural scenes bring more
challenges in the study of loop closure detection. Based on this, this paper aims to investi-
gate the relationship between lightweight CNN structures and detection accuracy, as well
as real-time performance, and explore the effect of a hashing algorithm on CNN network
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acceleration in a greenhouse scenario. Therefore, the main contributions of this paper are
the innovative applications of existing algorithms, as detailed below:

(1) During the image feature extraction phase in closed-loop detection, pre-existing CNN
models are employed to replace traditional manual methods, such as SIFT, for extract-
ing image features. Taking the accuracy and detection time of the detection algorithm
as the evaluation criteria, we compare the VGG19 CNN with three lightweight CNNs,
i.e., GhostNet, ShuffleNet V2, and Efficientnet-B0 models, in an open dataset. Mean-
while, we establish the Greenhouse dataset to verify that the most suitable model for
loop closure detection is GhostNet.

(2) Using the Random-Hyperplane Locality-Sensitive Hashing (RHLSH) algorithm to
reduce dimensionality and match features, which are extracted by CNN models. To
further accelerate the loop closure detection, two multi-probe random-hyperplane
locality-sensitive hashing algorithms are selected to speed up the detection algorithm.
In the proposed Greenhouse dataset, the experiments show that the step-wise probing
random-hyperplane locality-sensitive hashing using linear scanning can significantly
reduce the feature matching time with less accuracy loss.

2. Methods

Feature extraction and feature mapping are two key steps in loop closure detection,
which mainly affect the detection accuracy and time of the algorithm. Based on this, in this
section, we first select the appropriate lightweight CNN models for intelligent agricultural
equipment, which have been pre-trained, and we only use the CNN models for image
feature extraction, which does not require training the CNN models. Then, the image
features extracted by CNN models are matched by a hash algorithm. Then two improved
algorithms based on the hash algorithm are used to accelerate the matching and compare
the performance. Meanwhile, we establish the GreenHouse dataset to demonstrate its
performance. Accuracy–recall curves and average accuracy, as well as average time, are
used as performance evaluation metrics for loop closure detection.

2.1. Feature Extraction Model Introduction in Loop Closure Detection

The current mainstream visual SLAM systems still rely on corner points to describe
images, which limits their ability to characterize non-corner points, especially in images
with fewer corners. In contrast, CNNs offer a more comprehensive approach to feature
extraction by leveraging the rich data present in images. Lightweight CNNs, in particular,
provide the advantage of compact model structures without sacrificing essential features
found in larger CNNs.

The CNN model can be compressed by a variety of techniques, such as pruning,
weight sharing, weight quantization, and Huffman coding, but these methods may over-
look the significance of redundant features [27]. Of course, it is also possible to design
efficient architectural models, thereby reducing model parameters and computational effort
while preserving information about redundant features [28]. For example, ShuffleNet
was constructed with specialized core units that combine resolution-related convolutional
depth to minimize computational complexity and enhance efficiency [29]. GhostNet v2, an-
other example, focuses on generating compact feature maps using linear operations while
adopting channel mixing to optimize feature representation, effectively reducing the size
of the convolutional network model [30]. VGG19 is based on deeper convolutional neural
networks proposed by LeNet and AlexNet to achieve better performance [31]. Similarly,
EfficientNet-B0 replaced the ResNet module with the MBConv module, enhancing the
utilization of high-level feature information by redesigning the module architecture [28].

Due to the fact that efficient architecture models can reduce model parameters and
computational workload while minimizing the loss of redundant information, this paper
selects four lightweight CNNs—GhostNet, ShuffleNet v2, EfficientNet-B0, and VGG19—for
image feature extraction, aiming to explore lightweight approaches that maintain crucial
CNN features while enhancing loop closure detection performance. The structures of these
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CNNs are depicted in Figure 1, illustrating their feature extraction process and closed-loop
detection utilization. Each model, including GhostNet, ShuffleNet v2, and EfficientNet-B0,
employs distinct feature reuse strategies to achieve efficiency and effectiveness in loop
closure detection. The solid arrows in the figure represent the data flow within the parts
of the CNN models used in this paper, while the dashed arrows indicate the original
framework of the CNN models.
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Figure 1. Structure images of four deep CNN models structure images. (a) The framework of
GhostNet; (b) The framework of ShuffleNet; (c) The framework of EfficientNet-B0; (d) The framework
of VGG19.

2.2. Feature Matching in Loop Closure Detection with CNNs

A visual bag-of-words (BoW) model based on manually designed features is the most
commonly used solution for loop detection [32–39]. This method involves extracting feature
points from images using algorithms such as SIFT, SURF, or ORB, followed by clustering to
divide these points and their descriptors into multiple words. This allows the detection of
related feature vectors for the image through the BoW mapping. Here, we adopt a BoW
model based on SIFT feature points and use cosine similarity to measure image similarity.

In agricultural settings, the abundance of local feature points and the scene’s element
similarity render traditional methods less practical compared to those based on CNNs.
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However, CNN-extracted feature vectors often suffer from high dimensionality, necessitat-
ing methods like the RHLSH algorithm for downsizing and initial retrieval of image feature
vectors. RHLSH partitions high-dimensional space using random hyperplanes and orga-
nizes vectors based on their positions [40]. As illustrated in Figure 2, the CNN-extracted
feature map is reshaped into a feature vector and projected onto randomly generated
hyperplanes via hash function families represented by Hamming code. This approach
effectively represents the high-dimensional feature map using hash codes on randomly
generated, relatively low-dimensional hyperplanes.
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Figure 2. RHLSH projects high-dimensional feature graphs onto relatively low-dimensional graphs.

In high-dimensional space, any randomly sampled normal vector following the stan-
dard multivariate normal distribution N(0, I) has an equal probability of occurrence in
all directions, ensuring uniform sampling [41]. Consequently, projecting onto multiple
hyperplanes and calculating matching scores can enhance the matching accuracy of feature
maps. The workflow is as follows: after an image is processed by CNNs and the hash
code is generated, the corresponding hash bucket’s feature map is tallied. Each hash code
in different hyperplanes corresponds to a distinct hash bucket. Occasionally, multiple
feature maps may reside in a hash bucket, indicating that a hash code may correspond to
various feature maps. Therefore, statistical analysis of the feature maps within the hash
bucket is necessary. Ultimately, the feature map with the highest score surpassing the preset
threshold is deemed successfully matched. Otherwise, if the score falls below the threshold,
the matching fails, indicating that loop closure has not occurred. This entire process is
depicted in Figure 3.

Agriculture 2024, 14, x FOR PEER REVIEW 6 of 18 
 

 

Hash Code

Feature Map0

Feature Map1

Feature Map2

Feature Map3

...

Feature Map0

Feature Map4

Feature Map5

Feature Map6

...

Feature Map0 +1+1..
Feature Map1 +1...
Feature Map2 +1...
Feature Map3 +1...
Feature Map4 +1...

... ...

Score

Hash Bucket
 

Figure 3. RHLSH matches the image with a hash code. 

Increasing the number of hash function families and hash tables can enhance search 
accuracy and recall, but it also escalates memory space usage. To mitigate this, expanding 
the search range within the same hash table can be beneficial. Multi-probe Random-Hy-
perplane Locality-Sensitive Hashing (RHLSH) is an exploration method that improves 
search recall to some extent. Key strategies for expanding the search range include Step-
Wise Probing RHLSH (SWP-RHLSH) and Query-Directed Probing RHLSH (QDP-
RHLSH). 

For SWP-RHLSH, the Boolean hash value of the feature vector allows for gradual 
search range expansion based on the number of differing bits in the hash value. As feature 
vectors dynamically increase in loop closure detection, a linear scan is employed initially 
to determine hash bucket perturbations within a specified range, expediting the search. 

For QDP-RHLSH, a random hyperplane within the same hash table further refines 
search probability. Hash buckets with a higher likelihood of containing nearest neighbor 
feature vectors are prioritized, reducing incorrect feature vector exploration. An evalua-
tion probability function with respect to the random hyperplane can be defined as (2) for 
a given sequence of perturbation vectors T

kpV ],,2,1[ δδδ =  with ]1,0[∈lδ . When 0=lδ , 

indicating no perturbation, the probability of collision is (1) [41]. 

∏ = ⋅

⋅
==

k

j

T
j

vvv

vp
vvvHvHP

1 212

2
2121 )

),(tan||||
()},(|)()({

θ
Φθ  (1)

∏ = =−
==

k

jji vvvHvHP
vvvHvHPW

1 2121

2121
, )},(|)()({1

)},(|)()({)1(
θ

θ  (2)

where Φ  is the standard normal distribution function; jp  is the normal vector of the 
random hyperplane; ),( 21 vvθ  is the angle between the two nearest neighbor feature vec-
tors, and the range of values is usually )2/,0(),( 21 πθ ∈vv . )1(, jiW  is defined as the evalua-
tion probability function of the hash code corresponding to the j hash function under the 
i feature vector to be matched after adding perturbations. 

Together with the use of the shift transform (3) and the expend transform (4) [42], the 
construction of the maximum heap with )1(, jiW  as the weights can be achieved to obtain 
the perturbation vector of the top M maximum weights, where the perturbation vector is 
transformed from the set of perturbations, taking k = 4 as an example: assume that the 

Figure 3. RHLSH matches the image with a hash code.



Agriculture 2024, 14, 949 6 of 17

Increasing the number of hash function families and hash tables can enhance search
accuracy and recall, but it also escalates memory space usage. To mitigate this, expanding
the search range within the same hash table can be beneficial. Multi-probe Random-
Hyperplane Locality-Sensitive Hashing (RHLSH) is an exploration method that improves
search recall to some extent. Key strategies for expanding the search range include Step-
Wise Probing RHLSH (SWP-RHLSH) and Query-Directed Probing RHLSH (QDP-RHLSH).

For SWP-RHLSH, the Boolean hash value of the feature vector allows for gradual
search range expansion based on the number of differing bits in the hash value. As feature
vectors dynamically increase in loop closure detection, a linear scan is employed initially to
determine hash bucket perturbations within a specified range, expediting the search.

For QDP-RHLSH, a random hyperplane within the same hash table further refines
search probability. Hash buckets with a higher likelihood of containing nearest neighbor
feature vectors are prioritized, reducing incorrect feature vector exploration. An evaluation
probability function with respect to the random hyperplane can be defined as (2) for a
given sequence of perturbation vectors Vp = [δ1, δ2, · · · , δk]

T with δl ∈ [0, 1]. When δl = 0,
indicating no perturbation, the probability of collision is (1) [41].

P{H(v1) = H(v2)|θ(v1, v2)} =
k

∏
j=1

Φ(

∥∥∥pT
j · v2

∥∥∥
||v2||· tan θ(v1, v2)

) (1)

Wi,j(1) =
k

∏
j=1

P{H(v1) = H(v2)|θ(v1, v2)}
1 − P{H(v1) = H(v2)|θ(v1, v2)}

(2)

where Φ is the standard normal distribution function; pj is the normal vector of the random
hyperplane; θ(v1, v2) is the angle between the two nearest neighbor feature vectors, and
the range of values is usually θ(v1, v2) ∈ (0, π/2). Wi,j(1) is defined as the evaluation
probability function of the hash code corresponding to the j hash function under the I
feature vector to be matched after adding perturbations.

Together with the use of the shift transform (3) and the expend transform (4) [42], the
construction of the maximum heap with Wi,j(1) as the weights can be achieved to obtain
the perturbation vector of the top M maximum weights, where the perturbation vector is
transformed from the set of perturbations, taking k = 4 as an example: assume that the
results of the descending sort of Wi,j(1) are {Wi,3(1), Wi,1(1), Wi,4(1), Wi,2(1)}, and for the
perturbation set S = {1, 4}, the first and fourth positions of Wi,j(1) after descending sorting
are chosen as the perturbation positions, and the perturbation vector is Vp = [0, 1, 1, 0]T .

shi f t(S) = {max(S) + 1} ∪ {S − {max(S)}} (3)

expend(S) = {max(S) + 1} ∪ S (4)

Among them, the shift transform operation does not work on the empty set, and each
operation only adds 1 to the value of the largest element in the perturbation set, while the
expend transform operation adds an element larger than the largest element by 1 to the
perturbation set. Due to the limitation of the number of perturbation bits M ∈ [0, k], their
two operations gradually stop.

In practical loop closure detection systems, when probing the initial M hash buckets,
the number of hash buckets for previous image features that need matching increases
dynamically. This results in a high proportion of hash buckets that do not exist, leading to
significant search time consumption. Therefore, the probing count M should not be a fixed
value but rather a segmented function that adjusts based on the number of hash buckets.
We define the probing count M as 1000 when the number of hash buckets exceeds 500;
otherwise, it is set to 1500.
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2.3. Use of Hardware and Software

The hardware devices utilized in our study were sourced from Intel Corporation,
a leading technology company based in Santa Clara, California, USA. Specifically, we
employed an Intel NUC11 Mini PC equipped with a 2.80 GHz Intel Core i7 CPU and 16 GB
RAM, along with an Intel D435i depth camera, which features active stereo IR technology
for capturing depth images. The experimental software environment was an Ubuntu 20.04
LTS 64-bit system with Python3.6 under the deep learning framework PyTorch.

2.4. Datasets and Pre-Processing

We utilized the TUM dataset and the greenhouse scene dataset captured with the
D435i depth camera, as presented in Table 1. The TUM dataset, sourced from the computer
vision group at the Technical University of Munich, Germany, is commonly employed for
RGB-D SLAM research. This dataset provides coordinate files of camera motion trajectories
detected by high-precision sensors. On the other hand, the greenhouse scene dataset was
gathered on 19 February 2021, at 10:00 a.m. in the plant factory of South China Agricultural
University, located in Guangzhou, Guangdong Province.

Table 1. Specific information about the dataset.

Dataset Name Number of Images Duration/s

TUM fr3/long_office_household (TUM) 2486 87.09
the greenhouse scene dataset (GreenHouse) 2261 82.94

The TUM dataset contains a variety of objects, such as office desks, chairs, computer
equipment, and robotic arm models, providing abundant texture and structure for image
feature extraction. Additionally, the camera trajectory in this dataset forms a large circular
closed trajectory with overlap at the initial and final points. This setup mirrors conditions
often found in agricultural scenes, characterized by rich texture structures (as depicted in
Figure 4a).
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However, the TUM dataset lacks ground truth information for evaluating loop closure
detection algorithms. Instead, it offers camera motion trajectory coordinate files detected by
high-precision sensors. To establish correlations between pose coordinate files and image
data, the scripting tool provided by TUM was utilized. Matches were defined between pose
coordinates and image data with a time difference within 0.02 s. The occurrence of loop
closure was determined by calculating the pose error between any two frames within the
matched camera pose coordinates. Given the relatively minor positional changes between
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adjacent images, positional errors of the neighboring 150 images are disregarded. The
positional error calculation is expressed as Equation (5).

e = ||T−1
i Tj − I

∣∣∣∣∣∣ (5)

where T is the camera pose; subscripts I,j are the image serial numbers, i = {1, 2, · · · , n}
and j = {1, 2, · · · , (i − 150)}; I is the unit matrix.

The collection time of the greenhouse scene dataset is chosen at 10:00 am when the
light intensity is high. The dataset includes a variety of green vegetables that have been
planted on cultivators, blank cultivators that have not been planted, automated agricultural
equipment, and other common agricultural production environment elements. It is also
ensured that a large circular closed trajectory exists in the dataset (as shown in Figure 4b).
The GreenHouse dataset captures authentic greenhouse agricultural scenes using the D435i
depth camera. Cameras are typically categorized as monocular, binocular, and RGBD.
Monocular and binocular cameras require depth estimation through algorithms, while
RGBD cameras can directly measure depth. Consequently, RGBD cameras exhibit the
highest average depth accuracy among the three types. Therefore, the ORB-SLAM2 system
is employed to compute the D435i camera’s motion trajectory in the greenhouse scene
dataset, serving as the reference trajectory. And Formula (5) is applied to derive the ground
truth for loop closure detection.

The loop closure detection ground truth is saved in the form of a matrix. If the i image
and the j image constitute a loop closure, the corresponding value of the ground truth
matrix (i, j) is 1, and the opposite is 0.

2.5. Experimental Evaluation Criteria

Loop closure detection performance is typically evaluated using accuracy–recall (PR)
curves, with the overall assessment based on average accuracy (AP). However, beyond
accuracy and recall, the time required for loop closure detection is also critical. Feature
extraction time and feature matching time are the two primary time-consuming components
in loop closure detection. When features are obtained directly from the front-end vision
odometer, feature matching time becomes the dominant cost. To comprehensively assess
the application of loop closure detection modules in different visual SLAM systems, this
paper conducts experiments to separately analyze feature extraction time and feature
matching time.

3. Results
3.1. Feature Extraction Comparative Experiment

To facilitate a more concise comparison of the performance variations among three
lightweight CNN models—GhostNet, ShuffleNet v2, and EfficientNet-B0—in extracting fea-
tures from RGB-D images, and to further explore the influence of lightweight CNN models
on loop closure detection in agricultural scenes, we conducted three sets of experiments:

The first experiment is to respectively extract RGB image features from the TUM
dataset using a visual word bag model method based on SIFT features and pre-trained
VGG19 and three pre-trained lightweight CNN models.

The second and third sets of experiments utilized a pre-trained VGG19 model and the
three pre-trained lightweight CNN models to extract RGB-D image features from the TUM
and GreenHouse datasets, respectively.

In the latter two sets of experiments, the depth image was replicated to match the num-
ber of depth image channels with the RGB image channels. The merged and concatenated
RGB and depth image features formed the image feature vector, ensuring the integrity of
the extracted feature information. Through these combined approaches, a comprehensive
analysis of the performance disparities among the lightweight CNN models and their
impact on loop closure detection in agricultural scenes can be conducted, fostering a deeper
understanding of their applicability and effectiveness. The accuracy of various algorithms
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for feature extraction for loop closure detection was measured by calculating the cosine
similarity between image features.

In the result analysis, Formulas (6) and (7) are used to calculate the degree of variation
in the value–optimization rate.

Ra =
A f − Ar

Ar
(6)

Rt = −
Tf − Tr

Tr
(7)

where Ra represents the accuracy optimization rate; Af represents the accuracy rate after
optimization; Ar represents reference accuracy; Rt represents the time cost optimization
rate; Tf represents the time cost after optimization; Tr represents the reference time cost.

3.1.1. The Results of the Extract RGB Image Features Experiment

The results of the first combined experiment are shown in Figure 5. From the trend of
the PR curve, it can be seen that the curve with the largest bias at the top right is based on the
algorithm of the GhostNet model. With the increase in the judgment threshold, the image
similarity matching the actual situation obtained by the algorithm increases, and the recall
rate also increases, but there are some wrong judgments, and the accuracy rate decreases.
In addition, it is worth noting that the accuracy of the visual word bag model algorithm
based on SIFT features cannot reach 100%. Among CNN algorithms, when the accuracy
reaches 100%, the algorithms based on the GhostNet model have the slowest decline rate,
followed by ShuffleNet v2, EfficientNet-B0, and VGG19. These observations show that
the feature extraction model algorithm based on a CNN can maintain a certain recall rate
under the condition of high accuracy, and the model algorithm based on GhostNet has the
highest recall rate. At a 50% recall rate, the traditional algorithm has better accuracy than
the three algorithms based on ShuffleNet v2, EfficientNet-B0, and VGG19 models, and is
closer to the accuracy of the algorithm based on the GhostNet model.
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As shown in Table 2, the GhostNet model’s algorithm achieves a substantial 40.5%
enhancement in average accuracy over traditional methods. The VGG19 model’s algo-
rithm also records a significant 26.0% improvement. In contrast, the ShuffleNet v2 and
EfficientNet-B0 models’ algorithms result in average accuracy decreases of 53% and 38.6%,
respectively. Regarding feature extraction time, the ShuffleNet v2 and EfficientNet-B0
models offer notable reductions, with time savings of 41.2% and 25.5% for processing a
single image, compared to conventional methods. Additionally, the GhostNet model’s
algorithm realizes a 29.4% improvement in average extraction time. Conversely, while the
VGG19 model does boost average accuracy, its feature extraction time more than doubles
that of the traditional algorithm. In conclusion, the GhostNet model-based algorithm
stands out for its feature extraction efficiency and accuracy in loop closure detection within
the TUM dataset’s RGB images, suggesting it is superior for these tasks.
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Table 2. Comparison of extracted RGB image features from the TUM dataset.

Average Accuracy
Rate/%

Average Time for
Feature Extraction/s

Average Accuracy
Optimization Rate/%

Average Time Cost
Optimization Rate/%

GhostNet 53.1 0.036 40.5 29.4
ShuffleNet v2 17.8 0.030 −53.0 41.2

EfficientNet-B0 23.2 0.038 −38.6 25.5
VGG19 47.6 0.126 26.0 −147.1

SIFT-BoVW 37.8 0.051 0.0 0.0

Using SIFT-BoVW’s data as reference values.

3.1.2. The Results of the Extract RGB-D Image Features Experiment

At this stage, we refrain from concluding that GhostNet is the optimal model for loop
closure detection in intelligent agricultural equipment. The uncertainty arises from the
unconfirmed impact of integrating depth image information. To address this, we conducted
cross-sectional comparison tests for extracting RGB-D image features in both the TUM
and GreenHouse datasets. Furthermore, considering that feature extraction from RGB
and depth images occurs simultaneously, the average feature extraction time reflects the
combined cost of feature extraction and stitching in RGB-D images.

Figure 6a illustrates that the algorithm based on the GhostNet model retains the most
right-side-up PR curve even after incorporating depth image feature vectors, indicating
its robustness. At a 100% accuracy rate, the GhostNet, ShuffleNet v2, and EfficientNet-B0
models all show relatively stable recall rates. In contrast, the VGG19 model’s PR curve
declines earliest, suggesting it is less effective at maintaining high recall rates and more
susceptible to misclassification, which implies a significant perceptual bias. At a 50% recall
rate, the GhostNet model maintains a high accuracy rate, with ShuffleNet v2 showing
only a slightly lower performance. The EfficientNet-B0 model also exhibits a similar trend,
although it begins to decline more noticeably around a 30% recall rate.
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Figure 6b further demonstrates that the GhostNet model-based algorithm leads in
terms of position towards the upper-right corner among the CNN models, signifying a
higher recall rate without sacrificing accuracy. While the ShuffleNet v2 and EfficientNet-B0
models show higher recall rates at 100% accuracy, they fall behind GhostNet in terms of
maintaining accuracy. Notably, the VGG19 model consistently exhibits the lowest recall
rates. At a 10% recall rate, the GhostNet and ShuffleNet v2 models have identical accuracy
rates, which then diverge as the GhostNet model’s PR curve stabilizes before decreasing
again around a 40% recall rate. Here, both the ShuffleNet v2 and EfficientNet-B0 models
show slightly lower accuracies compared to GhostNet. At the 50% recall rate, all three
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lightweight CNN models maintain high accuracy rates, whereas the VGG19 model lags
behind. Additionally, the GhostNet model delivers superior accuracy at a 75% recall rate.

In conjunction with Table 3, the GhostNet model-based algorithm demonstrates the
highest average accuracy among the four algorithms, reaching 59.4% for extracting RGB-D
image features for loop closure detection. The feature extraction time for a single image is
only 2 ms longer than that of the ShuffleNet v2 model algorithm. In summary, it shows
that the GhostNet-based model algorithm outperforms the other three CNN-based model
algorithms and the three lightweight CNN model algorithms in extracting features for loop
closure detection on RGB-D images in the TUM dataset. The results shown in Table 4 are
similar to those shown in Table 3: the GhostNet model-based algorithm is the best in terms
of overall performance.

Table 3. Comparison of extracted RGB-D image features from the TUM/GreenHouse dataset.

Average Accuracy
Rate/%

Average Time for
Feature Extraction/s

Average Accuracy
Optimization Rate/%

Average Time Cost
Optimization Rate/%

GhostNet 59.4 0.055 0.0 0.0
ShuffleNet v2 29.6 0.053 −50.2 3.7

EfficientNet-B0 33.5 0.072 −43.6 −30.9
VGG19 15.4 0.240 −74.1 −336.4

Using GhostNet’s data as reference values.

Table 4. Comparison of extracted RGB-D image features from the GreenHouse dataset.

Average Accuracy
Rate/%

Average Time for
Feature Extraction/s

Average Accuracy
Optimization Rate/%

Average Time Cost
Optimization Rate/%

GhostNet 66.2 0.057 0.0 0.0
ShuffleNet v2 64.0 0.052 −3.3 8.8

EfficientNet-B0 59.2 0.072 −10.6 −26.3
VGG19 40.6 0.251 −38.7 −340.4

Using GhostNet’s data as reference values.

3.2. The Results of Feature Maps Match Experiment

Feature matching is another time-consuming aspect of loop closure detection. The
GhostNet model, identified in Section 3.1, is employed to conduct a horizontal compar-
ison between two multi-probe RHLSH algorithms. The cosine similarity matrix is still
utilized to generate the PR curve, and the average feature-matching time is measured
to assess the performance difference between the two feature-matching strategies in the
greenhouse dataset.

Considering practical application, data points in loop closure detection accumulate
over time, transitioning from sparse to dense. In the loop closure detection module of
RGB-D SLAM, keyframes are mainly used to increase data sparsity. Using too many bits of
hash value in this case hinders real-time loop closure detection. Therefore, all comparison
tests in this chapter use a 16-bit hash value, dividing the high-dimensional space into
216 regions by random hyperplane, while utilizing all images for loop closure detection.
Specific parameter settings are detailed in Table 5.

Table 5. Parameter settings.

Size of Hash Value/bit Other Parameters

GhostNet None None
GhostNet + SWP-RHLSH 16 m = 4

GhostNet + QDP-RHLSH 16 M =

{
1000(N1 < 500)
1500(N1 ≥ 500)

where m represents the size of the perturbation vector; M represents the probing count; N1 represents the number
of hash buckets.
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As depicted in Figure 7, the PR curves derived from SWP-RHLSH and those without a
matching strategy are nearly indistinguishable until an 80% recall rate, while the PR curves
from QDP-RHLSH only overlap significantly until a 50% recall rate. With increasing recall
rates, the QDP-RHLSH-based algorithm exhibits more misclassifications compared to the
SWP-RHLSH-based algorithm.
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As analyzed in Table 6, the SWP-RHLSH-based algorithm experiences a slight decrease
in average accuracy by 1.2% but achieves a faster average matching time by 45.1% compared
to the loop closure detection algorithm without the matching strategy. Meanwhile, the
QDP-RHLSH-based algorithm exhibits a reduction in average accuracy by 6.3%, with
the average matching time being faster by 48.3%. Overall, both algorithms contribute to
improved loop closure detection times while maintaining acceptable levels of accuracy
loss. Notably, for each 1% improvement in the average matching time, the accuracy loss
is only 0.027 for the SWP-RHLSH-based algorithm and 0.130 for the QDP-RHLSH-based
algorithm. Therefore, for the image-matching acceleration algorithm in the closed-loop
detection in the greenhouse scene, the SWP-RHLSH-based algorithm is a better choice.

Table 6. SWP-RHLSH-based and QDP-RHLSH-based loop closure detection algorithm.

Average Accuracy Rate/% Average Time for Feature
Matching/s

GhostNet 66.2 1.734
GhostNet + SWP-RHLSH 65.4 0.952
GhostNet + QDP-RHLSH 62.0 0.896

4. Physical Experiment

We have integrated the loop closure detection algorithm into the feature-based visual
odometry system to optimize the trajectory it generates. We assembled a bespoke platform
featuring a D435i camera, which we affixed to the physical mobile robot, ‘Thunder’, for our
experiments. ‘Thunder’ is a mobile robot produced by Chaowenda Robot Technology, lo-
cated in Shenzhen, China.We conducted tests in both a standard orchard and a greenhouse,
as depicted in Figure 8.

We carried out four experiments under various conditions, detailed as follows:
For visual observation, we drove the robot around the field in a rectangular path.
The camera trajectory generated by testing in the greenhouse is illustrated in Figure 9a.
The outdoor orchard test, conducted on a sunny day, yielded the camera trajectory

shown in Figure 9b.
On an overcast day, the resulting camera trajectory from the outdoor orchard test is

presented in Figure 9c.
The camera trajectory obtained from the outdoor orchard test on a rainy day, with a

precipitation level of 2.81 mm, is also displayed in Figure 9d.
In Figure 9a,b, the blue curve represents the camera trajectory as estimated by the

SLAM system, while the red circle highlights the location of the loop closure detection event.
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The experimental results reveal that the algorithm examined in this study functions ef-
fectively on both sunny and overcast days in greenhouses and outdoor orchards. However,
its loop closure detection capability is compromised during rainy conditions. We attribute
this malfunction to the significant interference of raindrops, which not only obfuscate the
visual distinctions between different locations within the orchard but also exacerbate the
image blurriness, hindering the algorithm’s performance. Moreover, Figure 9c,d suggest
that reduced light intensity profoundly affects the visual odometer’s accuracy. Specifically,
the trajectory illustrated in Figure 9c shows a substantial increase in camera trajectory
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jitter during turns made under low-light conditions. Specifically, the trajectory depicted
in Figure 9c demonstrates a significant augmentation in camera trajectory jitter during
turns executed in low-light conditions, and Figure 9d reveals noticeable camera trajectory
distortion. Figure 9d also reveals that the cumulative error of the SLAM system, in the
failure of loop closure detection, is considerably large within an agricultural setting. Given
that agricultural tasks frequently involve returning to previously visited locations, and the
visual similarity within farms or fruit orchards is relatively high, the implementation of
loop closure detection is more vital in agricultural scenarios compared to other contexts.

5. Discussion

In Section 3.1, image features extracted by CNN models are typically faster than
manual methods. We consider that the TUM dataset contains rich image textures, resulting
in the extraction of numerous corner points, which in turn increases the computation time
required for SIFT descriptors. However, in scenarios where image textures and corner
points are scarce, the accuracy of image feature matching based on descriptors may not
be desired [43]. Therefore, it can be considered that the manual methods are less adept at
capturing redundant information than CNN models. We identified the GhostNet model as
the most suitable model for loop closure detection in intelligent agricultural equipment
among the four CNN models discussed in the article. Figures 5 and 6a illustrate that
the PR curves of algorithms based on the EfficientNet-B0 model exhibit a similar trend.
This similarity is primarily attributed to the Squeeze-and-Excitation (SE) module, which
effectively utilizes crucial deep feature information while disregarding less important
details [44]. Given the resemblance between depth images and shallow feature information,
the SE module tends to overlook more information, resulting in a similar trend in the curves.

Moreover, the overall trend of the PR curves of the ShuffleNet v2 model-based algo-
rithm in these plots differs considerably due to the channel mixing operation. The feature
information of the depth image retains the original shallow information, improving the
reuse rate of the feature information. The GhostNet model-based algorithm significantly
enhances the accuracy and real-time performance of loop closure detection, mainly due
to the cheap linear operation inside the Ghost module and the Batch Normalization (BN)
operation outside it [45]. The cheap linear operation enables deeper features to incorpo-
rate shallow feature information, ensuring comprehensive data description. Compared to
traditional algorithms, CNNs offer better accuracy and stability in feature extraction. In
the GreenHouse dataset, scene elements and details are richer than in the TUM dataset,
demanding higher feature extraction ability from model algorithms. Thus, for agricultural
scenes, loop closure detection algorithms based on lightweight CNN models require mod-
els that can retain more redundant feature information with fewer parameters, thereby
facilitating adaptation to the farming environment.

Regarding Section 3.2, the SWP-RHLSH-based algorithm considers all elements in
close hash buckets, improving the real-time performance of RGB-D SLAM loop closure
detection through a linear scan. Conversely, the QDP-RHLSH-based algorithm’s real-time
performance improvement is less evident due to the resource consumption caused by
its floating-point operations [40,41]. Based on comparison experiments, the GhostNet-
based algorithm for image feature extraction combined with SWP-RHLSH for search range
filtering is deemed most suitable for loop closure detection implementation in intelligent
agricultural equipment among the four CNN models discussed in the article. The physical
experiment outcomes demonstrate that the algorithm presented in this paper exhibits
robustness within agricultural settings. It operates effectively in both the greenhouse
environment and across various weather conditions encountered in outdoor orchards.

6. Conclusions

With the growing need for precision and intelligence in agricultural machinery, loop
closure detection in visual SLAM must not only determine spatial congruence but also
be adaptable to various small embedded devices on smart agricultural equipment. This
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study compares multiple loop closure detection methods based on lightweight CNN
features. It is observed that features extracted from GhostNet significantly enhance both
the accuracy and real-time performance of loop closure detection. This is attributed to
the Ghost module in GhostNet, which preserves redundant features, enabling deeper
feature information to encompass shallow features through feature reuse. To further
expedite loop closure detection, two multi-probe random-hyperplane locality-sensitive
hashing (RHLSH) algorithms are compared experimentally. SWP-RHLSH, employing
linear scanning, markedly reduces feature matching time with minimal accuracy loss,
making it more suitable for use in intelligent agricultural equipment detection algorithms.
This is due to the smaller number of hash buckets screened by SWP-RHLSH in small to
medium-sized agricultural settings, eliminating the need for floating-point operations to
evaluate probabilities.

However, this study still has limitations. It utilized pre-trained CNN models for
image feature extraction and did not investigate the impact of training the CNN models on
the TUM/Greenhouse datasets on image feature extraction. Furthermore, it is important
to note that this is a preliminary, phased outcome. A comprehensive SLAM system is
currently absent, which is essential for fully realizing the algorithm’s potential. Future
research will progressively refine a SLAM system tailored for agricultural settings and
deploy it into devices for further testing. For instance, it will be applied to non-standard
orchard scenarios and dense crop environments. Furthermore, there is a need to delve
deeper into how SLAM technology in agricultural settings can be integrated with artificial
intelligence techniques to enhance the accuracy and computational speed of positioning
in smart agricultural equipment. At the same time, this would help conserve hardware
resources for other tasks and improve operational efficiency, navigation accuracy, and task
planning in real agricultural environments.
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