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Abstract: This review focuses on digital soil organic carbon (SOC) mapping at regional or national
scales in spatial resolutions up to 1 km using open data remote sensing sources, emphasizing its
importance in achieving United Nations’ Sustainable Development Goals (SDGs) related to hunger,
climate action, and land conservation. The literature review was performed according to scientific
studies indexed in the Web of Science Core Collection database since 2000. The analysis reveals
a steady rise in total digital soil mapping studies since 2000, with digital SOC mapping studies
accounting for over 20% of these studies in 2023, among which SDGs 2 (Zero Hunger) and 13 (Climate
Action) were the most represented. Notably, countries like the United States, China, Germany, and
Iran lead in digital SOC mapping research. The shift towards machine and deep learning methods in
digital SOC mapping has surged post-2010, necessitating environmental covariates like topography,
climate, and spectral data, which are cornerstones of machine and deep learning prediction methods.
It was noted that the available climate data primarily restrict the spatial resolution of digital SOC
mapping to 1 km, which typically requires downscaling to harmonize with topography (up to 30 m)
and multispectral data (up to 10–30 m). Future directions include the integration of diverse remote
sensing data sources, the development of advanced algorithms leveraging machine learning, and the
utilization of high-resolution remote sensing for more precise SOC mapping.

Keywords: digital soil mapping; spectral indices; environmental covariates; sustainable development
goals; machine learning; topography; climate; multispectral

1. Introduction

Soil organic carbon (SOC) is a key component of soil health and is essential for
plant growth, water retention, and nutrient cycling [1]. However, SOC is challenging to
measure directly, and traditional methods of SOC mapping are often time-consuming and
expensive [2]. Digital soil mapping offers a potential solution to these challenges by using
remote sensing data to estimate SOC at regional or national scales [3]. The development of
digital soil mapping has been driven by advances in remote sensing technology [4]. The
affordability and accessibility of satellite imagery have increased in recent decades [5], and
it can provide valuable information on environmental conditions that affect SOC levels.
Digital SOC mapping directly contributes to the United Nations Sustainable Development
Goals (SDGs), especially Goals 2 (Zero Hunger), 13 (Climate Action), and 15 (Life on
Land) [6]. The necessity for digital SOC maps to meet these SGDs is evident in their
significant potential to enhance cropland management, environmental conservation, and
land degradation monitoring (Figure 1). These maps provide a basis for soil management
practices in terms of cropland management, such as crop rotation planning, irrigation, and
fertilization, which can lead to increased crop yields and soil health [7]. Moreover, digital
SOC maps facilitate environmental conservation by identifying and monitoring areas with
high carbon sequestration potential, thereby contributing to climate change mitigation
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efforts [8]. These maps also serve for land degradation monitoring, providing insights into
changes in soil carbon stocks and soil health over time [9].
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Digital soil mapping is a process that involves the creation of spatial soil property
predictions using various data sources and statistical or machine learning methods [10].
The process typically begins with the collection of point vector soil samples, which are
then used to create spatial soil property predictions for unknown locations [11]. This is
typically achieved by predicting soil property values from the sample points to unsampled
locations based on environmental covariates, such as topography, spectral, and climate
data [12,13]. Regression kriging, machine learning, and deep learning are the predominant
methods used to predict soil properties by establishing statistical models that learn the
relationship between environmental covariates and ground truth soil samples [14]. Among
the classical geostatistical methods, regression kriging combines traditional regression tech-
niques with kriging to improve the accuracy of spatial predictions of soil properties [15].
The process involves the use of regression to model the relationship between soil properties
and environmental covariates at sample points, followed by the use of the spatial autocorre-
lation information captured by kriging to make predictions at unsampled locations [16,17].
Machine learning algorithms in the field of digital soil mapping, such as random forests,
support vector machines, or neural networks, are employed to learn complex relationships
between soil properties and covariates from data [18]. These models can capture nonlinear
relationships and interactions between variables, thereby improving prediction accuracy
over traditional methods. This approach is further enhanced by deep learning, a subset of
machine learning, which employs neural networks with multiple layers to extract intricate
patterns and relationships from data [19]. Deep learning can be utilized to process large
volumes of data and identify complex spatial patterns in digital soil mapping, frequently
resulting in more precise soil property predictions when compared to regular machine
learning methods [14,20].
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The utilization of global, openly accessible remote sensing data in digital soil mapping
provides a means of accessing a vast array of geospatial information without the necessity
for costly data acquisition or extensive fieldwork. This accessibility enables the develop-
ment of more accurate soil property predictions by incorporating diverse environmental
variables derived from remote sensing sources, enhancing the overall quality and reliability
of the mapping results [21]. Globally available soil maps, such as SoilGrids [12,13], provide
valuable information on soil properties at a high spatial resolution globally. However, these
maps have limitations when applied to national or regional scales in terms of potential
inaccuracies due to variation in soil data quality or availability across regions, limited detail
in representing local soil variability, and uncertainty in extrapolating global models to
smaller scales where local factors play a significant role [22]. Additionally, discrepancies
may arise from differences in mapping methods, soil classification systems, and ground
validation data availability, highlighting the need for creating custom digital SOC maps at
specific national or regional levels.

Therefore, the objective of this review is to provide a comprehensive evaluation of the
state-of-the-art remote sensing data sources and their applications in digital SOC mapping
studies at regional or national scales. While there are several reviews based on digital
SOC mapping, this review aimed to provide more thorough information with a focus on
(1) meeting SDGs of the United Nations, and consequentially a higher focus on digital SOC
mapping studies at regional or national scales in comparison to field-scale studies, which
are key for land macro-management; (2) digital SOC mapping studies based on state-of-
the-art machine and deep learning methods; and (3) open-source environmental covariates
with spatial resolutions up to 1 km and specific challenges in their use in digital SOC
mapping. A particular focus was placed on remote sensing data utilized in the modeling of
three primary environmental covariate groups, including topography, climate, and spectral
data with up to 1 km spatial resolution, meeting the requirements for most digital SOC
mapping studies on national and regional scales.

2. Digital SOC Mapping Studies Indexed in Web of Science Core Collection (WoSCC)
2.1. State of the Digital SOC Mapping Studies since 2000 on a Global Level

Since 2000, digital SOC mapping has made significant progress due to technologi-
cal progress and enhanced methodologies. Initiatives such as GlobalSoilMap [23] and
GSOCmap [24] have had a crucial role in the creation of high-resolution global SOC maps,
utilizing advanced technologies and diverse data sources to improve the accuracy and
accessibility of soil data. The integration of machine learning models such as Random
Forest (RF) and Support Vector Machines (SVMs) together with remote sensing data has
significantly improved the accuracy of SOC prediction and mapping. The importance of
remote sensing for digital soil and SOC mapping and prediction is clearly illustrated by the
increasing number of WoSCC studies since 2000, as shown in Figure 2.

Studies in regions such as the upper Brahmaputra valley [25] in India, across Latin
America [26], Africa [27], and Europe [14] have shown the effectiveness of these tech-
niques in different environmental conditions and soil types. Regional and national studies
have underscored the variability and complexity of SOC, revealed significant spatial dis-
crepancies, and emphasized the need for localized approaches to improve accuracy and
reduce uncertainty. Digital soil mapping studies on national and regional scales are cru-
cial for understanding soil spatial variability, managing soil resources, and addressing
global environmental challenges on a macro-scale. Despite omitting information on local
and site-specific scales, these maps provided vital information for sustainable agriculture,
ecosystem conservation, and climate change mitigation. For instance, national-scale digital
soil mapping initiatives, such as the African Soil Information Service [28] and the United
States Department of Agriculture (USDA) Soil Survey Geographic database [29], have
improved soil fertility management, reduced chemical fertilizer applications, and enhanced
carbon sequestration [30]. Figure 3 shows the distribution of papers indexed in WoSCC
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per country related to digital soils and SOC mapping and prediction by remote sensing
methods and techniques.
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2.2. United Nations’ SDGs Addressed in Digital SOC Mapping Studies

Remote sensing techniques and methods for soil and SOC mapping and prediction
are crucial in achieving several SDGs [31], in particular, Zero Hunger (SDG 2), Clean Water
and Sanitation (SDG 6), Sustainable Cities and Communities (SDG 11), Climate Action
(SDG 13), and Life on Land (SDG 15). Figure 4 shows the distribution of papers indexed
in WoSCC related to digital soils and SOC mapping and prediction by remote sensing
methods and techniques across the above five SDGs. The global progress towards SDGs
2 and 13, as the most frequently represented goals in digital soil mapping and digital SOC
mapping studies, is mixed. SDG 2 aims to end hunger, achieve food security, improve
nutrition, and promote sustainable agriculture, while SDG 13 addresses climate action,
specifically targeting strengthening resilience and adaptive capacity to climate-related
hazards and extreme weather events. According to the Food and Agriculture Organization
(FAO), despite some progress, the world is not on track to achieve Zero Hunger by 2030,
with the prevalence of undernourishment stagnating since 2015 [32]. In combination with
the total amount of digital SOC mapping studies data, the lowest number of digital SOC
mapping studies was observed in Africa, which should be encouraged in the future. This
would support the achievement of SDGs in the entire world, primarily referring to SDG 2,
as presently there is a large disparity in the digital SOC mapping research globally.
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Previous studies strongly suggested that digital SOC mapping supports the SDGs by
increasing prediction accuracy, using open data sources, and focusing on key soil properties
to understand SOC distribution [33,34]. Precision agriculture and monitoring soil health
through remote sensing optimize resource use and increase crop yields to combat hunger.
By mapping SOC and monitoring greenhouse gas emissions, remote sensing contributes
to climate change mitigation by supporting carbon sequestration and climate resilience
strategies [35]. Techniques such as high-resolution satellite imagery, LiDAR, spectroscopy,
UAVs, and geostatistical methods provide important data for these purposes and enable
sustainable agricultural practices, climate change mitigation, and conservation of terrestrial
ecosystems, driving progress towards a sustainable and resilient future [36].
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2.3. Prediction Approaches and the Role of Remote Sensing Data in Digital SOC Mapping Studies

Technological advances in GIS, remote sensing, and big data analytics have been
crucial in refining digital SOC maps by integrating various environmental covariates such
as topography, vegetation indices, and climatic factors [37]. Despite these advances, it
remains a challenge to produce consistent and accurate global SOC maps, especially due
to the heterogeneity of soil data and the need to harmonize methods across different
regions [38]. Future efforts will likely focus on improving data integration, improving
modeling algorithms, and increasing the resolution and accuracy of SOC maps to provide
better information for soil management and climate change mitigation strategies. In more
than the last two decades, a lot of novel algorithms and techniques based on machine
learning and deep learning have been used to improve digital soil and SOC mapping
and prediction [39,40] instead of traditional geostatistical approaches. Figure 5 shows the
number of papers indexed in WoSCC on remote sensing topics in the field of soil and SOC
mapping and prediction using different prediction approaches, e.g., machine learning,
deep learning, and geostatistics. New algorithms based on machine and deep learning
approaches have almost completely replaced traditional geostatistical approaches in recent
years due to increased prediction accuracy, computational efficiency, and reduced errors
compared to traditional methods [41].
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3. Environmental Covariates from Remote Sensing Data Sources in State-of-the-Art
Digital SOC Mapping Studies Indexed in WoSCC

Three primary environmental covariate groups were commonly used for digital SOC
mapping (Figure 6), topography, climate, and spectral, along with other data sources. The
analyzed remote sensing data used for these covariates include only open data sources in
this review, which promotes reproducibility in SOC mapping efforts on a global scale [42].
This approach offers several advantages, including the ability to capture detailed informa-
tion on soil properties at a high spatial resolution, monitor changes in SOC levels over time,
and support sustainable land management practices [43].
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Topography from digital elevation model (DEM) data provides information on the
landscape’s physical characteristics such as slope, aspect, and elevation. These factors
influence soil formation processes, vegetation distribution, and soil moisture content, which
in turn affect the accumulation and decomposition rates of organic carbon in soils [44,45].
High-resolution DEMs can help identify areas with high organic carbon storage potential,
such as flat terrains with good water retention capacity. These topographic features aid in
predicting soil erosion, water flow patterns, and nutrient cycling, all of which influence
the distribution and dynamics of SOC [46]. Climate variables enable the estimation of
the distribution and dynamics of SOC in soil formation and decomposition processes [47].
Increased temperature typically accelerates decomposition processes, leading to higher
SOC turnover rates and potentially lower SOC stocks [48]. Precipitation, on the other hand,
affects soil moisture, which can influence both soil biota activity and the stability of SOC [49].
The use of multispectral remote sensing in SOC mapping allows for the assessment of
SOC over large areas quickly and inexpensively, without the need for labor-intensive and
time-consuming field measurements [5]. These data help in delineating different land cover
types, including vegetation, which is crucial for assessing SOC content due to the strong
relationship between vegetation cover and carbon sequestration [50]. The information
extracted from multispectral satellite imagery aids in mapping vegetation health and
biomass based on spectral indices [51], which are all important factors influencing SOC
dynamics.

Table 1 provides a summary of recent scientific papers focused on digital SOC mapping
using machine and deep learning techniques along with environmental covariates derived
from remote sensing data, primarily for various national- or regional-scale studies. While
this is not a complete list of digital SOC mapping studies indexed in WoSCC on regional
or national scales, it focused on assessing three dominant environmental covariate groups
in machine and deep learning studies, clearly proving the focus on topography, climate,
and spectral covariates. The number of environmental covariates utilized in each study
varies, with the most frequently employed environmental covariates being topography and
spectral data. This is due to the specificity of digital SOC mapping studies on regional and
national scales, which, unlike site-specific studies, put much more emphasis on climate
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covariates due to their increased variability with the study area size. Moreover, these
covariates frequently restrict the spatial resolution of digital SOC mapping studies due
to the same reason. The area covered in each study also varies considerably, with the
smallest area being 6.8 km2 in Iran and the largest area being 9,834,000 km2 in the USA,
encompassing a wide range of spatial scales, while a primary focus was put on studies on
regional and national scales.

Table 1. A list of recent (2018–) representative digital SOC mapping papers based on machine and
deep learning and environmental covariates from remote sensing data sources.

Country Area (km2)
Environmental Covariates Reference

Number Topography Climate Spectral

Switzerland 13,000 178 X X X [52]
Canada 37 112 X X [53]
Canada 120 80 X X [54]
China 2667 57 X X X [55]
China 50,400 54 X X X [56]
USA 432,000 40 X X X [57]

China 739 39 X [58]
Iran 4829 37 X [59]
USA 9,834,000 31 X X X [60]

South Africa 1,272,150 31 X X X [61]
Switzerland 41,000 31 X X X [62]

Iran 100 30 X X X [63]
China 3930 29 X X X [64]

Germany 71,000 29 X X X [65]
Morocco 805 29 X X X [66]
Australia 233,877 28 X X X [67]

Iran 3000 28 X X [68]
Colombia 260,000 28 X X [69]

India 310 28 X X [70]
China 9,597,000 27 X X [71]

Hungary 93,000 26 X X X [72]
Germany 357,600 24 X X X [73]

Russia 51 23 X X [74]
Iran 1500 23 X X [75]

China 140,000 22 X X X [76]
China 5568 22 X X X [77]

Dominican Republic 48,198 20 X X X [78]
China 1833 17 X X [79]
China 650,000 17 X X [80]

Australia 810,000 15 X X X [81]
Canada 2824 15 X [82]

Iran 70 14 X X [83]
Iran 41 14 X X [18]
Iran 17 14 X X [84]

Cameroon 475,000 12 X X X [85]
China 2621 12 X X X [33]
Italy 314 9 X [86]
Iran 6.8 9 X X [87]
Italy 25,000 / X X X [88]

X—the environmental covariate group was represented in the study.

3.1. Topography Covariates

Topography covariates commonly include attributes such as slope, aspect, curvature,
elevation, and landform classifications [89]. The slope represents the gradient of the land
surface, which affects water flow, erosion, and soil development rates, thereby influencing
SOC stocks [90]. By indicating the direction that a slope faces, aspects quantify the impacts
of solar radiation, temperature, and moisture availability, all of which also affect SOC
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dynamics [91]. Additionally, elevation provides information about the altitude and climate
patterns of the area, which affect soil-forming factors such as temperature, precipitation,
vegetation, and ultimately SOC sequestration [92]. Landform classifications are also essen-
tial for digital SOC mapping as they provide a higher-level understanding of the terrain
features and their spatial distribution, allowing for more accurate modeling and mapping
of SOC stocks [93]. Additionally, hydrological variables can be derived from DEM data
using methods such as flow accumulation, flow direction, stream network delineation,
watershed delineation, and computation of hydrological metrics like drainage density,
stream order, and watershed characteristics.

The ASTER GDEM (Advanced Spaceborne Thermal Emission and Reflection Radiome-
ter Global Digital Elevation Model) and SRTM (Shuttle Radar Topography Mission) are
currently among the most used DEMs due to their long presence in global DEM availability
(Table 2). GTOPO30 is another widely utilized DEM dataset offering a 30 arc-second reso-
lution for topographic analysis. However, the Copernicus DEM provides high-resolution
elevation data derived from satellite imagery, achieving notably higher vertical accuracy in
comparison to ASTER, SRTM, and GTOPO30 DEMs. As their spatial resolution is typically
higher than those from other main covariate groups, all these DEMs have the potential for
mapping SOC as terrain elevation influences soil properties, vegetation distribution, and
overall carbon dynamics in terrestrial ecosystems.

Table 2. Global open data DEMs that are presently among the most used DEMs for topography
covariates for digital SOC mapping.

DEM Responsible Organization Maximum Spatial Resolution Vertical Accuracy Reference

ASTER GDEM Japan Aerospace Exploration Agency (JAXA) 30 m 20 m [94]
SRTM30 National Aeronautics and Space Administration (NASA) 30 m 16 m [95]

GTOPO30 United States Geological Survey (USGS) 1 km 30 m [96]
Copernicus DEM European Union (EU) Copernicus Programme 30 m 4 m [97]

3.2. Climate Covariates

The use of high-resolution climate data can enhance the prediction of SOC stocks by
taking into account local climate patterns and variations that may impact SOC dynam-
ics [98]. Lower-resolution climate data, typically with a resolution of approximately 5 km or
lower, may not capture local climate patterns accurately and may not be suitable for precise
SOC modeling, particularly in areas with complex terrain [99]. Although lower-resolution
data may be useful for analyzing climate trends and variability over larger areas, it may
not provide the level of detail required for accurate digital soil mapping. In addition to
high spatial resolution, climate data used for digital SOC mapping should also have a high
temporal resolution to capture the variability of climate parameters over time, which can
significantly affect SOC dynamics [100]. Additionally, the climate data should be relevant
to the soil processes being modeled, such as temperature and precipitation data for SOC
decomposition and formation. To minimize potential errors or biases in the SOC maps, it is
crucial to ensure the consistency and compatibility of the climate data with other input data
used in the digital soil mapping process, such as ground truth climate data stations [101].
There are currently two comprehensive global open data climate sources with a 1 km
spatial resolution suitable for digital SOC mapping, among other more restricted data,
which include CHELSA and WorldClim datasets.

CHELSA provides monthly temperature and precipitation data from between 1979 and
2013 [102]. The dataset is calculated based on a two-step approach where the coarse-scale
climate model data are first downscaled using a weather typing algorithm and then further
refined using a high-resolution digital elevation model [103]. This method allows CHELSA
to capture fine-scale variations in climate patterns, especially in complex terrain. WorldClim
contains monthly temperature and precipitation data from 1970 to 2000 [104]. It is calculated
using a different approach that involves spatially interpolating data from weather stations
using thin-plate splines. Both CHELSA and WorldClim also provide data for future
climate scenarios based on climate model projections. Both datasets have been used in
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numerous studies for SOC mapping and have been shown to be reliable for predicting
SOC stocks at regional and global scales [13,105]. However, it is important to consider the
limitations of the datasets, such as uncertainties in the input data and assumptions made
during data generation, when using them for SOC modeling. CHELSA’s supplementary
bioclimatic variables offer more detailed and comprehensive information on monthly
climate conditions compared to WorldClim’s standard variables (Table 3). Additionally,
CHELSA provides monthly climate variables instead of WorldClim’s annual averages. This
allows for a more detailed analysis of seasonal and inter-annual climate variability, which is
particularly useful for studying the impacts of climate change on SOC levels, as alterations
in monthly climate patterns can have substantial impacts on ecosystems and the species
they sustain [106].

Table 3. Climate variables provided by CHELSA and WorldClim for climate covariates for digital
SOC mapping.

Variable Name CHELSA WorldClim

Bioclimatic variables X X
Monthly Mean Temperature X X

Monthly Mean Minimum Temperature X X
Monthly Mean Maximum Temperature X X

Monthly Mean Diurnal Temperature Range X X
Monthly Precipitation X X
Monthly Wind Speed X X

Monthly Relative Humidity X X
Monthly Water Vapor Pressure X X

Monthly Solar Radiation X X
Monthly Cloud Area Fraction X

Vapor Pressure Deficit X
Potential Evapotranspiration X

Climate Moisture Index X
Site Water Balance X

X—the climate variable was represented in the dataset.

3.3. Spectral Covariates

A comparison of different Earth observation satellites used as spectral covariates in
digital SOC mapping reveals notable differences in spatial, temporal, and radiometric reso-
lution (Table 4). One of the newest additions, Sentinel-2, provides high spatial resolution
(10 to 60 m) with a short revisit time (5 days), facilitating detailed monitoring of the Earth’s
surface [107]. Earlier satellites, such as Landsat 5 TM and SPOT [108], provide moderate
spatial resolution (30 to 20 m) but with longer revisit times (16 days) and have notably
larger historically available data. High spatial resolution satellites, such as the SkySat and
Worldview series, are capable of detailed imaging but have smaller swath widths [109],
limiting coverage compared to wider swath satellites such as MODIS and Sentinel-2.
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Table 4. Satellite multispectral missions for spectral covariates for digital SOC mapping.

Data Source Spatial
Resolution

Total Number
of Bands

Temporal
Resolution

Radiometric
Resolution Launch Year Swath

MODIS 250 m Up to 36 1–2 days 12-bit 1999 2330 km
Landsat 5 TM 30 m 7 16 days 8-bit 1984 ~185 km

Landsat 7
ETM+ 30 m 8 16 days 8-bit 1999 ~185 km

Landsat 8 OLI 30 m 8 16 days 12-bit 2013 ~185 km
ASTER 15 to 90 m 14 Varies 8-bit and 12-bit 1999 60 km

Sentinel-2 10 to 60 m 13–14 5 days 12-bit 2015 290 km
SPOT 20 m Varies 1–3 days 8-bit to 12-bit 1986 ~60 km

RapidEye 5 m 5 1–5 days 12-bit 2008 77 km
PlanetScope 3 to 5 m 4 1–3 days 12-bit 2016 ~20–40 km

SkySat 0.8 to 1.1 m 4 Varies 12-bit 2013 ~10–14.5 km
Worldview-1 0.5 m 1 1.1 days 11-bit 2007 15.2 km
Worldview-2 0.46 m 8 1.1 days 11-bit 2009 18.2 km
Worldview-3 0.31 m 8 1.1 days 14-bit 2014 13.1 km

The use of high-spatial-resolution data, as provided by satellite missions such as
Worldview, is not always critical due to the limitations of climate data even after downscal-
ing. Instruments such as MODIS with its moderate spatial resolution of 250 m, as well as
Sentinel or Landsat with their 10–30 m spatial resolutions, are often sufficient for digital
SOC mapping studies [13,110]. Given these limitations, it is important to consider other
covariates, especially climate, when selecting a satellite dataset for digital SOC mapping.
The use of multispectral data allows for the differentiation of organic carbon-rich soils from
those with lower organic carbon content, providing valuable information for soil manage-
ment and carbon sequestration studies [65]. However, cloud cover can pose a significant
challenge to remote sensing applications [111], including SOC mapping. Clouds and their
shadows can obstruct the satellite’s view of the Earth’s surface, resulting in data gaps and
reduced spatial coverage. Several techniques can be used to address this issue, including
cloud masking, time series analysis, and data fusion with other sensors. The ability to
capture reflected light in multiple wavelength bands allows for the calculation of spec-
tral indices as mathematical combinations of reflectance values from different bands [51].
These indices can be used to estimate various soil properties, including SOC content. The
Normalized Difference Vegetation Index (NDVI) [112] and Enhanced Vegetation Index
(EVI) [113] are the most frequently used indices that are sensitive to vegetation cover and
canopy structure for digital SOC mapping (Figure 7), along with the Normalized Difference
Water Index (NDWI) [114] and Bare Soil Index (BSI) [115] for representing soil moisture and
canopy cover, respectively. The popularity of spectral indices as covariates in digital SOC
mapping studies has rapidly grown since 2010, with NDVI having a stable representation
in at least 20% of these studies.
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soil index OR BSI” for each of the most frequently used spectral indices in digital SOC mapping.

3.4. Other Notable Environmental Covariate Groups

Besides the main environmental covariate groups for digital SOC mapping, other
covariates were used with a lesser frequency in previous studies, especially geology (parent
material), land cover, and radar covariates [12,42,116]. For some of these covariates, espe-
cially geology data, data availability may be an issue on a global scale, while land cover
and radar data importance vary with spatial resolution and study area coverage for digital
SOC mapping studies.

The geological composition of an area influences the initial carbon content and dis-
tribution in soils through mineral composition, texture, and weathering processes [117].
This information helps to improve the accuracy of digital mapping techniques, allowing for
more precise predictions of SOC distribution across different landscapes. However, there
are currently limited open data global raster sources for digital SOC mapping that consider
the parent material of soils. Most available datasets are limited to specific regions or coun-
tries [118]. Land cover classes provide essential information on the type and distribution
of major land cover types, such as forests, grasslands, and croplands, as well as land use
practices that directly influence SOC content [119]. These influences include the surface
conditions that impact organic carbon inputs, decomposition rates, and overall soil carbon
levels. Various global data sources available for land cover mapping include the Moderate
Resolution Imaging Spectroradiometer (MODIS) land cover data [120], the European Space
Agency’s Climate Change Initiative Land Cover dataset [121], and the United States Geo-
logical Survey’s Global Land Cover Characterization dataset [122]. Radar satellite images
are a complementary addition to multispectral images due to their ability to penetrate
cloud cover and provide consistent observations regardless of weather conditions [123].
These images offer detailed information on soil moisture, texture, and organic matter con-
tent, which are all correlated with SOC levels [124]. Global data sources for radar satellite
imagery include the European Space Agency’s Sentinel-1 mission, the Japanese Aerospace
Exploration Agency’s ALOS-2 mission, and the Canadian Space Agency’s RADARSAT-2
mission.
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4. Conclusions and Future Directions

Digital SOC mapping studies with spatial resolutions up to 1 km based on open data
remote sensing sources were considered in this review, providing a detailed analysis of SOC,
primarily at national to regional scales. Overall, the study objectives of the analysis of open
remote sensing data for machine and deep learning studies, as well as for meeting SDGs,
showed considerable advancement in recent years. Despite this progress, the geographical
distribution of digital SOC mapping studies remains uneven, with some regions being
overrepresented while others remain largely understudied. This disparity suggests that
current digital SOC maps may not effectively support the meeting of SDGs 2 (Zero Hunger)
and 13 (Climate Action) for all parts of the world. The main conclusions from this analysis
are the following:

• Digital soil mapping is necessary to meet three SDGs, including goals 2 (Zero Hunger),
13 (Climate Action), and 15 (Life on Land), with SOC being a key soil property in
managing these goals;

• The number of overall digital soil mapping studies has grown stably since 2000, with
digital SOC mapping studies representing more than 20% of total studies in 2023;

• The United States, China, Germany, and Iran are leading countries in digital SOC
mapping according to the total number of studies indexed in WoSCC;

• The lowest number of digital SOC mapping studies was observed in Africa, which
should be encouraged in the future, as SDGs should be met globally;

• The application of machine and deep learning in digital SOC mapping studies has grown
exponentially since 2010, replacing geostatistical digital soil mapping approaches;

• Machine and deep learning prediction consequentially require environmental covari-
ates for digital SOC mapping, which consists of three primary groups, topography,
climate, and spectral, along with auxiliary covariates;

• Available climate data primarily restrict the spatial resolution of digital soil mapping
to 1 km, which typically requires downscaling to harmonize with topography (up to
30 m) and multispectral data (up to 10–30 m);

• Spectral indices derived from multispectral data were frequently used as covariates in
digital SOC mapping, especially vegetation indices NDVI and EVI, as well as water
(NDWI) and soil (BSI) indices;

• Auxiliary environmental covariates primarily include geology (parent material), land
cover classes, and radar images.

The future directions in remote sensing studies in digital SOC mapping are expected
to involve several advancements: (1) the integration of multi-source remote sensing data,
such as optical, radar, and LiDAR; (2) the development of new algorithms using machine
learning and artificial intelligence to enable more efficient processing and analysis of the
large amounts of data generated by remote sensing; and (3) the use of high-resolution
remote sensing data for the creation of more detailed and accurate SOC maps at high spatial
resolution (about 30 m). Furthermore, incorporating spatiotemporal dynamics in remote
sensing studies could result in the development of dynamic SOC maps that can be updated
in real time. Other directions include the use of unmanned aerial vehicles for remote
sensing, the fusion of remote sensing and proximal sensing, and more widespread use
of hyperspectral remote sensing [125]. Additionally, exploring the potential of emerging
satellite missions, such as those equipped with novel sensors like the upcoming NASA’s
NISAR mission, can further improve modeling SOC dynamics. These advancements are
expected to lead to more accurate, detailed, and dynamic SOC maps that can inform
conservation and management practices and mitigate climate change.
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