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Abstract: Olfaction is critical for guiding the physiological activities of insects, with antennae being the
primary olfactory organs. However, recent evidence suggests that other tissues may also participate
in olfactory recognition. Among these, the genitalia of moths have received attention due to their
roles in mating and oviposition. Sensilla and odorant receptors (ORs) in moth genitalia highlight
the potential olfactory function of these structures. In this study, we examined the olfactory sensing
capacity of the genitalia in Helicoverpa armigera by analyzing their structure in males and females
and characterizing the expressed ORs. Scanning electron microscopy uncovered many sensilla
distributed throughout the male and female genitalia. Transcriptome sequencing identified 20 ORs in
the genitalia, with HarmOR68 exhibiting significant responses to methyl esters: methyl benzoate and
salicylate. Our findings provide theoretical evidence that H. armigera genitalia may have significant
olfactory perception functions.
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1. Introduction

Through evolution, insects have developed a highly sensitive olfactory system, which
is important in the life of insects. Guided by the olfactory system, insects can locate food,
avoid predators, and find mates by recognizing complex odor molecules in the surrounding
environment [1–4]. Insects’ life activities cannot be separated from olfactory guidance.

The antennae are the peripheral sensory organs that insects use to detect the external
environment, and they are primarily tasked with olfactory detection [5,6]. Olfactory
sensation in the antennae is facilitated by hairlike structures known as sensilla distributed
on their surface, considered the smallest functional unit in olfactory sensation [7]. The
number of sensilla on a single antenna can reach the thousands, exhibiting morphological
diversity. According to their difference in external shape, antennal sensilla in moths
can be sensilla trichoidea, sensilla basiconica, sensilla placodea, sensilla auricillica, or
sensilla chaetica [8]. The functionality of sensilla is primarily mediated by olfactory genes
expressed within this sensory organ [9,10]. These olfactory genes include two types of
receptors, namely, odorant receptor (OR) and ionotropic receptor (IR), existing on the
dendrite membrane of sensory neurons within the sensilla. There are other proteins
involved in the receptor’s ability to sense odorants, like odorant binding protein (OBP),
chemosensory protein (CSP), and sensory neuron membrane protein (SNMP). When odor
molecules enter the lymph fluid of the sensilla via pores on the sensilla’s surface, OBPs
or CSPs bind to odor molecules, and they are transmitted to the dendritic membrane of
sensory neurons. The corresponding receptors on the dendritic membrane are activated,
transmitting olfactory signals into nerve impulses [11–13]. These neural signals are received
and processed by the brain, producing corresponding behaviors [14].
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Given that ORs are predominantly expressed in the antennae of insects, these ap-
pendages have been the focal point of research into ORs. Insect ORs were first uncovered
in Drosophila melanogaster through genome analysis and subsequently identified in other
model insects [15,16]. Furthermore, the functions of these ORs have been systematically
examined [17], elucidating olfactory recognition mechanisms. In recent years, numerous
ORs have been identified through genomic and antennal transcriptome analysis in other
insect species, especially in moths, including agriculture and forest pests [18–20]. Building
upon this foundation, the functions of ORs have been examined extensively. Notably,
pheromone receptors (PRs) were identified and functionally characterized in Bombyx mori
and Heliothis virescens. BmorOR1 and BmorOR3 were found to recognize bombykol and
bombykal, the sex pheromone components of B. mori [21,22]. In H. virescens, HvirOR13 and
HvirOR6 are expressed on olfactory receptor neurons (ORNs) within specific trichoidea
sensilla and elicit electrophysiological responses to the major pheromone components
Z11-16:Ald and Z9-14:Ald, respectively [23,24]. Additionally, the functions of general ORs
in many moths have been studied, and many ORs can recognize important plant volatiles
and influence the feeding and oviposition behaviors of these moths. For instance, the ORs of
Spodoptera littoralis are exceptionally efficient at recognizing short-chain aliphatic alcohols,
aromatics, and terpenes, as they are the primary components of host plant volatiles [25].
The efficient recognition of these compounds by ORs may assist S. littoralis in better locating
host plants. Isothiocyanates attract P. xylostella for oviposition, with OR35 and OR49 specif-
ically responding to these compounds, thereby helping female P. xylostella select better host
plants for laying eggs [26]. The above studies on moth ORs focus on those expressed in
the antennae.

In addition to the antennae, other tissues may also participate in olfactory recognition,
which drives their physiological activities. Several studies have identified that apart from
the antennae, ORs are also present in nonolfactory organs like the proboscis, labial or
maxillary palps, and legs. The maxillary palps of Drosophila melanogaster, covered with
sensory hairs called sensilla, house odorant receptor neurons (ORNs) that express at least
seven ORs [27]. RNA sequencing has identified 31 ORs expressed in the palps of Schistocerca
americana, with further tissue-specific expression analysis revealing that SameOR63 only
expressed palps, suggesting this receptor plays a palp-specific role [28]. Olfactory cells from
the labial and maxillary palps of Schistocerca gregaria can detect pheromones, and SNMP
and ORs were found to co-express in these organs [29]. ORs were found in the proboscis
of Eupeodes corollae and varied depending on their feeding status [30]. RNA-seq identified
a total of 95 ORs expressed in the leg RNA samples from 1-, 10-, and 20-day-old workers
of Apis cerana [31]. Additionally, transcriptome sequencing results of the legs of Apolygus
lucorum examined the expression of AlucOR109, potentially related to their olfaction and
gustation [32].

Genitalia play an essential role in the mating behavior of insects, enabling them to
reproduce and further their species. Genitalia comprise the external part of the reproductive
system of insects, serving as a general term for the organs involved in mating, insemination,
and oviposition. Genitalia are primarily composed of appendages in the genital segment
of the abdomen [33]. The external genitalia of the female moth are called ovipositors [34],
while those of the male moth are copulatory organs. The reproductive system includes
gonads in the body [35,36], During the reproductive process in moths, the female releases a
complex blend of pheromones from her genitalia to attract conspecific males and facilitate
mating [37]. Female also use their genitalia to lay eggs in suitable host plants [38].

The expression of ORs has been found in the ovipositors of Bactrocera dorsalis, among
which BdorOR43a-1 was identified to respond to benzothiazole and influence female
egg-laying behavior [39]. The transcriptome sequencing of Sesamia nonagrioides and Chilo
suppressalis demonstrated that several ORs are expressed in female ovipositors and may
participate in olfactory functions [40,41]. Several studies have detected olfactory genes
expressed in the Manduca sexta ovipositor and identified an olfactory function for neurons
in ovipositor sensilla using single sensillum recordings (SSR) [42,43]. The expression of



Agriculture 2024, 14, 1030 3 of 16

HvirOR13 and PBP2 in the ovipositor of H. virescens suggests they may mediate abdominal
responses to the primary pheromone component Z11-16:Ald [44]. Furthermore, transcrip-
tome sequencing of the genitalia of Spodoptera frugiperda revealed the expression of 12 ORs
throughout these structures. The expression level of SfruOR53 in the ovipositor was similar
to that in antennae [45]. The transcriptome sequencing of the pheromone gland–ovipositor
complex in Helicoverpa assulta revealed significantly higher expression of the odorant recep-
tor gene HassOR31 in the ovipositor, which primarily responded to host plant volatiles like
(Z)-3-hexene butyrate and which influences female egg-laying behavior by mediating host
plant selection in gravid females [46].

H. armigera, a global agricultural pest, predominantly infests crops such as cotton
and corn [47]. Our previous research analyzed the olfactory mechanism of this pest.
Transcriptome analysis identified ORs expressed in the antennae, proboscis, and labial
palps [48–50]. The ORs involved in sex pheromones, host plant volatiles, and oviposition
pheromone perception in H. armigera were identified [51–53]. Furthermore, in a closely
related species, H. assulta, several ORs were identified in the sex gland and oviposition
complex, with HassOR31 mediating the host plant selection of gravid females [46]. In this
study, we examined the olfactory sensing functionality of male and female genitalia in
H. armigera. We identified a considerable number of sensilla distributed throughout the
genitalia of both males and females. A total of 20 ORs were identified in the genitalia,
and HarmOR68 exhibited significant responses to two methyl esters: methyl benzoate and
methyl salicylate. These results suggest that genitalia may possess an olfactory function in
H. armigera.

2. Materials and Methods
2.1. Insect Rearing and Tissue Collection

The H. armigera utilized in these experiments were obtained from a colony maintained
at the Institute of Plant Protection at the Chinese Academy of Agricultural Sciences, Beijing,
China. Larvae were grown on an artificial diet [54] at a controlled temperature of 26 ± 1 ◦C
under a photoperiod of 14 h of light and 10 h of darkness. Male and female pupae were
individually placed into separate glass tubes. Upon emergence, adult moths were fed a
10% honey solution. One thorax, one abdomen, three pairs of legs, 30 pairs of antennae,
30 proboscises, 60 labial palps, and 30 genitalia of female and male individuals were
dissected two days after eclosion and flash-frozen in liquid nitrogen for storage at −70 ◦C
until extraction.

2.2. Scanning Electron Micrographs (SEMs)

The genitalia of 2-day-old male and female adults were exposed by gently squeezing
their abdomens with tweezers. The male and female genital structures were delicately
excised using dissecting forceps and promptly submerged in a 2–4% glutaraldehyde solu-
tion for fixation, lasting between two and four hours at ambient temperature. Following
fixation, the specimens underwent a graded dehydration process using ethanol solutions
of increasing concentrations (70%, 80%, 90%, and 100%). After dehydration, the specimens
were subjected to drying with a critical point dryer (LEICA CPD 030, Wetzlar, Germany).
Gold coating of the specimen surfaces was performed using an ion sputtering machine
(HITACHI MC 1000, Tokyo, Japan). Finally, the prepared specimens were imaged using a
HITACHI SU8010 scanning electron microscope (Hitachi, Tokyo, Japan) at an accelerating
voltage ranging from 3 to 10 kV.

2.3. Total RNA Isolation

Total RNA was isolated from the harvested tissues using Trizol Reagent (Invitrogen,
Carlsbad, CA, USA), following the instructions precisely. The purity and concentration of
the RNA were assessed utilizing a NanoDrop-2000 spectrophotometer (NanoDrop Tech-
nologies, Wilmington, DE, USA), and RNA integrity was validated via gel electrophoresis.
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The RNA samples were then used for transcriptome sequencing, gene cloning, and quanti-
tative real-time PCR (qPCR) analyses.

2.4. Transcriptome Sequencing and Gene Expression Analysis

Total RNA was extracted from the genitalia of five males and five females of
H. armigera separately. Subsequently, 1 µg of RNA from each sample was utilized to
construct cDNA libraries. The integrity and concentration of the constructed libraries were
evaluated using the Qsep40 fragment inspection instrument and qubit concentration in-
spection instrument, respectively. Upon meeting the quality thresholds, the cDNA libraries
underwent sequencing using the Illumina NovaSeq 6000 platform. Library construction
and sequencing procedures were conducted at Biomarker Technologies (Beijing, China).
Transcriptome sequencing was replicated in triplicate using three independent RNA sam-
ples. Following sequencing, low-quality reads (those with an N ratio exceeding 10% or
over 50% of bases with a mass value of Q ≤ 10) were discarded. The resulting high-quality
clean data were retained in FASTQ format. Alignment of the clean data to the published
H. armigera genome (genome version GCF_002156985.1_Harm_1.0) was conducted using
HISAT2 (Kim et al., 2015). Subsequently, gene expression levels were quantified, and FPKM
(fragments per kilobase of transcript per million mapped reads) values were acquired using
StringTie [55].

A set of 67 ORs previously annotated in the genome was considered. Among these
ORs, expression levels were estimated using the FPKM metric. Genes with FPKM values
exceeding 0.1 were candidates for subsequent functional analysis. To visually represent
the expression patterns of these ORs over the six samples, the pheatmap package in R
was employed to generate a heatmap based on log2-transformed FPKM values, with a
pseudocount of 1 added to accommodate 0 FPKM values.

2.5. cDNA Synthesis

A 2 µg sample of total extracted RNA was treated with DNaseI (TransGenBiotech,
Beijing, China) to remove residual genomic DNA and then utilized for the synthesis of first-
strand cDNA with an oligo-dT primer and a RevertAid First Strand cDNA Synthesis Kit
(Thermo Fisher Scientific, Waltham, MA, USA). The procedures followed the instructions
provided with the RevertAid First Strand cDNA Synthesis Kit. The synthesized cDNA
served as the template for gene cloning and qPCR analyses.

2.6. Gene Cloning

The specific primers for HarmOR68 and HarmOR47 cloning were designed based on
the published sequence in GenBank (accession ID: XP_021193925.1) (Table 1). The entire
open reading frame (ORF) was amplified using primeSTAR HS Mix (Takara, Tokyo, Japan).
The PCR product was purified utilizing a PCR Purification Kit (TransGenBiotech, Beijing,
China) and subsequently ligated into an pEASY-Blunt vector (TransGen Biotech, Beijing,
China). The resulting vectors with the target fragment were transformed into Trans1-T1
competent cells (TransGenBiotech, China), and positive clones were sequenced by Sangon
Biotech (Shanghai, China).

Table 1. The primers used in this study.

Usage Primer Name Primer Sequences

Gene cloning

HarmOR68-F ATGGCAGAAAACTTATCGTATTTCGGC
HarmOR68-R TCAATTAGTGTTCTTCAGAAATG
HarmOR47-F ATGCCGTCCGATCAATCTAAAATGTTTG
HarmOR47-R CTATGTTTCTTGAGCATTTCTAATAAGTGTGAGAAAGA
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Table 1. Cont.

Usage Primer Name Primer Sequences

Vector construction

HarmOR68E-F TCAGGGCCCgccaccATGGCAGAAAACTTATCGTATTTCGGC (Apa I)
HarmOR68E-R TCAGCGGCCGCTCAATTAGTGTTCTTCAGAAATG (Not I)
HarmOR47E-F TCAGGGCCCgccaccATGCCGTCCGATCAATCTAAAATGTTTG (Apa. I)
HarmOR47E-R TCAGCGGCCGCCTATGTTTCTTGAGCATTTCTAATAAGTGTGAGAAAGA (Not. I)

qPCR

HarmOR68-F AATCCTGCTGCGAGTATTTAACACC
HarmOR68-R AAGGTAGCCATATTGCGAACTCAAC
HarmOR47-F AAAATTATCAGCCGAAGAG
HarmOR47-R CTGGCATCAGCAAACTACAC

The restriction enzyme site of primer is underlined. Kozak sequence is lowercase.

2.7. Sequence and Phylogenetic Analysis

The transmembrane domain (TMD) prediction of HarmOR68 and HarmOR47 was per-
formed using TOPCONS (12 February 2024, https://topcons.net/) and Protter
(13 February 2024, http://wlab.ethz.ch/protter/start/). The dataset used for construct-
ing the phylogenetic tree included the complete OR complement of four moth species
within the Noctuidae family, encompassing 67 ORs from H. armigera [52], 71 ORs from
S. frugiperda [56,57], 64 ORs from H. assulta [49], and 60 ORs from S. littoralis [58]. The
amino acid sequences of these ORs were aligned using MAFFT (22 February 2024, https:
//www.ebi.ac.uk/Tools/msa/mafft). The maximum-likelihood phylogenetic tree of ORs
was developed using FastTree with the Jones–Taylor–Thornton amino acid substitution
model (JTT). The resulting phylogenetic tree was visualized and color-coded using FigTree
1.4.0 (25 February 2024, http://tree.bio.ed.ac.uk/software/figtree).

2.8. Real-Time Quantitative PCR (qPCR)

qPCR was conducted to evaluate the expression of HarmOR68 and HarmOR47 across
various tissues (thoraxes, abdomens, legs, antennae, proboscis, labial palps, and genitalia)
in both female and male H. armigera adults. The qPCR reactions were performed using
synthetic cDNA templates and gene-specific primers (Table 1). Each reaction mixture
consisted of a total volume of 20 µL, comprising 10 µL SYBR (TransGenBiotech, China),
8 µL RNase-free water, 1 µL cDNA, and 0.5 µL of each primer. The cycling conditions
were established as follows: initial denaturation at 94 ◦C for 30 s, followed by 40 cycles
of denaturation at 94 ◦C for 5 s, annealing at 60 ◦C for 15 s, extension at 72 ◦C for 10 s,
and a final extension step at 95 ◦C for 15 s, 60 ◦C for 60 s, and 95 ◦C for 15 s. Actin
was utilized as the internal reference gene for sample normalization. The expression
level of HarmOR68 was quantified using the 2−∆∆CT approach [59]. Statistical analysis to
evaluate the significance of differences in HarmOR68 and HarmOR47 expression between
male and female tissues was conducted using t-tests in GraphPad Prism 8.0.1 software
(Boston, MA, USA).

2.9. Gene Expression in Xenopus Oocytes and Electrophysiological Recordings

Mature and healthy Xenopus oocytes at stages V−VII were acquired following estab-
lished protocols. The open reading frame (ORF) of the candidate gene was inserted into a
pT7Ts expression vector. Subsequently, the cRNA of the candidate gene was synthesized us-
ing a mMESSAGE mMACHINE T7 kit (Thermo Fisher Scientific) and stored at −70 ◦C until
further use. For microinjection, 27.6 ng of the cRNA mixture (candidate gene: HarmOrco
1:1) was injected into oocytes and cultured for 2−3 days at 18 ◦C. Stock solutions (1 mM)
were prepared by dissolving the compound under examination (Table 2) in dimethyl
sulfoxide (DMSO) and storing at −20 ◦C. Before the experiments, stock solutions were
diluted in 1× Ringer’s buffer (96 mM NaCl, 2 mM KCl, 5 mM MgCl2, 0.8 mM CaCl2·2H2O,
and 5 mM HEPES, pH 7.6) to a working concentration of 10−4 mM. Whole-cell currents
were characterized using an OC-725C oocyte clamp (Warner Instruments, Hamden, CT,
USA) with a holding potential of −80 mV. The oocytes were exposed to diverse odors for
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20 s at a flow rate of 8 mL/minute. Data acquisition and analysis were conducted using
Digidata1440A and PCLAMP 10.0 software (Axon Instruments Inc., Union City, CA, USA).

Table 2. Test compounds in this study.

No. Odorant CAS Number No. Odorant CAS Number

1 2,6-di-tert-butylphenol 128-39-2 35 Heptanal 111-71-7
2 Acetophenone 98-86-2 36 Phenylacetaldehyde 122-78-1
3 Eugenol 97-53-0 37 4′-ethylacetophenone 937-30-4
4 2-phenylethanol 60-12-8 38 Jasmone 488-10-8
5 trans-3-hexen-1ol 928-97-2 39 (±)-camphor 76-22-2
6 3,7-dimethyl-3-octanol 78-69-3 40 2-pentadecanone 2345-28-0
7 (1r)-(-)-myrtenol 19894-97-4 41 (-)-piperitone 4573-50-6
8 (-)-trans-pinocarveol 547-61-5 42 Myrcene 123-35-3
9 (-)-linalool 126-91-0 43 (-)-trans-caryophyllene oxide 1139-30-6
10 Linalool 78-70-6 44 Farnesene, mixture of isom 502-61-4
11 (+)-cedrol 77-53-2 45 Ocimene 13877-91-3
12 cis-3-hexen-1-ol 928-96-1 46 (R)-(+)-limonene 5989-27-5
13 4-methoxybenzyl alcohol 105-13-5 47 A-pinene 80-56-8
14 1-octanol 111-87-5 48 (-)-β-pinene 18172-67-3
15 Benzyl alcohol 100-51-6 49 Camphene 79-92-5
16 4-hydroxy-4-methyl-2pentanone 123-42-2 50 A-Humulene 6753-98-6
17 1-octen-3-ol 3391-86-4 51 (S)-(-)-limonene 5989-54-8
18 Eucalyptol 470-82-6 52 A-terpinene 99-86-5
19 B-citronellol 106-22-9 53 (-)-trans-caryophyllene 87-44-5
20 Geraniol 106-24-1 54 Methyl benzoate 93-58-3
21 cis-2-hexen-1-ol 928-94-9 55 Decalactone 705-86-2
22 1-heptanol 111-70-6 56 Geranyl acetate 105-87-3
23 1s-(-)-verbenone 1196-01-6 57 (Z)-3-hexenyl acetate 3681-71-8
24 1-hexanol 111-27-3 58 Methyl 2-methoxy benzoate 606-45-1
25 (S)-cis-verbenol 18881-04-4 59 Butyl salicylate 2052-14-4
26 trans-2-hexen-1-al 6728-26-3 60 Methyl phenylacetate 101-41-7
27 Salicylaldehyde 90-02-8 61 trans-2-hexenyl acetate 2497-18-9
28 (±)-Citronellal 106-23-0 62 Benzyl acetate 140-11-4
29 Cinnamaldehyde 104-55-2 63 Methyl salicylate 119-36-8
30 4-ethylbenzaldehyde 4748-78-1 64 2-hexanol 626-93-7
31 3-vinylbenzaldehyde 19955-99-8 65 3-hexanol 623-37-0
32 Nonanal 124-19-6 66 trans-2-hexen-1-ol 928-95-0
33 (1r)-(-)-myrtenal 18486-69-6 67 Octanal 124-13-0
34 Benzaldehyde 100-52-7

3. Results
3.1. The Ultrastructure of External Genitalia of Male and Female Helicoverpa armigera

SEM was employed to assess the presence of sensilla in the genitalia of male and
female H. armigera and assess their ultrastructure. The abdomens of two-day-old female
(Figure 1A) and male (Figure 1D) adult H. armigera individuals were gently squeezed to
expose their external genitalia. Before SEM analysis, the hair pencils were removed from
the male genitalia for improved observation (Figure 1D). Observation revealed defined
structural differences between the female and male genitalia. The female genitalia appeared
conical and were segmented into three sections, with sensilla located at the tip of the first
segment and some sensory organs distributed along the third segment (Figure 1B,C). In
contrast, the male genitalia were divided into two sections, with sensilla predominantly
concentrated in the second section, while the first section lacked sensilla (Figure 1E,F).

In females, three distinct classes of sensilla were observed, namely, sensilla chaetica,
sensilla trichoidea, and sensilla basiconica (Figure 2A). Among these, two subtypes of
sensilla chaetica were found. Type I sensilla chaetica featured a surface covered with
transverse threads and a visibly convex base, typically distributed at the tip of the genitalia,
indicating a role in mechanical stimulation sensing. The presence of surface threads
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suggests a potential chemical sensing role (Figure 2B). Type II sensilla chaetica exhibited a
distinct longitudinal depression at their base and were shorter in length than type I sensilla
chaetica. They were predominantly located in the third genitalia section (Figure 2C).
Additionally, females possessed a single type of sensilla trichoidea, similar in shape to those
on the antennae. These sensilla had a curved tip resembling hair and a surface covered
with horizontal grains, indicating potential olfactory or gustatory functions (Figure 2D,E).
Sensilla basiconica were also found in female genitalia, defined by their short length,
smooth surface, and irregular holes at the tip. These sensilla may be involved in olfaction
or taste perception, although they could also detect temperature or humidity (Figure 2F,G).
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Figure 2. Scanning electron micrographs of sensilla on the genitalia of male and female adult
H. armigera. (A) Distribution of sensilla on female genital tips. (B) Type I sensilla chaetica in females.
(C) Type II sensilla chaetica in females. (D) Sensilla trichodea in females. (E) Apical orifice of female
sensilla trichodea. (F) Sensilla basiconica in females. (G) Apical hole of female sensilla basiconica.
(H) Distribution of sensilla on male genitalia. (I) Sensilla chaetica in males.

A single type of sensilla chaetica was found in males, typically within the second
segment of the genitalia. Resembling the type II sensilla chaetica found in females, these
structures exhibit a longitudinal depression at the base, suggesting a role in mechanical
perception, alongside potential olfactory or gustatory sensing capabilities (Figure 2H,I).

3.2. Identification of Odorant Receptors in Genitalia in Helicoverpa armigera

Due to the abundant presence of sensilla in the genitalia, we aimed to characterize the
potential expression of chemoreceptor genes throughout these structures. Transcriptome
sequencing was employed to elucidate the presence of OR genes in both male and female
genitalia. A total of 20 ORs were identified in the genitalia. Subsequently, their expression
levels were quantified using the fragments per kilobase of transcript per million mapped
reads (FPKM) method (Figure 3). The overall expression of these ORs in the genitalia
was relatively modest. Notably, the OR exhibiting the highest expression level in the
genitalia was HarmOR31, with FPKM values of 9.171 in females and 1.532 in males. Addi-
tionally, HarmOrco was detected with substantially lower FPKM values than HarmOR31.
Among the ORs detected in the genitalia, only seven (HarmOR31, 26, 48, 67, 47, 44, and
68) exhibited relatively high expression levels (FPKM > 0.1). Notably, HarmOR31, OR26,
OR48, OR67, and OR44 (unpublished data) have been previously investigated. Further-
more, we identified an OR annotated as OR1 in the genome assembly HaSCD2 (RefSeq:
GCF_023701775.1), the functional properties of which remain uncharacterized. This OR
was named HarmOR68. Given the established functions of the other genes, our future
investigations will focus on elucidating the role of HarmOR68 and HarmOR47.
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3.3. Sequence and Phylogenetic Analysis

According to NCBI-published cotton bollworm odor receptor HarmOR68 (GenBank),
The cDNA sequences of XP_021193925.1 and HarmOR47 (XP_021192462.2) were designed
with gene-specific primers. We successfully cloned the complete open reading frame
(ORF) sequences of HarmOR68 and HarmOR47. The ORF of HarmOR68 is 1179 bases
(bp) long and encodes 392 amino acids. The ORF of HarmOR47 has a total length of
1173 bp, encoding 390 amino acids. Transmembrane domain prediction indicated that both
HarmOR68 and HarmOR47 contained 7 TMDs, with the N-terminus located inside the cell
and the C-terminal situated outside the cell, consistent with a characteristic arrangement
typical of insect ORs [60] (Figure 4A,B).
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To uncover the evolutionary relationships between HarmOR68 and ORs from other
Lepidoptera species, we developed a phylogenetic tree (Figure 5) using sequences from
various moth species, including H. assulta, S. frugiperda, S. littoralis, and H. armigera. Phy-
logenetic analysis revealed distinct clusters corresponding to Orco orthologs and PRs.
Notably, HarmOR68 and HarmOR47 clustered with other general ORs and exhibited sig-
nificant divergence from PRs and novel PRs, classifying HarmOR68 and HarmOR47 as
members of the general OR repertoire in H. armigera.
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3.4. Tissue Expression Pattern of HarmOR68 and HarmOR47

To confirm the expression of HarmOR68 and HarmOR47 in the genitalia, we performed
qPCR assays to assess the expression profiles across various tissues, including thoraxes,
abdomens, legs, antennae, proboscis, labial palps, and genitalia in H. armigera. Our findings
demonstrated that HarmOR68 transcripts were detected in all examined tissues. Specifically,
in the antennae, the relative expression levels of HarmOR68 were markedly higher in males
than females. However, no significant difference in gene expression was identified between
males and females in the remaining six tissues. Notably, HarmOR68 exhibited substantial
expression levels in the genitalia, mirroring its expression in other tissues. Furthermore, the
expression pattern of HarmOR68 in the genitalia of both males and females was consistent
with the findings obtained from transcriptome sequencing (Figure 6A). HarmOR47 was
expressed in the antennae of males and females, the genitalia of males and females, and the
lower lip of female moths. The expression level was highest in the antennae of males and
females and was also expressed in the genitalia of male and female moths. The expression
level in the lower lip of female moths was very weak (Figure 6B).
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3.5. Functional Analysis of HarmOR68 and HarmOR47

To characterize the olfactory function of HarmOR68 and HarmOR47, electrophys-
iological recordings of Xenopus oocytes co-expressing HarmOR68/HarmOrco and Har-
mOR47/HarmOrco were conducted using a two-electrode voltage clamp system. A com-
prehensive panel of 67 chemicals with behavioral or electrophysiological activity in cotton
bollworms was used to screen potential ligands for HarmOR68 (Table 2). Our findings
demonstrate that HarmOR68 strongly responds to the stimulation of two specific com-
pounds, methyl salicylate and methyl benzoate (Figure 7A). The average response of
HarmOR68 to 10−4 M was evaluated at concentrations of methyl salicylate and methyl
benzoate of 295.0 ± 13.02 nA and 182.6 ± 39.78 nA (Figure 7B). Notably, HarmOR68
exhibited high specificity, responding only to methyl salicylate and methyl benzoate in
all 67 tested odors but not to the remaining 65 odors. Under stimulation by 67 different
compounds, electrophysiological records were conducted on Xenopus oocytes co-expressing
HarmOR47/HarmOrco with a dual-electrode voltage clamp system. The recording showed
none of the 67 compounds caused electrophysiological reactions in Xenopus oocytes ex-
pressing HarmOR47/HarmOrco (Figure 7C).
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4. Discussion

To establish whether the genitalia of male and female H. armigera moths possess olfac-
tory sensing functionalities, we examined their ultrastructure. Under electron microscopy,
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sensilla were distributed on both male and female genitalia. Females have two types of
sensilla chaetica, one type of sensilla trichoidea, and one type of sensilla basiconica. Males
have only one type of sensilla chaetica, and the number of sensilla chaetica was signifi-
cantly higher in females compared to males. This difference may arise from the distinct
reproductive roles of females and males [33]. In moths, the female moth usually releases
sex pheromones to attract males [37]. After mating, female moths typically find suitable
host plants to ensure the survival of their offspring [61]. During egg laying, females extend
their ovipositors into close contact with the host plant and deposit eggs on its surface. This
behavior may have propelled the evolution of a more sensitive sense of touch or olfactory
sense in female genitalia [62].

Prior studies have examined the genitalia of female H. armigera somewhat. In this study,
transcriptome sequencing was performed in the pheromone gland–ovipositor complex. A
total of 10 ORs expressed in the female gonadal ovipositor complex were identified [46],
and 7 of them were also identified in our transcriptome results, with consistent results.
The absence of three ORs in our findings may be attributed to differences in sampling
approaches. In addition, we conducted transcriptome sequencing on male genitalia, identi-
fying that while females had significantly more sensilla than males, the expression of ORs
did not indicate a higher level in females, possibly because they do not serve olfactory
functions [63], with neurons within them expressing chemoreceptors like IRs or GRs instead
of ORs [64]. Behaviors like mating and oviposition influence the expression of ORs in in-
sects [65]. In this study, we conducted transcriptome sequencing on the genitalia of female
moths prior to mating. Specific ORs may be induced by mating or oviposition behaviors
before exhibiting heightened expression in females [66]. Among the ORs investigated,
HarmOR24, HarmOR59, HarmOrco, and HarmOR44 exhibited specific expression in males,
while no significant difference was identified between males and females in the remaining
highly expressed ORs. Given that our analysis was limited to the transcriptomes of three-
day-old H. armigera genitalia in this study, some ORs expressed at other developmental
stages may have been unidentified due to sampling limitations.

According to our prior studies, ORs expressed in the genitalia are also identified
in antennae and other tissues, with no genital-specific ORs identified [48]. Many of
the functions of highly expressed ORs in the genitalia are already well documented.
For instance, HarmOR26 exhibits an electrophysiological response to the monoterpene
(E)-nerolidol [52]. OR67 operates as a broad-spectrum receptor, exhibiting strong reactiv-
ity to 1-octanol, which impacts the communication between ovarian epithelial cells and
oocytes in various insects [67]. The primary ligand for OR48 is (S)-(-)-verbenone, a plant
volatile with specific repellent effects on Coleoptera [52,68]. The ligands for HarmOR44
include 2-phenylethanol and phenylacetaldehyde. 2-phenylethanol can induce more fre-
quent lifting of the female cabbage looper moth abdomen and wing flapping, indicating its
sexually stimulating effect on the female [69], and phenylacetaldehyde can also be used
as a synergist for some compounds [70]. HarmOR31 is the most highly expressed OR
throughout the genitalia; HarmOR31 and HassOR31 are homologous genes. According
to the literature, HassOR31 has been implicated in mediating female oviposition, suggest-
ing that HarmOR31 and HassOR31 may have a similar function. Myrcene is the optimal
ligand for HarmOR31 [46]. We focused our exploration on HarmOR68 and HarmOR47,
which have unknown functions. Typically, similar to the expression patterns observed for
other ORs, HarmOR68 is expressed in the genitalia and other tissues, suggesting diverse
functions for this receptor [49]. HarmOR47 was expressed in the antennae and genitalia
of males and females. However, the function of OR47 remains unknown. According to
the evolutionary tree, H. assulta is closely related to H. armigera. However, H. assulta has
no homologous gene to HarmOR68 [71], while SfruOR66 in S. frugiperda shares a 81.63%
similarity with HarmOR68. This may be due to the host range of H. armigera being very
wide and overlapping with S. frugiperda [72]. Conversely, H. assulta exhibits a single host
plant preference [73], which offers valuable insights into the species differentiation between
H. armigera and H. assulta.
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Our study revealed that HarmOR68 exhibits significant electrophysiological responses to
methyl salicylate and methyl benzoate. During mating, male moths release sex pheromones
by their hair pencils, enabling female receptivity to mating. Methyl salicylate, a crucial
component of the male sex pheromone in H. virescens [37], closely related to H. armigera [74],
may play a similar role. The expression of HarmOR68 in the genitalia may enhance female
receptivity to mating with males. Methyl salicylate is a common plant volatile produced by
plants when they are attacked by pests and pathogens [75] and can replace benzaldehyde
as a synergist of the aggregation pheromone grandisoic acid in Conotrachelus nenuphar [76].
HarmOR68 can also sense methyl benzoate, documented to have insecticidal effects on
Drosophila suzukii, Hyalomorpha halys, and P. xylostella of Lepidoptera [77], as well as being
an effective control method for Plodia interpunctella [78]. HarmOR68 exhibits significant
electrophysiological responses to methyl benzoate. It is also expressed in the genitalia,
suggesting it may enhance female moth receptivity to mating with males or facilitate
close-range selection of oviposition sites. Detection of the neurons in the female genitalia
that respond to methyl benzoate would further demonstrate that female genitalia have
olfactory functions. In future work, it is necessary to utilize SSR to detect the olfactory
function of neurons present in H. armigera genitalia sensilla and design relevant behavioral
experiments to assess the biological functions of the main ligands.
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