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Abstract: This study focuses on evaluating the technical and scale efficiencies of smallholder pineap-
ple farmers in Ghana’s Central Region. We surveyed 320 participants selected using random sampling
and applied an input-oriented Data Envelopment Analysis (DEA) method to gauge their technical,
pure, and scale efficiencies. Our findings indicate that the mean technical efficiency among these
farmers is 0.505, with individual scores ranging from 0.079 to 1.000. Notably, 90.82% of the farmers
are operating below maximum efficiency levels, suggesting a potential input reduction of up to 49.5%
while maintaining current production levels. Relaxing the assumption of constant returns under
Variable Returns to Scale (VRS) conditions reveals a notable improvement in technical efficiency,
with 10.82% more farmers achieving optimal efficiency levels. Furthermore, our analysis highlights
scale inefficiencies, with 67.26% of farmers operating below optimal scale levels. By increasing
production by 22.8%, these scale-inefficient farmers could enhance their efficiency and productivity
within existing technological frameworks. These findings underscore the importance of collaborative
efforts among policymakers, practitioners, and stakeholders within the agricultural value chain to
implement interventions such as improving access to technology and innovation for smallholder
farmers and making necessary investments in farmer education and training programs to enhance
both technical and scale efficiencies in Ghana’s pineapple sector. Such initiatives can drive sustainable
growth, improve farmers’ livelihoods, and bolster the sector’s overall competitiveness.

Keywords: data envelopment analysis; technical efficiency; scale efficiency; farming production

1. Introduction

Smallholder agriculture is crucial for ensuring global food security, particularly in
Africa, where subsistence farming is more prevalent [1]. Among smallholder crops, pineap-
ple cultivation is a significant contributor, fulfilling dual roles as a primary source of
income for farmers and a significant export commodity across various tropical regions [1].
Similarly, the food and agricultural sectors are fundamental to most African economies,
including Ghana, because they contribute to sustaining national growth and reducing
poverty. Agricultural growth weighs heavily on Ghana’s Gross Domestic Product (GDP)
while improving the livelihood of most Ghanaians, as it is essential to meet the aggre-
gate food needs and provide various employment opportunities to generate income for
over 60% of the Ghanaian working population from rural areas [1]. Given its vital role,
advances in the agricultural sector are often a goal and a part of Ghana’s developmental
strategy. Since 2002, agricultural policies have aimed to enhance overall economic growth
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by improving access to markets and financial services, developing infrastructure and an
agrarian society, expanding farming, human resources, and institutional capacity, while
simultaneously reducing non-performing lands due to unsustainable management and low
productivity [2].

One of the major reasons for low agricultural productivity in Ghana is the inability
of farmers to fully exploit the available technologies, resulting in low efficiency. Over the
years, Ghana’s GDP attributed to agrarian production has been declining, largely owing to
low productivity and lack of technological advancement in major agricultural commodities,
such as pineapple. Thus, an improvement in farming efficiency tied to effective farm-tech
adoption can result in higher output and associated benefits [3].

Given the prevailing but limited farming technology and resource endowment, many
Ghanaian farmers face an unfavorable gap between potential and actual farm yields.
Technical efficiency (TE) is an important measure of the productivity differences across
crops. It helps explore the capacity of existing farming technologies to improve or correct
the disequilibrium in production, while scale efficiency (SE) is equally important, which
allows farmers to apply and target the most productive scale to optimize farm yields
(see [3]). As the efficiency checks are likely to improve crop yield, such as in pineapple
farming, they are critical and strategic as a mechanism to reduce productivity loss, close
the production gap, and maximize farming output for consumption demand. Given the
importance and applicability of both efficiency measures, this study utilized TE and SE to
assess smallholder pineapple farming across the Central Region of Ghana.

The novelty of this study is reflected in two aspects. First, it addresses the lack of
comprehensive analysis of the technical and scale efficiencies of smallholder pineapple
farmers in Ghana’s agricultural landscape. Second, it employs the DEA within a non-
parametric framework to investigate the complex factors affecting pineapple productivity,
making it pioneering work in estimating technical and scale efficiencies. This study aims
to improve resource allocation and enhance the sustainability and competitiveness of
smallholder pineapple farmers in Ghana and beyond. By applying DEA, a mathematical
program used to estimate production efficiency, the primary goal of this research is to
uncover the analytical findings on the overall farming efficiency in the region and to
suggest policy initiatives that foster future farming improvement.

The results of this study are expected to provide valuable insights to agricultural
policymakers, researchers, development practitioners, and stakeholders involved in im-
proving the productivity and sustainability of small-scale pineapple farming in Ghana.
By understanding the factors that impact the efficiency of pineapple production, stake-
holders can formulate targeted interventions, provide extension services, develop policies
to improve agricultural productivity and farmers’ livelihoods, and promote inclusive
rural development.

2. Literature Review

The agricultural sector is critical for achieving global economic growth and develop-
ment, in line with the 2030 Agenda for Sustainable Development Goals (SDG). Despite the
importance of the agricultural sector, there is often a significant disparity in productivity
between the primary sector and other industries and services. Many countries are taking
measures to enhance productivity in regions where agriculture is a significant contributor
to the economy. Improving productivity in the agriculture sector is essential for addressing
poverty, ensuring food security, and increasing farmers’ income. The global community
recognizes the need for action to support the agricultural sector and has implemented
various initiatives to support sustainable agriculture and rural development. In recent
years, the importance of efficiency has become more prominent in various fields, especially
agriculture, owing to the growing interest in productivity spillovers. Efficiency evaluation
is a critical prerequisite for the sustainable allocation of scarce resources [4–6].

Efficiency is defined as the capacity to perform a task in minimal time and effort. The
origins of the concept can be traced back to economics, in which resource scarcity and the
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output gap serve as primary motivators. The literature on the definition of efficiency and
its measurement dates to pioneering works such as [7,8]. Ref. [9] further contributes to
the understanding of efficiency by defining it as the ability to attain a desired outcome
with minimal resources. According to [9], this is also reflected in the production unit’s
ability to effectively transform inputs into outputs and maximize output with a specific
set of inputs and production technologies. In microeconomic theory, efficiency is a crucial
factor in determining the optimal output that can be achieved from a given set of inputs
using the existing technology available to firms [10]. Ref. [11] argues that efficiency is not
solely dependent on the availability of resources but also on the effective management of
these resources. Efficiency entails several dimensions, such as technical, economic, and
allocative factors, and examining these elements offers valuable insights into the overall
performance level [11].

However, Ref. [12] identified a significant challenge in measuring agricultural effi-
ciency in developing countries, especially in sub-Saharan Africa, which is the underestima-
tion of output and yields due to the failure to account for secondary crops and by-products.
Horticultural crops are often excluded from farm output measurements because of their
relatively small area compared with cereal or cash crops [12]. This is particularly relevant
for farmers who are just beginning to diversify their product offerings to include fruit and
vegetables. As indicated by [13], it is essential to estimate the efficiency of horticultural
products, given the potential high value and importance of the revenue generated by
farmers. The interest in smallholder pineapple farming has been increasing in Ghana in
recent times due to its considerable impact on the livelihood of farmers and the economy
as a whole [14,15].

Although pineapple export and processing companies have increased, low yields
continue to persist. Various factors contribute to this problem, including limited access to
technology, inadequate credit availability, insufficient extension services, adverse weather
conditions, and improper plant spacing. It is crucial to enhance production efficiency to
meet the growing demand for pineapples [16]. Therefore, evaluating the technical and
scale efficiencies of smallholder pineapple farmers as part of Ghana’s agricultural policies
is essential, especially when considering the increasing impact of climate change. How-
ever, there is a scarcity of empirical evidence estimating these efficiencies in smallholder
pineapple farming, as highlighted from a methodological perspective.

The pineapple sector is important to Ghana’s agricultural economy, and smallholder
farmers play a crucial role. This study adds to the existing literature on agricultural ef-
ficiency in developing countries and provides specific insights into the challenges and
opportunities faced by smallholder farmers in Ghana. By assessing the efficiency of these
farmers, policymakers and stakeholders can gain insight into the sector’s productivity and
growth potential. This study used the DEA technique to evaluate the technical and scale
efficiencies of smallholder pineapple farmers in Ghana. DEA is a rigorous quantitative
framework that helps identify both the best practices and areas for improvement, allowing
for targeted intervention and resource allocation [5,6]. Ultimately, this study can help in-
form policies and interventions aimed at enhancing the sustainability and competitiveness
of Ghana’s pineapple industry.

3. Materials and Methods
3.1. Sampling and Sample Procedure

Pineapple was chosen for this study because of its considerable economic influence
in tropical areas, including Ghana. By analyzing the intricacies of pineapple farming,
economists can assess its contributions to employment, income generation, and trade bal-
ances within these regions. Furthermore, given the global trade significance of pineapples
and their intricate supply chains involving production, processing, distribution, and mar-
keting, studying pineapple farming provides valuable insights into supply chain dynamics,
logistics, quality control, and market access, thereby benefiting researchers in various fields.
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Additionally, the Central Region of Ghana was purposefully selected in this study,
since it is one of the major pineapple-growing areas in Ghana. The sampling process
includes 15 smallholder pineapple farmers from the Abura-Asiebu-Kwamankese dis-
trict, 875 farmers from the Komenda-Edina-Eguafo-Abirem district, and 1051 from the
Ekumfi district, as designated by the Ghanaian Department of Agriculture across the
Central Region.

The technique of sample size determination for a given population was suggested
in [17], which was used to delineate the current sample size based on the sampling frame(s).
As a result, 320 smallholder pineapple farmers were selected for this study. Due to the
unavailability of survey respondents, [18] supported the rationale for keeping the provision
of 10% of the sample to reflect the non-responses and errors that occurred in the process of
data collection.

3.2. Indicators for Measuring Efficiency and Productivity

In many respects, productivity and efficiency measurements for agriculture mirror
those of other industries. Notwithstanding this, several characteristics of the agricultural
sector make it significantly different and, therefore, worthy of special consideration. A bet-
ter understanding of efficiency in agriculture is required, especially in the context of lower
availability of key resources and production factors. The burgeoning interest in the measure-
ment of efficiency in agriculture has spawned various frameworks and indicators that can
be broadly classified into parametric and non-parametric methods [19–21]. Efficiency can
be achieved using either parametric or non-parametric methods. Parametric methods, such
as the Stochastic Frontier Approach (SFA), proposed by [22], are proficient in distinguishing
inefficiency from noise. DEA is a non-parametric approach. Ref. [23] expanded [9]’s presen-
tation on the concept of efficiency to encompass multiple output conditions, by employing
a linear programming-based data envelopment analysis methodology.

However, measuring efficiency is at the center of many of the debates, policies, and
measures concerning the farming sector. It is crucial to account for the distinct character-
istics of the agricultural subsector. This is because previous research has identified the
difficulties associated with evaluating efficiency and productivity in the agricultural sub-
sectors. Particularly concerning smallholder farmers, the challenges are compounded by
the fact that they, especially in developing countries, exhibit certain traits, such as a lack of
profit motivation and limited production technology knowledge, which makes measuring
their efficiency and productivity more intricate. The literature suggests that measuring
efficiency and productivity in smallholder agriculture requires specific behavioral assump-
tions. Measurement techniques are generally classified as parametric and non-parametric,
depending on their reliance on assumptions about the shape of the production frontier.
Parametric methods are based on assumptions, whereas non-parametric methods do not
make such assumptions.

DEA and SFA are frequently employed methods for assessing efficiency without the
need for predefining production functions or inefficiency terms. According to multiple
research studies [24–28] spanning various industries [29–32], the popularity of DEA and
SFA has increased because they are unaffected by subjective biases. They are extensively
applied for evaluating technical and scale efficiencies in agriculture. However, although
the SFA models possess features for measuring efficiency and productivity in agriculture,
they have been criticized for their reliance on a predetermined production function and
distribution form for the technical inefficiency component [28].

DEA models do not demand a predetermined functional form and establish a piece-
wise linear production boundary by comparing it with the most effective observed prac-
tices [19,25]. DEA is particularly well-suited for gathering data on farm-level productivity
and requires information on all outputs, inputs, and production factors to be collected.
DEA has been extensively studied by the academic community. However, to the best of
our knowledge, empirical studies on the application of DEA in Ghana remain elusive, as
reflected in smallholder pineapple farming. In Ghana, studies on the efficiency of small-
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holder pineapple production have traditionally employed parametric methods [15,33,34],
with only a few using DEA [14,15]. To bridge this methodological gap, this study employs
DEA to estimate the technical and scale efficiencies of smallholder pineapple farmers in
Central Ghana.

3.3. An Overview of Data Envelopment Analysis

The DEA method, first introduced by [23], is a non-parametric approach that considers
noise in the outcomes. Unlike the parametric statistical approach of SFA, which imposes
a specific form on the production function to estimate efficiency, DEA is non-parametric
method that evaluates the relative efficiency of a decision-making unit (DMU) in compar-
ison to similar DMUs on the “best practice” frontier [6]. DEA is widely applicable and
can measure technical efficiency, productivity, cost, and allocative efficiency [35] without
assuming any relationship between inputs and outputs. This is in contrast to SFA, which
may introduce uncertainties in the results [36]. In the field of agriculture, DEA’s versatility
is particularly notable, as it can effectively manage multiple inputs and outputs, whereas
traditional SFA models are limited to handling only single or multiple inputs or outputs.

A recent study categorizing academic literature into DEA and non-DEA studies found
DEA to be effective and flexible for estimating efficiency and production performance [5].
As [11] emphasized, current research on efficiency primarily focuses on the use of DEA, as
it does not necessitate assumptions about the functional form and distribution of errors,
which is a prerequisite for SFA. Building on this rationale, the DEA method has the potential
to significantly improve productivity and efficiency in the agricultural sector. DEA can
support the growth of the pineapple industry and contribute to the development of Ghana’s
agricultural sector. By focusing on the input–output data of smallholder pineapple farmers
in this context, DEA can provide valuable insights into ways to optimize production
processes, ultimately leading to increased productivity and profitability, particularly for
smallholder pineapple farmers in the Central Region of Ghana.

3.4. Efficiency Analysis

Efficiency measures can be theoretically organized according to the framework pre-
sented in [37]. The process begins with a producer utilizing a non-negative vector of N
inputs, represented as x = (x1, . . . , xN) ∈ RN

+ , to generate a non-negative vector of M
outputs, denoted as y = (y1, . . . , yM) ∈ RM

+ . The technology set (T) encompassing all viable
input and output vectors is defined as follows:

T = {(y, x) : x can produce y} ∈ RM+N
+ (1)

Typically, production technology can be depicted using either the output or input sets.
However, it can also be defined equivalently using only a set of outputs. In this alternate
representation, denoted as P(x), each input vector x encompasses a set of feasible outputs,
as expressed by the following:

P(x) = {y : x can produce y} = {y : (y, x) ∈ T} ∈ RN
+ (2)

In this context, the output set P(x) is delineated in terms of T. Given that T is presumed
to adhere to specific criteria, such as the feasibility of the observed data, free disposability,
and selective convexity [38], it logically follows that P(x) can also adhere to these corre-
sponding properties. It is worth noting that the property of free disposability is essentially
a straightforward adaptation under the standard assumption of strong disposability of all
inputs and outputs utilized, duly adjusted to ensure that the input–output ratio remains
within the prescribed bounds. Similarly, technology can be defined using the input set,
denoted as L(y), expressed as follows:

L(y) = {x : x can produce y} = {y : (y, x) ∈ T} ∈ RM
+ (3)
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where the input set encompasses all input vectors x capable of generating a specific output
vector y. Functionally akin to P(x), L(y) is presumed to adhere to properties analogous to T.

The efficiency technique described above is pertinent and valuable to this study, as
it facilitates the examination of both technical and scale efficiencies within smallholder
pineapple farming, focusing on the technological aspect. This approach enables the evalu-
ation of Central-regional Ghanaian farmers who may be technically efficient, while their
counterparts are not, considering the endogeneity of technology.

3.5. Production Frontiers

In theory, the single-output case of production technology serves as a useful tool for il-
lustrating the production function. This specification describes a technology that generates
either a single output or, more commonly, multiple outputs that can be aggregated into a sin-
gle composite output y = g(y1, . . . , yM) under the same technology. Definitions (2) and (3)
can then be transformed into the following definitions:

f (x) = max{y : y ∈ P(x)} = max{y : x ∈ L(y)} (4)

In this context, x represents a vector encompassing various sources of information
(inputs), whereas y denotes a scalar quantity of output produced from the utilized inputs.
The production frontier, denoted by f(x), signifies the maximum yield (output) achievable
with a vector of random information (inputs), delineating the upper boundary of the
potential output. Producers typically operate at or below this threshold. Evaluating
technical efficiency involves measuring the distance from each producer’s input–output
combination to the production frontier, elucidating their degree of efficiency.

In production theory, it is common to utilize multiple inputs to generate multiple
outputs, whereby a joint production-possibility frontier is employed to delineate the upper
limit of feasible production. This frontier entails defining a subset of both input and output
vectors, each with an unscalable maximum and minimum, respectively. Joint production
frontiers are primarily utilized in observational examinations, as the upper limit of a
production function in a multiple-input–multiple-output scenario is typically determined
by distance functions (D). Specifically, an input distance function involves scaling the input
vector to measure the distance from a production point to the boundary of the production
possibilities. Hence, the input distance function can be defined using the input set L(y):

D1(x : y) = max{p : x/p ∈ L(y)} (5)

3.6. Technical Efficiency

According to [8], the technical efficiency of a multiple-input and multiple-output
production setting can be explained as follows: A producer is considered technically
efficient if increasing any output can only be achieved by reducing at least one other
output or increasing at least one input. Conversely, reducing the input is only possible by
decreasing at least one output or increasing at least one other input. Therefore, a technically
inefficient producer has the potential to improve efficiency by using fewer resources of at
least one input to maintain the same output level, or by maintaining input levels while
increasing at least one output.

Koopmans’ concept of technical efficiency provides a means to differentiate between
efficient and inefficient production processes. However, it does not offer a method for
quantifying the extent of inefficiency or for comparing inefficient and efficient input vectors.
To address this limitation, Ref. [7] proposes a radial measure of technical efficiency. Radial
measures of efficiency are advantageous because they focus on achieving the greatest
feasible reduction of variable inputs or the maximum feasible expansion of all outputs,
without being influenced by a specific measurement unit. However, there is a significant
drawback in assessing technical efficiency using the radial contraction of the input vector
or expansion of the output vector. This approach may underestimate inefficiency owing
to slack in the status of inputs or outputs. In other words, the radial measure of efficiency
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does not consider the redistribution of one input over others. Therefore, a producer may be
considered efficient according to Debreu’s measure but inefficient according to Koopmans.

The work in [9] expands upon Debreu’s theoretical framework by proposing that pro-
duction efficiency consists of two components: technical efficiency and allocative efficiency,
which is also known as price efficiency. Technical efficiency refers to the producer’s ability
to achieve the highest level of output from a specified set of inputs. By contrast, allocative
efficiency is concerned with the producer’s capacity to determine the appropriate combina-
tion or proportion of inputs based on their respective prices and available technology. It is
crucial to note that Farrell’s analysis presupposes cost minimization for production within
a competitive market. In this context, allocative efficiency refers to economic efficiency.
Achieving both forms of efficiency, namely, output maximization and cost minimization,
results in overall production efficiency.

The measurement of production efficiency requires an empirical approximation of the
true production frontier. Once estimated, the efficiency measurement based on distance
from the frontier becomes relatively straightforward. However, the main challenge lies in
estimating the production frontier itself, for which two major contrasting techniques are
commonly used: one based on mathematical programming and the other on econometrics.

In conclusion, the econometric methodology of the SFA determines the production
frontier and differentiates between the effects of random fluctuations and inefficiency [39].
This requires defining a production function and estimating the shape of the distribution of
the inefficiency term. In a basic model with multiple inputs and a single output, the func-
tional relationship is expressed as yi = f (xi, β) + ei, where yi represents the producer’s total
output, i refers to the producer being evaluated, and β represents a vector of parameters
to be estimated. The residual term ei is separated into random error component vi and an
inefficiency component.

Alternatively, the DEA is a mathematical programming technique employed to de-
lineate a piecewise linear quasi-convex hull over a dataset. For a producer to be deemed
technically efficient, production must occur precisely at this frontier. In DEA, the frontier
is established by comparing observed producers with best practices. Each producer’s
inputs and outputs are assigned weights to, and the model aims to minimize the weighted
input–output ratio while ensuring that all weights are non-negative and that one is bound
below the weighted sample [39].

3.7. Tools of Analysis

Technical efficiency assesses the output–input ratio in production, whereas scale
efficiency gauges a farm’s ability to attain maximum output using the available technology
and resources. To evaluate the technical and scale efficiencies of smallholder pineapple
farmers, the DEA was applied. This approach enables the identification of inefficiencies in
farming practices, without relying on specific production function assumptions [39]. Non-
parametric in nature, DEA aligns with the error term assumptions of the SFA, making it an
effective benchmarking tool for evaluating production efficiency. Unlike other methods,
DEA does not require a functional or distributional form specification and allows for the
relaxation of the assumption of ‘constant returns to scale’ production [3,40–42].

3.8. Model Specification

The utilization of the DEA technique in this study was suitable, as it enabled the
estimation of both technical and scale efficiencies within Ghanaian smallholder pineapple
farming. DEA, functioning as a linear programming model, facilitates the assessment of
organizational units’ relative performance, particularly in scenarios involving multiple
inputs and outputs, where direct comparisons pose challenges.

To properly outline the procedure, let us start by considering a total of n DMUs, each
equipped with m inputs and x outputs. Since the objective is to maximize output with
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given inputs, the relative efficiency score of a test on DMU p can be determined by solving
the following model, proposed by the following [21]:

Max∑s
k=1vkykp/∑m

j=1ujxjp

∑s
k=1vkyki/∑m

j=1ujxji ≤ 1∀i
(6)

where
k = 1 to s; j = 1 to m; and i = 1 to n;
yki = amount of output k produced by DMUi; xji= amount of input j utilized by DMUi;
vk = weight given to output k; uj = weight given to input j.
To solve the model, it is needed to convert Equation (6) into a linear programming

formulation. It is given by the following:

Max∑s
k=1vkykp

s.t.∑m
j=1ujxjp = 1

∑s
k=1vkyki − ∑m

j=1ujxji ≤ 0∀i

vk, uj ≥ 0∀k, j

(7)

The dual problem can therefore be specified as follows:

Min θ

∑n
i=1λixji − θxjp ≤ 0∀j

∑n
i=1λixki − ykp ≥ 0

λi ≥ 0∀i

(8)

where
θ = efficiency score, and λi = dual variables.
As per [42], an alternative model is available to estimate maximized production by the

Most Productive Scale Size (MPSS) based on the optimal solution of Constant Returns to
Scale (CRS), also referred to as the Charnes–Cooper–Rhodes (CCR) model [21], and Variable
Returns to Scale (VRS), also known as the Banker–Charnes–Cooper (BCC) model [43],
serving as the frontier scale in the DEA procedure.

3.8.1. Constant Returns to Scale (CRS)

Max∑s
k=1vkykp

s.t.∑s
k=1vkyki − ∑m

j=1ujxji ≤ 0

∑m
j=1ujxjp − 1

vk, uj ≥ 0

(9)

3.8.2. Variable Returns to Scale (VRS)

According to [44], the linear model of BCC is expressed as follows:

Minθ − ϵ(
m

∑
k=1

S−
k +

m

∑
j=1

S+
j ) (10)

s.t.∑n
i=1λixji + S−

i = θxji j = 1, . . . . . . , m

∑n
i=1λixki + S+

i = θxki k = 1, . . . .., s

λi ≥ 0 i = 1, . . . .., n

Scale Efficiency = E f f iciency in CRS/E f f iciency in VRS

(11)
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where CRS is ‘Constant Returns to Scale’ and VRS is ‘Variable Returns to Scale’.

4. Results

Table 1 displays the results for the technical efficiency and scale efficiency of small-
holder pineapple farming in the Central Region of Ghana. As can be seen from the table,
only 30 farmers (9.18% of the total) achieved an overall technical efficiency of 0.90 or higher
under CRS. These farmers fell within the efficiency range of 0.9 < E < 1 and E = 1. However,
approximately 90.82% of farmers were technically inefficient in terms of input allocation to
the farm. The mean efficiency was 0.505, and the technical efficiency scores ranged from
0.079 to 1.000 across all farmers. In conclusion, the majority (90.82%) of pineapple farmers
did not operate at their maximum efficiency levels. This suggests that they could potentially
reduce their input usage by 49.5% (1 − 0.505), while maintaining the same production levels
as 9.18% of the technically efficient farmers. This highlights the importance of technically
inefficient farmers optimizing resource usage to sustain their current output levels.

Table 1. Technical and scale efficiencies of smallholder pineapple farming in the Central Region
of Ghana.

Efficiency (E) Range
Technical Efficiency under CRS Technical Efficiency under VRS Scale Efficiency

Frequency % Frequency % Frequency %

0 < E < 0.1 2 0.61 - - - -
0.1 < E < 0.2 9 2.75 - - 2 0.61
0.2 < E < 0.3 79 24.16 2 0.61 5 1.53
0.3 < E < 0.4 38 11.62 13 3.98 5 1.53
0.4 < E < 0.5 31 9.48 67 20.49 13 3.98
0.5 < E < 0.6 85 25.99 95 29.05 36 11.01
0.6 < E < 0.7 13 3.98 53 16.21 27 8.27
0.7 < E < 0.8 31 9.48 22 6.73 79 24.16
0.8 < E < 0.9 9 2.75 13 3.98 53 16.21
0.9 < E < 1 25 7.65 8 2.45 100 30.6

E = 1 5 1.53 54 16.51 7 2.14

Summary of Technical Efficiency under CRS

Min. 1st Qtr. Median Mean 3rd Qtr. Max.
0.079 0.293 0.530 0.505 0.624 1.000

Summary of Technical Efficiency under VRS

Min. 1st Qtr. Median Mean 3rd Qtr. Max.
0.288 0.503 0.584 0.641 0.766 1.000

Summary of Scale Efficiency

Min. 1st Qtr. Median Mean 3rd Qtr. Max.
0.115 0.687 0.789 0.772 0.915 1.000

Source: Field survey, Boakye (2020) [14].

Under the VRS model, technical efficiency ranged from 0.288 to 1.000, with an average
efficiency score of 0.641. By relaxing the assumption of constant returns and utilizing the
convexity assumption for VRS, it was found that technical efficiency improved by more
than 117%. This improvement is demonstrated by an increase in the percentage of farmers
achieving technical efficiency ranging from 9.18% to 20% and a higher mean technical
efficiency ranging from 0.505 to 0.641. The enhanced efficiency under VRS is attributed
to and adjusted for the scale effect, which is derived from the ratio of technical efficiency
under CRS to technical efficiency under VRS, also known as scale efficiency, as shown in
Equation (11).

According to the research, 32.74% of pineapple farmers who were found to oper-
ate within the efficiency range of 0.9 < E < 1 and E = 1 had a scale efficiency of more
than 90 percent. These farmers had scale efficiency scores ranging from 0.115 to 1.000,
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with an average score of 0.772. This suggests that farmers who were scale inefficient
(67.26% = 100% − 32.74%) could potentially increase their production and achieve between
0.228 and 22.8% higher efficiency by operating at an optimal scale under existing technology.
By operating on an optimal production scale, these farmers are expected to improve their
farming productivity and generate higher incomes for their farms.

5. Discussion

This research aims to evaluate the technical and scale efficiencies of smallholder
pineapple farmers in the Central Region of Ghana. Using the DEA model, we computed the
efficiency levels of these farmers, utilizing conventional models, such as the CRS and VRS
models to ascertain both pure and scale efficiency. Of the entire study, it is rather evident
that currently, most of the smallholder pineapple farmers in the Central Region of Ghana
are technically inefficient, exhibiting relatively low mean efficiencies under CRS, VRS, and
production scales at 0.505, 0.641, and 0.772, respectively.

The efficiency of farmers and other production agents has been studied in different
countries, which showed similar or contradictory findings to the ones in this study. For
instance, the results reliably agree with the findings of [45], witnessing Nigerian farms’
suboptimal production, exhibiting an efficiency score of 0.603. In addition, the study by [46]
affirmed the underperforming farmers in Indonesia, who were inefficient in growing
pineapples, suffering from low mean efficiencies across technical, allocative, and economic
measures, at 70.1%, 34.1%, and 24.1%, respectively.

Similarly, [6], in his study on the technical efficiency of chemical-free farming in India
showed that farmers can reduce their input use by 34% without reducing output. A study
by [11] on the efficiency of small-scale irrigation farmers in the Northern Region of Ghana
using the DEA technique found that less than 50% of vegetable farmers in the Northern
Region of Ghana are technically inefficient, which aligns with the findings in this study.

These comparable findings attested that production inefficiency in farming is likely
a global issue. A pragmatic design and relevant agricultural policy setting seem needed
and appropriate to improve farming techniques, technology, and the allocation of farming
resources. Once the efficiency challenge is resolved, the yields across crops, not just
pineapples, would most likely augment, supporting the welfare of farmers.

6. Conclusions and Implications

This study sought to assess the technical and scale efficiency of smallholder pineapple
farmers in the Central Region of Ghana. A total of 320 respondents were chosen through
a random sampling technique, and an input-oriented DEA approach was employed to
evaluate the technical efficiency, purity, and scale of these farmers. The results revealed a
significant issue concerning the suboptimal efficiency levels that most farmers operate at.

Thus, our results show that less than 10% of the farmers are efficient, exhibiting an
overall technical efficiency of 0.90 and above under the CRS assumption. This implies that
more than 90% of the farmers are technically inefficient. By relaxing the CRS assumption,
more of the farmers became technically efficient. Thus, 10% more farmers became efficient
under the VRS assumption. Finally, about 32.74% of the pineapple farmers were scale
efficient. This means that farmers who are scale inefficient can increase production and
operate at the optimal level, reducing input use by 22.8%.

This underscores the need to improve resource allocation and production practices.
Only a small number of farmers work at or near the optimal efficiency levels. This finding
presents a significant opportunity to boost productivity and income in the crucial agricul-
tural sector. To address the inefficiencies identified in this study, a comprehensive approach,
combining policy interventions and on-the-ground agricultural practices is necessary.

Policymakers must acknowledge the systemic challenges faced by smallholder farmers
and tailor policies to provide support in areas such as access to credit, education on modern
farming techniques, and infrastructure development. These policies should aim to facilitate
the adoption of efficient practices and technologies to increase productivity and reduce



Agriculture 2024, 14, 1032 11 of 13

waste. Furthermore, agricultural extension services should be strengthened to equip farm-
ers with the necessary knowledge and skills to optimize resource utilization and enhance
efficiency. Improving smallholder pineapple farmers’ productivity and sustainability can
be achieved by targeted training in crop management, irrigation, and pest control. To
address scale inefficiencies, cooperation or farmer associations should be encouraged.

A comparative study of Nigeria and Indonesia has shown widespread production
inefficiencies, highlighting the need for regional and international collaboration to share
knowledge and resources. Drawing inspiration from this, policymakers, practitioners,
and stakeholders across the agricultural value chain need to collaborate in implement-
ing interventions that enhance both technical and scale efficiency in Ghana’s pineapple
sector. Such efforts can result in increased productivity, income, and overall welfare for
smallholder farmers.

6.1. Theoretical Implications

The significance of employing Data Envelopment Analysis (DEA) is underpinned
by its non-parametric nature, which provides a reliable structure for evaluating the tech-
nical and scale efficiencies of agricultural systems. The DEA results can be utilized by
policymakers to formulate data-driven policies tailored to specific agricultural contexts.
Through a comprehensive analysis of DEA findings, policymakers can pinpoint the drivers
of inefficiency and design targeted interventions to enhance resource allocation, production
practices, and access to support services. By identifying the systemic challenges within
agricultural systems, DEA offers valuable insights to policymakers to address broader
issues, such as access to credit, education, and infrastructure development. Policymakers
can work toward sustainable improvements in agricultural efficiency and productivity by
aligning policy interventions with on-the-ground practices and incorporating DEA insights.

6.2. Policy Implications

This study reveals considerable inefficiencies among smallholder pineapple farmers in
Ghana’s Central Region, with many of them operating below maximum efficiency. Targeted
policy interventions should be implemented, including enhancing resource allocation, im-
proving production practices, providing access to credit, and offering modern farming
education. Strengthening extension services and fostering farmer associations can further
optimize efficiency. Policymakers must address these systemic challenges by tailoring poli-
cies to improve access to credit, education, and infrastructure. A comprehensive approach
integrating policy interventions and on-the-ground practices is crucial. Collaboration
across the agricultural value chain is vital for enhancing technical and scale efficiency
in Ghana’s pineapple sector. These efforts promise increased productivity, income, and
welfare for smallholder farmers, demonstrating the importance of addressing inefficiencies
in agricultural production through coordinated policy and practical measures.

6.3. Limitations of This Study

Despite the diligent efforts invested in this study, certain constraints remain unavoid-
able. Firstly, this study used the survey technique, where respondents are likely to provide
inaccurate or incomplete information. Additionally, since this study aimed to collect
purely quantitative data, it is difficult to provide in-depth information to understand the
complexities surrounding the inefficiencies of the farmers. It is anticipated that future
research endeavors will consider these crucial factors to alleviate the limitations identified
in this research.
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