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Abstract

:

Artificial intelligence (AI) plays an essential role in agricultural mapping. It reduces costs and time and increases efficiency in agricultural management activities, which improves the food industry. Agricultural mapping is necessary for resource management and requires technologies for farming challenges. The mapping in agricultural AI applications gives efficiency in mapping and its subsequent use in decision-making. This study analyses AI’s current state in agricultural mapping through bibliometric indicators and a literature review to identify methods, agricultural resources, geomatic tools, mapping types, and their applications in agricultural management. The methodology begins with a bibliographic search in Scopus and the Web of Science (WoS). Subsequently, a bibliographic data analysis and literature review establish the scientific contribution, collaboration, AI methods, and trends. The United States (USA), Spain, and Italy are countries that produce and collaborate more in this area of knowledge. Of the studies, 76% use machine learning (ML) and 24% use deep learning (DL) for agricultural mapping applications. Prevailing algorithms such as Random Forest (RF), Artificial Neural Networks (ANNs), and Support Vector Machines (SVMs) correlate mapping activities in agricultural management. In addition, AI contributes to agricultural mapping in activities associated with production, disease detection, crop classification, rural planning, forest dynamics, and irrigation system improvements.
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1. Introduction


Agriculture is the primary source of food and income and the backbone of some countries’ economies. It also provides raw materials for other industries’ production, contributing to their economies’ growth [1]. However, agricultural activities face problems such as climate change and decreased resources (e.g., water) that affect food security [2]. These challenges suggest the importance of agricultural land sustainable management, which requires spatial information on soil, water, and crops [3]. This management involves controlling, monitoring, and evaluating agricultural systems through supporting technologies such as artificial intelligence (AI) to solve farming problems.



AI is a strategy for optimising, automating, and managing large data volumes and various challenges, incorporating technological change [4]. It allows for the representation of complex data maps, the performance of mathematical models, and the improvement of traditional algorithm efficiency [5]. Cartography is a primary part of Geographic Information Systems (GISs) and territorial observation/management that explains natural and artificial environments based on spatial analysis [6,7]. Different mapping applications in various sciences widely use AI through different types of learning, such as deep learning (DL), machine learning (ML), and AI methods, such as Artificial Neural Network (ANN) models. For example:




	
The application of AI with multimodal images and biopsy data to produce prostate cancer maps and estimation margins [8].



	
Wetland mapping for spatial planning, environmental management, and biodiversity conservation [9].



	
IP address mapping for cyberattack prevention [10].



	
Spatial earthquake probability mapping based on ML and ANNs [11].



	
Area estimation mapping with fog concentrations in hydrographic basins for integrated water resource management [12].








Furthermore, AI is an emerging technology in agriculture. Its applications stand out in crop yields, intelligent fumigation, agricultural robots, soil and crop monitoring [13], food security problems, climate uncertainty, and population growth [14]. The advancement of this technology has significantly changed agriculture because it provides various intelligent systems that monitor, control, and visualise agricultural activities in real time [15]. ML and DL are types of AI that use algorithms to estimate results with greater precision without human intervention [16,17]. These technologies have enabled controlled irrigation, pesticide use, and environmental pollution control through innovative agricultural practices [18]. Also, an ANN is an AI method used to detect, classify, and map crop diseases through images of a crop’s leaves [19].



Agricultural mapping provides specialised and accurate crop information for decision-makers, agrarian management, policy formulation and food security [20]. In addition, it contributes to thematic maps that constitute inputs for cropping systems and agricultural yield estimation [21]. These thematic maps involve strategies in agricultural activities such as soil properties’ spatial pattern characterisation [22], the distribution of plots by land use and land cover (LULC) [23], vegetation and crop detection [24], the spatial and temporal exploration of climate change effects in agricultural production [25], and areas suitable for crops’ biophysical-sociotechnical mapping [26]. However, some field activities, such as plant monitoring and phenotyping, require reducing human intervention with greater precision, giving way to essential technologies such as robotics and AI [17].



Various studies have been associated with the application of AI in agricultural mapping. For example, ref. [27] designed a small-scale agricultural robot prototype that identifies crop plots and can map and inspect a farming area. The robot’s decision-making relies on AI algorithms, which allow it to perform specific actions depending on the environment. In Brumadinho (Brazil), they mapped a flood distribution that invaded rivers and agricultural fields using remote sensing (RS), satellite images, and AI methods/algorithms such as ANNs and Support Vector Machines (SVMs). This study obtained a damage map to mitigate future flooding problems [28]. Furthermore, in the states of Goiás and Minas Gerais (Brazil), they mapped pivot irrigation systems using a very high-resolution image segmentation Convolutional Neural Network (CNN) to improve freshwater use monitoring in agricultural activities [29].



In Zhongning County, China, they conducted digital soil nutrient distribution mapping based on geo-plot boundaries. They used high-resolution images and ML algorithms to define the relationship between phosphorus and the environment. This study attempts to improve agriculture’s sustainability and solve the soil’s environmental contamination in this region [30]. In North Dakota (the United States), ref. [31] made seasonal crop maps using Deep Neural Network (DNN) and Landsat images with historical crop maps and soil measurements for training. This study obtained consistent DNN maps with less noise, reliability and accuracy.



Additionally, a researcher highlighted using this technology to identify extensive agricultural lands instead of scattered wetlands and suburban areas. In the Queensland region (Australia), they mapped agricultural drought risks through ML algorithms, such as Random Forests (RFs), SVMs, regression, and classification trees, using hydro-environmental data (e.g., water retention and precipitation) for soil moisture calculation. This study found very high drought-risk classes that require drought policies and environmental protection for the area [32]. In Calasparra (Spain) [33], they developed accurate crop mapping using a pixel-based supervised classification scheme, Sentinel-2 data, and ML algorithms for rice crop identification and abandoned plot detection.



These studies help us understand the challenges of using AI in agricultural mapping. The application and importance of AI in mapping provide several possibilities to transform data into meaningful information, respond to real-time situations, and optimise resource use, which contribute to decision-making. However, the fusion of AI methods with geomatic tools in agricultural mapping is necessary because they contribute to optimising agricultural production, increasing food production, improving territorial planning, and automating processes for food security. Therefore, a review of the scientific literature is necessary to identify, analyse, and further explore a better understanding of resources, AI methods, trend topics, and the basis for future research on AI applications in agricultural mapping. The bibliometric analysis and literature review explore the development of a particular field of knowledge, its vision of development in various regions, and the relationship between critical themes [34].



This study’s objective is to analyse the current state of AI in agricultural mapping through bibliometric indicators and a literature review of scientific publications in high-impact databases such as Scopus and the Web of Science (WoS), identifying methods, agricultural resources, geomatic tools, types of mapping, and their applications in agricultural management.




2. Materials and Methods


This study explores the structure and content of AI’s application in agricultural mapping. It also identifies scientific production, influential countries, their scientific collaboration, and trending topics. Figure 1 shows the study workflow using the methodological approach.



2.1. General Search


This phase builds a bibliometric database using the Scopus (Elsevier) and WoS (Clarivate) search engines. These databases have high-quality, multidisciplinary, standardised publications [35]. In this study, the search equation distinguishes terms related to the application of AI in agricultural mapping using Boolean operators for the association of terms: (“artificial intelligence”) AND (“agricultural mapping” OR “agricultural cartography”). The search found 944 documents distributed as 227 (Scopus) and 717 (WoS).




2.2. Bibliometrics


This phase merges the database documents into a single file (i.e., BibTex from Scopus and PlainText from WoS). Also, this phase eliminated duplicate records (76 documents) and records without an author (9), leaving 859 for data analysis. Bibliometric analyses measure current and future research trends, an authors’ impact, publications, and scientific collaboration in a field [36]. This study considered the scientific contributions based on the number of publications, the country contributions based on citation counts, collaboration analysis based on publication co-authorship, themes analysis, and trends through centrality measures (i.e., theme importance) and density (i.e., theme development) [37]. Finally, this phase eliminated non-English language records (91 documents) and unavailable records (12), leaving 756. The databases were processed and cleaned using the statistical program R-Studio (version R-4.1.2, Posit, Boston, MA, USA), Biblioshiny Web (version 4.1, K-Synth Srl, Academic Spin-Off of the University of Naples Federico II, Naples, Italy) and Microsoft Excel 365 (version 2405, Microsoft, Redmond, WA, USA) [38].




2.3. Review


Analysis units, such as titles and abstracts, contain a high density of appropriate words associated with each study’s research topic [39]. This study analysed these units in 756 publications. Of these, 550 documents focus on the environment, agricultural regulations, and coastline evolution, leaving a total of 206 records focused on the topic of this study. This review gathered detailed knowledge by extracting variables such as the country, resource, type of learning (methodology), thematic map, map use, resolution and geomatics tools [40] of the articles.



Additionally, this phase includes an analysis to validate/recognise the relationship contribution of AI in agricultural mapping using the Quality Function Deployment (QFD) methodology. This tool provides quality management/product design, construction, software development processes, higher education, industry, research and decision-making capabilities [41]. The qualitative analysis considered inputs or validation indicators (whats) and the ways to evaluate AI applications in agricultural mapping (hows). These indicators, validated by researchers (experts) with expertise in the study’s area of knowledge (e.g., agriculture and artificial intelligence), build the House of Quality.





3. Results


This study finds influential countries and collaborators in scientific production related to AI’s contribution to agricultural mapping and provides a trend analysis in this area of knowledge. It synthesises documents and applies QFD to determine strategies for AI’s contribution to agricultural mapping.



3.1. Performance Analysis


3.1.1. Scientific Contribution


Figure 2 shows the annual publications of studies on AI applications in agricultural mapping. In the first three decades, scientific production did not represent even 1% of the total production, while in the last thirty years, production has shown a moderate exponential growth that could be related to image processing automation and agricultural land performance globally. Furthermore, in recent decades, farmers’ domain knowledge has been merged with AI to improve agricultural decisions.



The studies’ citations show a growing trend and reached their highest peak in 2019 due to the adaptation and transition processes of intelligent technologies in agriculture.




3.1.2. Most Productive Countries


Table 1 shows the top five countries with the highest scientific production (36.66% of the total output), belonging to the continents of Europe, Asia, and North America. Additionally, it presents two types of publications: Single-Country Publications (SCPs), which represent cooperation between authors from the same country, and Multiple-Country Publications (MCPs), which represent cooperation between countries by authors from several countries. The MCP indices indicate that the USA has the most significant collaboration.



Furthermore, Figure 3 presents the five most predominant countries collaborating with other countries through a chord diagram with solid connections (collaboration ≥ 5 articles). The line thickness represents the number of connections between countries. Although China and India are among the five most productive countries, they are not among the top five countries with the most significant collaborations.




3.1.3. Keyword Co-Occurrence Analysis


Figure 4 shows the author keywords by group and their coexistence across the lines. The colour and intensity of the line identify the frequency at which these keywords coexist. The frequency of keyword coexistence highlights four groups: “artificial intelligence”, “cartography”, “remote sensing”, and “gis”. Therefore, the research aims to highlight the application of AI in agricultural mapping by fusing AI methods and geomatic tools. Also, topics of interest and those that are less developed, such as conservation and biodiversity in agricultural activities, are highlighted.




3.1.4. Trending Topics


Figure 5 presents the strategic diagram of the themes related to AI in agricultural mapping applications. These themes are distributed into four categories, depending on their importance and degree of development.



	(1)

	
Topics of high development and importance (motor themes): “Land management” and “agricultural land” belong to this category, with significant studies in the recovery/enabling of agricultural soils to maintain or preserve rural sectors’ food security. “Random forest” and “sentinel-2” include studies of the most used classification algorithms and series of multispectral images in crop type mapping and vegetation detection. “Convolutional neural network” includes studies on the type/classification of LULC and the classification of agricultural soils’ physical parameters.




	(2)

	
Themes developed without significant importance (niche themes) correspond to “soil moisture” and “sustainability”. They include studies on sustainable water resource management and drought event management.




	(3)

	
New themes with a low level of importance (emerging themes) include “antigenic cartography” and “avian influenza”. These studies perform genetic and antigenic analyses of viruses through antigenic maps that allow the visualisation of the relationship between antigens and the cure antigenic coverage for poultry and livestock sectors. “Land consolidation” and “spatial distribution” include studies related to the spatial structure of crops to improve soil consolidation and contribute to agricultural management.




	(4)

	
Basic and transversal research themes (basic themes): Themes related to “water quality” incorporate digital soil analysis studies, streams, and basins through mapping in an agricultural activity contexts. “Rural landscape” includes themes related to the spatial analysis of the ancient landscape of rural sectors characterised by the agricultural economy. “Artificial intelligence” includes studies on precision agriculture, biodiversity conservation, climate change, and agricultural land monitoring using ML/DL. “GIS” and “cartography” incorporate geospatial technology studies for mapping agricultural LULC.









3.2. Review


3.2.1. Classification of Topics Related to Agricultural Mapping


The review allowed the analysis of 206 documents related to the application of AI in agricultural mapping. Table 2 presents the distribution of the studies in six themes with their respective variables related to agricultural mapping. Agricultural activities/practices and LULC are the most predominant themes in this study.




3.2.2. Review Synthesis


Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 show the different AI methods, algorithms and learning types used in agricultural mapping. They also present geomatic tools and thematic maps and their predominant use in the topic of study. The distribution of countries is based on geography and scientific collaboration, starting with North America and then Europe, Asia, Latin America, Africa, and Oceania.



	
Agricultural management






This topic comprises 38.83% of the scientific contribution regarding the use of AI in agricultural mapping. ML and DL are the most used AI learning methods, and ANNs, CNNs, and SVMs are the most used AI methods/algorithms. In addition, this highlights the use of geomatic tools such as GIS, RS, RPAS, and GNSS in the classification mapping of crop types, weeds, agricultural practices, and crop optimisation (Table 3).



93% of agricultural management documents consider crops to be the leading resource, and 7% highlight soil (e.g., those in Hungary), watersheds (e.g., those in France), and forests (e.g., those in Brazil). Also, agricultural management highlights the use of thematic maps that consider phenology, characteristics, and types of crops (76%), agricultural production estimate (10%), weeds (10%), and habitat suitability (4%). These maps frequently have a spatial resolution of 30 m (48%), 10 to 20 m (30%), 2.4 to 6 m (15%) and 60 and 90 m (7%).





 





Table 3. A summary of methods based on agricultural management documents.






Table 3. A summary of methods based on agricultural management documents.





	
Country

	
Methodology/Learning Type

	
Geomatic Tool

	
Map’s Use




	
(GIS, RS, RPAS, LSS, and GNSS)

	
(Reference)






	
USA

	
ML/RF, MaxEnt

	
GIS (Google Earth Engine), GNSS (GPS), and RS (Landsat)

	
For sustainable practice selection.




	
[42]




	
DL/DNN

	
GIS and RS (Landsat 8, Sentinel 1A, MODIS)

	
For training data sets.




	
[43]




	
ML/RF, SVM

	
GIS (Google Earth Engine) and RS (Sentinel 1–2)

	
For crop type classification.




	
[31]




	
ML/Bayesian Models, ANN

	
GNSS (GPS) and RS

	
To encourage participatory design use and adopt more farmer-centred principles.




	
[44]




	
DL/RF, SVM, and CNN

	
RS (Landsat 7, 8)

	
To develop a classification model of sustainable and unsustainable agricultural practices.




	
[18]




	
ML/ANN, SVM

	
GIS (Trimble GeoSpatial) and RS (ASTER)

	
For main summer crop classification.




	
[45]




	
ML/SVM, RF, and GBRT

	
GIS and RPAS (Matrice 2010 DJI Quadcopter)

	
To determine nutrient concentrations in citrus fruits.




	
[46]




	
ML, SL/RF, SVM

	
GIS (Google Earth Engine) and RS (Landsat 5, 7, 8)

	
For the mapping of crop types at field level.




	
[47]




	
ML, DL/ANN, CNN

	
GIS, RS, and GNSS (GPS RTK)

	
As a weed mapping system.




	
[48]




	
Canada

	
ML/ANN

	
GIS and RS (Polarimetric Synthetic Aperture Radar, RADARSAT-2)

	
For crop biomass estimation.




	
[21]




	
ML/SVM

	
GIS and RS (SPOT)

	
For satellite images time series.




	
[49]




	
ML

	
GIS (ArcGIS) and RS (Landsat)

	
For pollination supply/to improve crop yields.




	
[50]




	
Spain

	
ML/ANN, SVM

	
GIS (SIGPAC, QGIS) and RS (Sentinel 1–2)

	
For the identification, classification, and phenological state of cultivation.




	
[33]




	
ML/ANN, SVM

	
GIS, RS (QuickBird, WorldView 2) and GNSS (GPS TRIMBLE PRO-XRS)

	
To discriminate and map infestations in sunflower crops.




	
[51]




	
ML/ANN, Maximum Likelihood and Spectral Angle Mapper

	
GIS and RS (WorldView 2, 3)

	
-




	
[52]




	
DL/CNN

	
GNS and RS

	
For crop growth status.




	
[53]




	
Italy

	
ML/PCA

	
GIS and RS

	
To develop and optimise crop trait recovery models from hyperspectral data.




	
[54]




	
ML

	
GIS (Corine Land Cover) and RS (MODIS MOD09A1)

	
For rice cultivation phenological detection.




	
[55]




	
Germany

	
ML/ANN

	
GIS, GNSS (GPS R10 Trimble) and LSS (HawkSpex Scan)

	
For leaf concentration prediction.




	
[56]




	
Germany and Slovakia

	
ML/PCA

	
GIS and RS (PRISMA, Sentinel)

	
As a hybrid model for the recovery of non-photosynthetic biomass.




	
For leaf concentration prediction.




	
[57]




	
France

	
ML/Hidden Markov Models

	
GIS

	
For the relationship between cropping systems and landscape patterns.




	
[58]




	
ML/Markov logic networks

	
GIS (LPIS) and RS (Formosat-2)

	
To contribute to environmental impact assessment, agricultural management, and food security.




	
[59]




	
DL/Semantic Segmentation

	
GIS (QGIS), RPAS (Quadricopter UAV), RS, and GNSS

	
For vine disease detection.




	
[60]




	
Hungary

	
ML/Computer-Aided Photo-Interpretation

	
GIS (LPIS) and RS (Ikonos, QuickBird)

	
For agricultural practice evaluation.




	
[61]




	
Slovenia

	
DL/CNN

	
GIS and RS (Sentinel 2)

	
For cultivated land detection.




	
[62]




	
Poland

	
ML/RF

	
GIS (PhotoScan-Agisoft), RS (Sentinel 2) and GNSS (MobileMapper 120)

	
For the identification of pine stock volume.




	
[63]




	
Portugal

	
DL/Computer Vision, CNN

	
GIS

	
For dynamic phenological mapping.




	
[17]




	
Belgium

	
ML/ANN

	
GIS

	
For pest monitoring.




	
[64]




	
Sweden

	
ML/Genetic Algorithm

	
-

	
To contribute to the development of better agricultural practices.




	
[65]




	
Netherlands

	
ML/SVR

	
GIS and RS (Sentinel 1, 2)

	
For crop growth.




	
[66]




	
Austria, Belgium, Spain, Denmark, and the Netherlands

	
DL/CNN

	
GIS (LPIS) and RS (Sentinel 2)

	
For crop monitoring.




	
[67]




	
China

	
ML/PCA, Ward’s Hierarchical Classification

	
-

	
For gross crop production.




	
[68]




	
ML, DL/CNN

	
GIS and RS (Sentinel 2)

	
For the detection of crop harvest stages.




	
[69]




	
DL/CNN

	
GIS, RS and RPAS (Polaris xp2020 Drone)

	
For seedling detection.




	
[70]




	
DL/CNN, Computer Vision

	
GIS and RS

	
For vegetable recognition and their size estimation.




	
[71]




	
ML, DL/Computer Vision, CNN

	
GIS

	
For the construction of agricultural disease data sets.




	
[72]




	
DL/YOLO-V5, CNN

	
GIS

	
For intelligent crop survival rate detection for agricultural yields.




	
[73]




	
ML/Computer Vision, CNN

	
GIS, RS and RPAS (UAV Inspire 1 DJI)

	
To optimise weed management in agriculture.




	
[15]




	
India

	
DL/DNN

	
GIS

	
For spatial distribution and time series analysis.




	
[74]




	
ML/RF

	
GIS and RS (Sentinel 1, 2)

	
As an automated global crop classification model.




	
[75]




	
ML

	
GIS (Google Earth) and RS

	
To propose technological solutions to improve the productivity and sustainability of agriculture.




	
[76]




	
DL/CNN

	
GIS and GNSS (GPS)

	
For the diagnosis and prognosis of crop diseases.




	
[77]




	
DL/DCNN

	
GIS, GNSS (GPS), and RPAS (Amitasha Drone Quadcopter)

	
For pest detection in agricultural fields.




	
[19]




	
DL/CNN

	
GIS and RPAS (Drone)

	
For the detection and georeferencing of waste, weeds, and plant diseases.




	
[78]




	
ML/RF, SVM

	
GIS and RS (Sentinel 2)

	
For agricultural performance.




	
[79]




	
Japan

	
ML/SVM, RF

	
GIS and RS (TerraSAR-X)

	
To discriminate and map different crop types.




	
[80]




	
Iran

	
DL, ML/CNN

	
GIS, RS, and RPAS (Drone DJI Phantom 4 Pro)

	
For plant detection.




	
[81]




	
Afghanistan

	
ML/ANN

	
GIS (ArcGIS) and RS (Landsat 8 OLI)

	
For grape yield prediction.




	
[16]




	
Taiwan

	
ML/Things-Based Autonomous Mobile Robot System

	
RS

	
For the design and implementation of an Autonomous Mobile Robotic System for Pithaya Harvesting.




	
[82]




	
Malaysia

	
ML/CNN

	
RPAS (Drone DJI Phantom 4 RTK), GNSS (GPS Trimble BD920) and RS (Landsat 8)

	
For land cover distribution.




	
[83]




	
Korea

	
ML/SVM, RF

	
GIS (ArcGIS Pro), RPAS (UAV), and RS (Landsat)

	
For the classification and limitation of rice fields.




	
[84]




	
South Korea

	
DL/CNN

	
GIS

	
To improve weed recognition.




	
[85]




	
Brazil

	
ML/ANN

	
GIS, GNSS (GPS Trimble 2013 RTK), and RS

	
For the spatial and temporal monitoring of soybean cultivation biophysical characteristics.




	
[86]




	
ML/RF

	
GIS (ArcGIS)

	
To estimate the productive potential of macauba trees.




	
[87]




	
ML/RF, ANN and XGBoost

	
GIS and RS (Landsat OLI, Sentinel 2)

	
For agricultural intensification.




	
[88]




	
Brazil and Venezuela

	
ML/Clustering Algorithm

	
GIS and LSS (LíDAR)

	
For the identification of different elements such as trunks, branches, and leaves.




	
[89]




	
Argentina

	
ML/CNN

	
GIS (ArcGIS Pro), RPAS (UAV DJI Phantom 4 Pro), and GNSS(GPS)

	
For crop yield.




	
[90]




	
Argentina, China, France, Madagascar, Morocco, Pakistan, Russia, South Africa, Ukraine, the USA

	
ML/RF, SVM

	
GIS (GEOGLAM) and RS (SPOT4, Sentinel-2 and Landsat 8)

	
For crop type production.




	
[91]




	
Mali, South Africa, and Ukraine

	
ML/RF

	
GIS and RS (Sentinel-2, Landsat 8)

	
For the performance evaluation of the Sen2-Agri automated system.




	
[92]




	
South Africa

	
ML/SVM, RF

	
GIS and RS (Landsat 8)

	
To differentiate crop types.




	
[93]




	
Australia

	
ML/Fuzzy logic

	
GIS, RS, and GNSS (U-Blox5 GPS)

	
To demonstrate the accurate classification of livestock behaviours.




	
[94]




	
DL, ML/CNN, YOLO V3

	
-

	
For aphid colony detection.




	
[95]




	
ML/YOLO v4 CNN, XGBoost

	
GIS, RPAS (UAV), and RS (SPOT)

	
For pasture management, biological control, and herbicide use.




	
[96]








Note—ML: machine learning. DL: deep learning. SL: Supervised Learning. DNN: Deep Neural Network. CNN: Convolutional Neural Network. ANN: Artificial Neural Network. PCA: Principal Component Analysis. XGBoost: Extreme Gradient Boosting. BRT: Boosted Regression Tree. SVM: Support Vector Machine. RF: Random Forest. GIS: Geographic Information System. RS: remote sensing. UAV: Unmanned Aerial Vehicle. LPIS: Land Parcel Information System. GPS: Global Positioning System. GNSS: Global Navigation Satellite System. (-) No recorded information.











	
LULC






Table 4 shows the documents associated with agricultural LULC (21.36% of the scientific contributions). ML is the most used learning method. The frequent AI methods/algorithms in this topic are RF, SVM, and Fuzzy Logic in forest identification mapping, crop fields, and agricultural landscape precision.



LULC studies analyse the spatial distribution of agricultural territory as the leading resource (73%) through thematic maps with a predominant spatial resolution of 0.5 to 10 m (53%), 20 to 30 m (40%), and 60 m (7%). Furthermore, 20% of the studies correspond to forests, agricultural landscapes, and vegetation, and 7% to wetlands, greenhouses, and coastal environments, highlighting the mapping of agricultural classification with vegetation indices (e.g., the NDVI).





 





Table 4. A summary of methods based on LULC documents.
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Country

	
Methodology/Learning Type

	
Geomatic Tool

	
Map’s Use




	
(GIS, RS, RPAS, LSS, and GNSS)

	
(Reference)






	
USA

	
DL/DNN, RF, SVM, and CNN

	
RS (Landsat 7, 8) and RPAS (Drone)

	
To classify agricultural land use by exploiting EO data’s temporal and spectral dimensions.




	
[97]




	
ML/ANN

	
GIS (QGIS, ArcGIS and Google Earth Engine) and RS

	
For crop cover prediction.




	
[98]




	
ML/SVM

	
GIS and RS

	
To compare the effectiveness of SVM-BEE with other methods.




	
[99]




	
Grenade

	
-

	
GIS

	
To analyse the anthropic impact on agricultural environments, infrastructure, and cultural meanings.




	
[100]




	
Spain

	
ML/ANN

	
GIS (Geomedia Professional 5.1), GNSS (GPS TR GEOD L1/L2), and LSS (Vexcel UltraScan5000 Precision)

	
For LULC knowledge and its evolution over time.




	
[101]




	
UL/Unsupervised Classification

	
GIS (CORINE Project) and RS (NOAA Satellites, AVHRR Sensor)

	
To obtain changes in mapping caused in the forests.




	
[102]




	
SL, UL/Supervised and Unsupervised Classification

	
GIS (SIGPAC) and RS (Landsat 5)

	
Public administration needs to implement an agricultural cadastre.




	
[103]




	
ML/ANN

	
GIS

	
-




	
[104]




	
ML/ANN

	
GIS (ERDAS Imagine) and RS (Landsat)

	
The identification of types of land use and management.




	
[105]




	
Italy

	
ML/Overlay

	
GIS (CORINE Land Cover, MOLAND, GoogleEarth 5.0) and RS (Quickbird)

	
The landscape recovery planning of farming terraces.




	
[106]




	
ML/Overlay

	
GIS and RS

	
The evaluation of consequences of rural land and landscape transformations.




	
[107]




	
Germany and Slovakia

	
ML/SVM, Markov Random Field

	
GIS and RS (Ikonos)

	
The verification of crop and grassland soil classes.




	
[108]




	
France

	
ML/Expert System

	
GIS and RS

	
To improve the relationship understanding between agriculture and the landscape.




	
[109]




	
ML/Conglomerate and PCA

	
GIS (QGIS v.3.4 and SAGA)

	
The site’s classification to determine hydrocarbon contamination.




	
[110]




	
Cyprus

	
ML/Expert System

	
GIS (ArcGIS)

	
For land redistribution.




	
[111]




	
Bulgaria

	
ML/Fuzzy Convolution Filter

	
GIS (Geodatabase, ArcGIS 9.2), RS and GNSS (GPS)

	
To evaluate human-induced soil transformations.




	
[112]




	
Greece

	
ML/SVM

	
GIS, RS (Hyperion) and LSS (Hyperion VNIR Spectrometer)

	
The distribution and density of land cover categories.




	
[113]




	
ML/PCA, SVM

	
GIS (ArcGIS) and RS (Sentinel-2)

	
For LULC mapping highlighting wetlands.




	
[23]




	
Poland

	
ML/RF

	
GIS, LSS (LíDAR), GNSS (GPS Mobile Mapper 120), and RS (Landsat, Sentinel)

	
For the conservation planning of natural and semi-natural habitats.




	
[114]




	
ML/RF

	
GIS (QGIS and ArcGIS), LSS (LíDAR)and RS (Sentinel 2)

	
For LULC class detection related to agriculture.




	
[115]




	
Portugal

	
ML/RF, SVR

	
GIS (ENVI version 4.8) and RS (AISA Eagle, Hawk)

	
For Map shrub cover fractions.




	
[116]




	
England

	
ML/RF

	
GIS (ArcGIS, SAGA), RS, and GNSS (GPS)

	
For the large-scale mapping of small landforms in agricultural landscapes.




	
[117]




	
Ukraine

	
ML/Generalization Algorithm

	
GIS (StateGeoCadastre)

	
-




	
[118]




	
Ireland

	
ML/RF, SVM

	
GIS (GRASS GIS 7.0) and RS (Landsat 8 OLI, RapidEye and TERRA-MODIS)

	
To evaluate and determine effective atmospheric correction strategies.




	
[119]




	
Turkey

	
ML/SVM, Maximum Likelihood

	
GIS and RS (SPOT 5)

	
For agricultural yield estimation.




	
[120]




	
China

	
ML, DL/RF, CNN, and Computer Vision

	
GIS and RS

	
For the precise mapping of agricultural landscapes and surface mining.




	
[121]




	
Taiwan

	
ML/SVM, RF

	
GIS (ArcGIS), RS (WorldView-2), and GNSS (GPS)

	
To accurately identify and map tea crops.




	
[122]




	
India

	
ML/Semantic Segmentation

	
GIS (QGIS, Copernicus Global Land Cover and Google Earth Pro) and RS (Sentinel 2)

	
For the remote sensing of photovoltaic solar farms.




	
[123]




	
ML/ANN, Fuzzy Logic

	
GIS (Google Earth Engine), RPAS (DJI phantom 3 professional), GNSS (GPS), and RS (Sentinel-2)

	
As a linear mixture model for crop surface mapping.




	
[2]




	
DL/Semantic Segmentation, CNN, and ANNP

	
GIS

	
The mapping and identification of single and multiple tree species.




	
[124]




	
ML/RF

	
GIS (QGIS) and RS (Worldview-2)

	
For mapping crop fields in heterogeneous agricultural landscapes.




	
[125]




	
Cambodia

	
ML/SVM, RF

	
GIS (ArcGIS, Google Earth), RS (Sentinel), and LSS (LíDAR)

	
For cropland data accuracy assessment.




	
[126]




	
Bangladesh

	
ML/RF

	
GIS (Google Earth), GNSS (GPS), and RS (Landsat ETM, NOAA)

	
For urban expansion identification.




	
[127]




	
Jordan

	
ML/ANN

	
GIS (ENVI v.5.3) and RS (Landsat 7)

	
For urban expansion pattern prediction.




	
[128]




	
Korea

	
DL/CNN

	
GIS (ArcMAp) and RS (Landsat 8)

	
For land cover classification.




	
[129]




	
ML/Extraction Algorithm

	
GIS, RS (Landsat) and LSS (LíDAR)

	
For cropland boundary extraction.




	
[130]




	
Brazil and Venezuela

	
ML/RF

	
GIS and RS (Landsat, Radarsat, TerraSAR-X and Sentinel 2)

	
For the recognition of Amazonian coastal environments.




	
[131]




	
Mexico

	
ML/RF, SVM, and ANN

	
GIS (ArcMAp 10.5, Google Earth Pro, QGIS 3.10), and RS (Landsat 8)

	
For the assessment of conservation impact and vegetation cover sustainable management.




	
[24]




	
ML/Genetic Algorithm

	
Gis (ArcGIS versión 10.1) and RS

	
For niche modelling for a set of endangered top predators.




	
[132]




	
SL/Overlay

	
GIS (Google Earth Pro 7.3.4, QGIS 3.8.3), and RS (Landsat 5, 8)

	
The region’s inhabitants drive the determination of agricultural and forestry land use.




	
[133]




	
Tunisia

	
SL/RF, K-Dimensional Trees K-Nearest Neighbours

	
GIS (Google Earth) and RS (Sentinel 2)

	
For land use management potential.




	
[134]




	
SL/RF, SVM

	
GIS and RS (SPOT 6)

	
To improve agricultural land cover classification.




	
[135]




	
South Africa

	
ML/RF, SVM

	
GIS and RS (SPOT-4, Landsat-8)

	
To understand how class proportions and training set size influence the accuracy of cropland classifiers.




	
[136]




	
Australia

	
ML/RF, SVM

	
GIS (Google Earth Engine, RS (Landsat 8-OLI), and GNSS (GPS)

	
To develop and provide an accurate land extension product.




	
[137]








Note—ML: machine learning. DL: deep learning. SL: Supervised Learning. DNN: Deep Neural Network. CNN: Convolutional Neural Network. ANN: Artificial Neural Network. ANNP: Artificial Neural Network Deep. PCA: Principal Component Analysis. SVM: Support Vector Machine. RF: Random Forest. GIS: Geographic Information System. RS: remote sensing. GPS: Global Positioning System. GNSS: Global Navigation Satellite System. NOAA: National Oceanic and Atmospheric Administration. (-) No recorded information.











	
Water management






This topic corresponds to 15.05% of the scientific contribution related to irrigation mapping, detecting potential groundwater areas, and evaluating water quality (Table 5).



Groundwater (66%) and surface water from rivers, basins, and wetlands (34%) are the leading resources for water management studies. The thematic maps of these investigations guide the spatial distribution, contamination, quality, and vulnerability of human/agricultural groundwater consumption. Also, consider the quality parameters, morphology, and inflows and outflows of surface waters. These self-organizing maps have spatial resolutions of 30 m (56%), 10 to 20 m (33%), and 50 to 60 m (11%).





 





Table 5. A summary of methods based on water management documents.
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Country

	
Methodology/Learning Type

	
Geomatic Tool

	
Map’s Use




	
(GIS, RS, RPAS, LSS, and GNSS)

	
(Reference)






	
USA

	
DL/Semantic Segmentation, ANN

	
GIS and RS (Sentinel-2)

	
Mapping of irrigation centre pivots.




	
[138]




	
ML/ANN, GBRT

	
GIS (MODFLOW/MODPATH) and RS

	
Metamodeling for groundwater age prediction.




	
[139]




	
Canada

	
ML/Back-Propagation Neural Network and SVM

	
GIS, RS (Landsat 8) and GNSS (GPS GARMIN 76CSx)

	
Concentration quantification surface water quality parameters.




	
[140]




	
Spain

	
ML/ANN, RF and SVM

	
GIS (ArcGIS), GNSS (GPS) and RS (Landsat 8-OLI)

	
Potential areas detection of groundwater for irrigation and domestic consumption.




	
[141]




	
Italy

	
ML/RF, SVM

	
GIS (Corine Land Cover, ArcGIS) and GNSS (GPS)

	
Groundwater sustainable evaluation for human consumption and agriculture.




	
[142]




	
Portugal

	
ML/PCA

	
GIS (ArcGis 9.3) and GNSS (GPS Trimble GeoExplorer)

	
Risk due to nitrate contamination.




	
[143]




	
Denmark

	
ML/Ensemble Testing

	
GIS (ArcMap, CORINE 2012) and RS (Landsat 8)

	
Predict artificially drained areas.




	
[144]




	
Austria and Germany

	
DL

	
GIS (ArcGIS) and RS (Sentinel 2)

	
Irrigation water demand




	
[145]




	
Turkey

	
ML/ANN, Adaptive Neuro-fuzzy Inference System (ANFIS)

	
GIS (ArcGIS 10.2)

	
Spatial distribution of groundwater quality indices.




	
[146]




	
ML, DL/ANN

	
GIS and RS

	
Identification of alluvial terrain with different soil properties.




	
[147]




	
UL/SOM-ANNs

	
GIS and RS

	
Evaluation of water quality parameters.




	
[148]




	
UL/SOM, ANN and K-Means Clustering

	
GIS

	
Variables analysis that intervene in the quality of surface waters.




	
[149]




	
China

	
ML/ANN, SVM and CNN

	
GIS (QGIS Desktop, ERDAS Image) and RS (Landsat 8 OLI)

	
Identification of geographical area reformed by water expansion.




	
[150]




	
SL/ANN, BPNN and ANFIS

	
GIS

	
-




	
[151]




	
ML/RF, KNN

	
GIS (ERDAS IMAGE 9.2), GNSS (GPS) and RS (Landsat 8, Radarsat-2)

	
Classification and mapping of forested wetlands.




	
[152]




	
India

	
ML/ANN

	
GIS

	
-




	
[153]




	
Iran

	
ML/ANN

	
GIS (ArcGIS Pro 2.9) and RS

	
Suitable site location for artificial groundwater recharge.




	
[154]




	
ML/SVM, Genetic Algorithm

	
GIS (ArcGIS 10.5, ENVI 5.3) and RS (Landsat 8)

	
Suitable site identification for rainwater collection.




	
[155]




	
SL, UL/SVM

	
GIS

	
Groundwater vulnerability mapping.




	
[156]




	
ML/ANN, Genetic Algorithm and SVM

	
GIS and RS (Landsat-8 OLI)

	
Build regression models to determine water salinity.




	
[157]




	
ML/Swarm Intelligence

	
GIS

	
Simulate and optimise multiple crop planning.




	
[25]




	
ML/SVM, RF

	
GIS (ArcGIS 10.8) and RS (Sentinel 2)

	
Water quality assessment.




	
[158]




	
Japan

	
ML/RNNs

	
GIS

	
Identification of water quality dynamics.




	
[159]




	
Vietnam

	
ML/Modified RealAdaBoost, SVM and RF

	
GIS (ArcGIS) and RS

	
Groundwater potential mapping.




	
[160]




	
ML/RF, AdaBoost Ensemble and MultiBoost Ensemble

	
GIS (ArcGIS) and RS

	
Build groundwater potential.




	
[161]




	
Malaysia

	
ML/Fuzzy logic

	
GIS

	
Event-based stormwater runoff modelling for a tropical basin.




	
[162]




	
Pakistan

	
ML

	
GIS (QGIS) and RS (Sentinel 2, Landsat 5)

	
Interaction between agricultural landscape, river morphodynamics and population settlements.




	
[163]




	
Brazil

	
DL/DCN, ANN

	
GIS (Google Earth Engine) and RS (Landsat 5)

	
Pivot irrigation systems automatic detection.




	
[29]




	
Tunisia

	
SL/Genetic Algorithm, SVM

	
GIS and RS (Sentinel 2A)

	
Vulnerabilities identification in groundwater aquifers.




	
[164]




	
Australia

	
DL/CNN

	
GIS (ArcGIS), LSS (LíDAR) and RS (Landsat 5, 7)

	
Detect farm dams.




	
[165]








Note.—ML: machine learning. DL: deep learning. SL: Supervised Learning. CNN: Convolutional Neural Network. ANN: Artificial Neural Network. SOM: Self-organizing map. PCA: Principal Component Analysis. BRT: Boosted Regression Tree. SVM: Support Vector Machine. RF: Random Forest. GIS: Geographic Information System. RS: remote sensing. GPS: Global Positioning System. GNSS: Global Navigation Satellite System. (-) No recorded information.











	
Agroclimatic Risks






Table 6 shows documents related to mapping vulnerabilities and risks of agricultural and natural spaces that use AI methods/learning types/algorithms and geomatic tools for agrarian management (12.62% of the scientific contributions).



Of these studies, 50% explore agricultural territory and forests as their primary resource. The predominant risks associated with these resources are forest fires (17%), gully erosion and land subsidence (26%). Additionally, 25% of the studies analyse hydrographic basins, and another 25% analyse crops. The risks related to these resources are the susceptibility to floods (39%), drought and contamination by heavy metals (18%). The predominant spatial resolution of the thematic maps is 10 to 30 m.





 





Table 6. A summary of methods based on agroclimatic risk documents.
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Country

	
Methodology/Learning Type

	
Geomatic Tool

	
Map’s Use




	
(GIS, RS, RPAS, LSS, and GNSS)

	
(Reference)






	
USA

	
DL/ANN

	
GIS (ArcGIS Pro) and RS

	
For high-risk area identification for mitigation.




	
[166]




	
Spain

	
ML/RF

	
GIS, RS (Sentinel 1), and GNSS (GPS)

	
To evaluate the vulnerabilities and risks of agricultural and natural spaces.




	
[167]




	
Germany

	
-

	
GIS (APGIS, Corine Land Cover 2018) and LSS (LíDAR)

	
For agricultural spatial planning.




	
[168]




	
ML/K-Nearest Neighbour

	
GIS (Corine Land Cover) and RS (MODIS)

	
For the identification of duration, extent, and drought severity.




	
[169]




	
Greece

	
ML/SVM

	
GIS (Corine 2000) and RS (MODIS, SPOT 4 and ASTER)

	
For post-fire evaluation in Mediterranean areas.




	
[170]




	
ML/RF, XGBoost

	
GIS (Corine Land Cover, QGIS) and RS (Sentinel 1B)

	
In assessing flood susceptibility.




	
[171]




	
ML/SVM, ANN

	
GIS (QGIS) and RS (Sentinel 1, 2)

	
For mapping natural and man-made disasters.




	
[172]




	
Poland

	
ML/RF, GBM

	
GIS (ArcGIS 10.2, Corine 2018) and RS

	
For the detection of forest fire occurrence.




	
[173]




	
Turkey

	
ML/RF

	
GIS and RS (Sentinel-2, ENVISAT-ASAR)

	
In flood mapping for decision-making.




	
[174]




	
ML/MANN, GANN, RBANN

	
GIS (ArcGIS 10.2.1) and RS

	
In flood flow prediction




	
[175]




	
ML/NGBoost, RF, and XGBoost

	
GIS (QGIS, Corine 2018) and RS

	
For assessing flood susceptibility.




	
[176]




	
Iran

	
ML/RF, BRT

	
GIS (ArcGIS) and RS

	
For the determination of risks due to land subsidence.




	
[177]




	
ML/Fuzzy Logic

	
GIS (ENVI), GNSS (GPS), and RS (Sentinel 1A)

	
In sinking area detection.




	
[178]




	
ML/ANN, RF

	
GIS (Google Earth) and RS (Landsat 8-OLI)

	
In land subsidence location.




	
[179]




	
ML/AdaBoost

	
GIS (ArcGIS 10.3, ENVI 5.4) and RS (ALOS, Landsat 8)

	
In gully erosion susceptibility mapping.




	
[180]




	
Brazil

	
ML/Fuzzy logic

	
GIS (Arc View) and RS (Landsat)

	
For the monitoring and control of deforestation and fire areas.




	
[181]




	
ML/ANN, SVM

	
GIS and RS (Landsat 8, Sentinel 2)

	
In flood distribution identification to avoid contamination.




	
[28]




	
Egypt

	
ML/Fuzzy Logic

	
GIS (ArcGIS 10.4), RS (Sentinel 2A), and GNSS (GPS)

	
For assessing agricultural soil contamination.




	
[182]




	
Morocco

	
ML/RF, Boosted Regression Trees (BRTs), and SVM

	
GIS (Google Earth), RS (Landsat 8-OLI, ASTER), and GNSS (GPS)

	
For the location of gully erosion sites.




	
[183]




	
South Africa

	
ML/RF, SVM

	
GIS (Google Earth Engine) and RS (MODIS Terra, Landsat 7–8)

	
To identify the drivers of drought.




	
[184]




	
Australia

	
ML/RF, FL, SVM, CART, and BRT

	
GIS and RS (Landsat 8)

	
In agricultural drought inventory.




	
[32]




	
ML/Fuzzy Logic and Semantic Matching

	
GIS (ArcGIS 10.1) and RS (TERRA, AQUA)

	
To provide recommendations and support for decision-making in sustainable agriculture.




	
[185]




	
ML/Cubist

	
GIS and RS (MODIS)

	
To understand the magnitude and distribution of soil loss due to water erosion.




	
[186]








Note—ML: machine learning. DL: deep learning. ANN: Artificial Neural Network. SOM: Self-organizing map. GBM: Gradient Boosting Model. XGBoost: Extreme Gradient Boosting. BRTs: Boosted Regression Trees. SVM: Support Vector Machine. RF: Random Forest. GIS: Geographic Information System. RS: remote sensing. GPS: Global Positioning System. GNSS: Global Navigation Satellite System. (-) No recorded information.











	
Pedology/Edaphology






This topic corresponds to 10.19% of the scientific contributions, highlighting publications associated with soil monitoring mapping, the classification of agricultural soil parameters, and soil prediction (Table 7).



The leading resource of the studies associated with the pedology/edaphology topic is the soil (80%), followed by crops (20%). These studies use the mapping of soil types (31%), soil properties such as salinity (54%), and land subsidence coverage (15%). The spatial resolution of these mappings ranges from 10 to 30 m.





 





Table 7. A summary of methods based on pedology/edaphology documents.
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Country

	
Methodology/Learning Type

	
Geomatic Tool

	
Map’s Use




	
(GIS, RS, RPAS, LSS, and GNSS)

	
(Reference)






	
USA

	
ML/ANN, RF, SVM, and GBM

	
GIS (ArcGIS) and RS (AVHRR)

	
For soil property prediction and maize yield.




	
[187]




	
Hungary

	
ML/RF

	
GIS (QGIS v.3.14)

	
In the national landslide registry.




	
[188]




	
Ukraine

	
ML/Fuzzy Logic

	
GIS and RS (Landsat 7, ASTER GDEM)

	
To assess soil texture distribution and water retention properties.




	
[189]




	
Lithuania

	
ML/CNN

	
GIS (LPIS) and RS (Sentinel 2)

	
For soil monitoring.




	
[190]




	
China

	
ML, DL/DCN, RF, and ANN

	
GIS (ArcGIS 10.1) and RS (GF-1 WFV Sensor, ASTER)

	
For geoplot mapping.




	
[30]




	
DL/Mask-RCNN

	
GIS, LSS (GX750-HDR GPR), RS, and GNSS (GPS)

	
For agricultural soil parameters classification.




	
[191]




	
ML, DL/ANN, CNN, RF, and XGBoost

	
GIS (ArcGIS) and RS (ASTER GDEM, MODIS MOD13Q1 and SPOT 4)

	
For soil property identification.




	
[192]




	
ML/SVM, ANN, and RF

	
GIS, RS (Sentinel-2A), and GNSS (Trimble JUNO GPS)

	
For mapping soil salinity in arid areas.




	
[193]




	
ML, DL/XGBoost, CatBoost, and TPE-CatBoost

	
GIS (Google Earth Engine, ArcGIS 10.8.1) and RS (SMAP)

	
For the spatial estimation of soil moisture in maize-producing areas.




	
[194]




	
Iran

	
ML/ANN

	
GIS (ArcGIS)

	
For the spatial modelling of soil electrical conductivity.




	
[13]




	
ML/BRT, XGB

	
GIS and RS (Sentinel 1A, ASTER-DEM)

	
For land subsidence rate detection.




	
[195]




	
Afghanistan

	
ML/Fuzzy Expert System

	
GIS (ArcGIS, Google Earth Engine) and RS (Landsat 8 OLI)

	
To assess land suitability for potential vineyard extension.




	
[196]




	
Brazil

	
ML/SVM, ANN

	
GIS and RS (YARA Sensor, ALS Sensor)

	
For nitrogen measurement to improve agricultural productivity.




	
[197]




	
ML/ANN

	
GIS and RS

	
In soil prediction.




	
[198]




	
Chile

	
ML/RF

	
GIS and RS (Landsat 5, 7)

	
In evapotranspiration estimation.




	
[199]




	
Mexico

	
ML/Decision Tree, Computer-Aided Mapping and Multinomial Logistic Regression

	
GIS (ArcView 8.1, IDRISI) and GNSS (GPS)

	
For local soil class evaluation with landscapes and climatic conditions.




	
[200]




	
ML/ANN

	
GIS (ArcView 8.1 e IDRISI) and RS (Landsat ETM)

	
In land use change identification.




	
[201]




	
South Africa

	
ML

	
GIS, GNSS (GPS), and RS

	
In agricultural and environmental management.




	
[202]




	
Australia

	
ML/ANN, BPNN

	
GIS and RS (Landsat 7, ETM+ Sensor)

	
For dryland salinity mapping.




	
[203]








Note—ML: machine learning. DL: deep learning. CNN: Convolutional Neural Network. ANN: Artificial Neural Network. SOM: Self-organizing map. GBM: Gradient Boosting Model. XGB: Extreme Gradient Boosting. BRT: Boosted Regression Tree. SVM: Support Vector Machine. RF: Random Forest. GIS: Geographic Information System. RS: remote sensing. LPIS: Land Parcel Information System. GPS: Global Positioning System. GNSS: Global Navigation Satellite System. 











	
Public management






Table 8 shows the mapping studies of public management (1.94% of the scientific contributions). It highlights ML with ANN use and geomatic tools such as GIS and RS for agricultural decision-making.



The leading resource of these studies is cultivation. Also, mapping guides the evaluation of crops through NDVI maps (25%), the identification of routes for agricultural machinery (50%), and the quality of farm products (25%).





 





Table 8. A summary of methods based on public management documents.
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Country

	
Methodology/Learning Type

	
Geomatic Tool

	
Map’s Use




	
(GIS, RS, RPAS, LSS, and GNSS)

	
(Reference)






	
Italy

	
ML/ANN

	
GIS (Corine) and RS (Landsat TM/ETM, NOAA-AVHRR)

	
In interannual variation evaluations of crop areas on a regional scale.




	
[204]




	
India

	
ML

	
GIS, RPAS (Drones agrícolas), GNSS (GPS), and RS

	
In decision-making in agriculture.




	
[205]




	
Iran

	
ML/Particle Swarm Optimisation (PSO), ANN and SOM

	
GIS

	
In the identification of agricultural machinery parts.




	
[206]








Note—ML: Machine Learning. ANN: Artificial Neural Network. SOM: Self-organizing map. GIS: Geographic Information System. RS: remote sensing. GPS: Global Positioning System. GNSS: Global Navigation Satellite System. NOAA: National Oceanic and Atmospheric Administration. 











	
AI procedures in agricultural mapping






The Table 9 shows the most relevant (current) AI procedures in agricultural mapping, according to the cases mentioned in Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8.





3.3. Artificial Intelligence’s Contributions in Agricultural Mapping (QFD)


The House of Quality (HoQ) enabled the establishment of indicators that validate AI’s contributions to agricultural mapping. Figure 6 shows the relationship between quality indicators and their requirements based on the opinion of ten experts. This analysis found 11 indicators and 17 requirements. Therefore, each expert performed 187 validations. The experts identified the indicators’ importance, with the most relevant being the optimisation of agricultural processes and production, agroclimatic risk prevention, remote sensing and geolocation, image processing, digitisation, knowledge generation, route optimisation, and agricultural monitoring and control.



Additionally, the HoQ found highly significant relationships between remote sensing and geolocation with the fusion of AI and geomatics tools, photogrammetry processes, georeferencing, and the application of neural networks. The optimisation of agricultural processes and production is related to big data, management tools for agricultural monitoring and control, pattern identification algorithms, technological development, and the generation of apps. Also, image processing in agricultural activities is highly related to using geometric tools, training algorithms, learning, classification, pattern identification, and georeferencing.



The correlation matrix (the Roof of the House of Quality) specifies the correlation between the quality parameters. It also highlights strong positive correlations between the fusion of geomatic tools with AI, big data, and technological development. The incidence of using geomatic tools correlates to the processes of photogrammetry and georeferencing. The training and learning algorithms correspond significantly to image classification, pattern identification, and vegetation indices. The importance weights of the quality indicators formulate strategies for the contributions of AI to agricultural mapping including the following:




	
Provide a data set of agricultural soil properties and behaviour to establish AI soil prediction models that optimise and guarantee environmental sustainability.



	
Use ANNs/CNNs to help with identification, geolocation, crop counting, fertiliser prescription, and biological controllers.



	
Merge geomatics tools and artificial intelligence techniques to detect real-time agricultural pests.



	
Promote high-performance technologies such as big data, geomatic tools, and pattern classification/identification algorithms to predict agricultural production and identify sustainable agroclimatic zones, which will guide farmers’ and producers’ decision-making.



	
Generate apps related to intelligent irrigation systems and early warnings to contribute to planning optimal routes to improve food security.



	
Automate agricultural control and monitoring through the Internet of Things (IoT), AI and multispectral and hyperspectral techniques to strengthen agrarian management.










4. Discussion


This review provides predominant approaches in agricultural mapping (e.g., agricultural management, agrarian LULC, and water management) and the synergy of AI applications (e.g., ML and DL) with geomatics tools (e.g., GIS, RS, and RPAS) to optimise agricultural resources, predict/manage crop yields, and ensure food security. The agricultural mapping environment with these tools helps decision-makers gain control of their products from planting, production, and harvesting.



AI in agricultural mapping begins with geography, rural landscapes and farming structures (Figure 2). That is, in analysing the spatial relationships and organisation of areas farmers exploit, the application of AI in agricultural mapping influences agricultural management activities, LULC, and water management (75% of the total contributions). However, AI is not often used in agroclimatic risk activities, pedology/edaphology, and public management (25% of the total contributions) (Table 2). In agricultural mapping processes, the predominant geomatic tools are GIS (e.g., ArcGIS and Corine Land Cover), RS (e.g., Sentinel 1-2 and Landsat 8), GNSS (e.g., GPS), and RPAS (e.g., drones).



AI models and geomatics tools contribute to improving agricultural performance, environmental performance, and food security. For example, the study of [207] improved the ability to estimate China’s agricultural production through an optimisation algorithm with an accuracy of between 99.79% and 99.99%. The algorithm considered the national agrarian output of recent years and modelled it continuously to achieve a greater optimisation capacity. The study by [208] estimated Pakistan’s fruit production through a CNN with accuracies of 65.6% to 76.3%. Due to its relationship with population growth, this model could improve predictions for this country and developing countries. Also, the study by [209] analysed the improvement in banana yields at a global level using ML techniques such as ANNs that consider this crop’s reproductive growth traits. On the other hand, the study of [210] used ML through ANNs and SVMs for pest detection, identifying the outline of insects and achieving an accuracy of 90% and 91.5% for pest recognition. Researchers in [211] improve the previous method using UAVs based on ML and DL for pest identification, which had an accuracy of 99.55%. This method uses CNNs, which improves accuracy through image resizing and data set augmentation.



Regarding mapping in agricultural management, the USA has the most significant scientific contribution, using machine learning (67%), deep learning (33%), and geomatics tools such as GIS, GNSS, and RS (Landsat 7–8; Sentinel 1–2) in mapping studies associated with crop classification [31], the automated mapping of crop types through the Cropland Data Layer (CDL) and the Seasonal Crop Data Layer (IDCL) [212], sustainable agricultural practices [18], and nutrient concentrations [46], as seen in Table 3. These studies report an accuracy of over 80% in crop classification and sustainable agricultural practices. On the contrary, China and India use machine learning (30%) and deep learning (70%) with geomatics tools such as GIS, RS, and RPAS (e.g., drones) for mapping studies associated with crop yield optimisation [73,76], pest and weed identification [15,77]. These studies achieved pest and weed identification accuracies greater than 88%. Additionally, Latin American countries such as Brazil and Argentina base their agricultural mapping studies on estimating the productive potential of crops [87,90], reaching an average reliability of 71%. In these studies, machine learning is the most used learning technique, with geomatics tools such as GIS, RS, GNSS, and RPAS.



The mapping studies associated with LULC use AI through machine learning with ANN methodology and geomatics tools such as GIS, RS, and LSS in various agricultural land use activities (Table 4). For example, in Spain and Mexico, the mapping of changes caused by forests [102], the conservation/sustainable management of vegetation cover [132], and agricultural cadastre implementation driven by the inhabitants of the region are obtained [101]. These studies use unsupervised classification algorithms to generate information and establish limits on training sites. On the contrary, in India, mapping crop fields in heterogeneous agricultural landscapes is relevant [2]. Using supervised classification improves the accuracy of the estimated crop area.



Regarding mapping studies related to water management, AI is used in Iran through machine learning with SVM-ANNs and geomatics such as GIS and RS to identify suitable surface and groundwater sites (Table 5) [154]. In Turkey, using SOM-ANNs is relevant for evaluating the quality of this type of water by identifying contaminants [148]. These studies confirm that AI accurately determines the identification and evaluation of water resources (with an accuracy greater than 90%). In contrast, China uses machine learning with ANNs to estimate water scarcity in agricultural sectors [151].



Mapping studies associated with agroclimatic risks highlight the use of AI through machine learning with classification algorithms such as RF and geomatic tools such as GIS and RS for spatial risk analysis in agricultural contexts (Table 6). For example, in Iran, AI allows the spatial estimation of the vulnerability of land subsidence risks in agricultural territories [177]. In Turkey, flood mapping (with an accuracy greater than 90%) successfully determines disaster management policies and plans [175]. By contrast, in Australia, Germany, and Brazil, AI enables risk mapping for droughts, fires, and deforestation [169,181].



Regarding pedology/edaphology and public management activities, there are few studies related to the use of AI in countries such as China, Iran, Brazil, and Mexico (12%) (Table 7 and Table 8). China and Brazil use AI (ML with ANNs and CNNs) to generate soil maps, analysing properties such as carbon contents, texture, humidity, and salinity to improve agricultural production systems and food security [192,194,198]. These studies demonstrate better soil mapping than studies by the researchers of [213,214] based on methodologies such as interpolations and regressions.



Two-thirds of investments in agricultural projects are private, such as implementing irrigation systems [215] and ecological conservation [216], which is attributed to the innovative technology used by this sector. However, because rural communities cannot always sustain investments, the remaining one-third of investment corresponds to the public sector. Therefore, new knowledge and technologies are crucial for managing agricultural mapping, which contributes to the decision-making of political and private decision-makers in the agri-food sector [190].



Furthermore, the frequency of AI methods being used in agricultural mapping has increased in the last two decades, which could be associated with countries’ scientific contributions (Figure 2). This study finds that the most frequently used AI methods/algorithms in agricultural mapping are RF (24.76%), ANNs (22.82%), SVMs (21.36%), CNNs (14.08%), Computer Vision and Fuzzy Logic (8.74%). Similarly, the study of [217] shows that CNNs, SVMs, and You Only Look Once (YOLO) are most frequently used in disease and pest detection and prediction mapping. Furthermore, the study of [218] demonstrated the frequent use of SVM/SVR in the predictive mapping of biomass and bioenergy production processes. Other authors [219] highlight the frequent use of ANNs, RF, and SVMs in agricultural topics such as soil humidity, water salinity, and rural resource management mapping.



Overall, this review found that the predominant learning types in agricultural mapping are ML and DL. These learning types are applied in diverse geographic scopes because agroclimatic conditions, agricultural practices, the farm environment, and the types of crops identify many areas, regions, and countries. Furthermore, the study by [220] ensures that developed countries use AI in agricultural data analysis, while the use of these technologies is low in emerging countries.



ML is the most used AI learning due to its comprehensive training data and precision in identifying crops, agricultural resources, soils, pests, and diseases. However, the study of [221] indicates that DL has considerably increased its use in detecting the quality of agricultural products. Also, the study of [222] denotes DL as the universal learning method because it processes large amounts of data through matrix operations.



The advantages of AI methods in agricultural mapping focus on optimising resources, reducing labour, reducing the risk of environmental contamination and natural hazards, farm sustainability, and integrating technologies. The study by [223] confirms that AI changes how we grow and produce food. Drawbacks of using AI in agricultural mapping include monitoring issues due to crop size, extreme weather conditions, a lack of interoperability, availability, data integrity, and security.



Finally, this study considered QFD to be a comprehensive methodology for improving AI’s contribution to agricultural mapping. However, the Analytical Hierarchy Process (AHP) could complement these studies [224]. Similarly, other studies emphasise the integration of AI technologies with big data [225], the Generalised Representation of the Agro-Food System (GRAFS) approach [226], and the AHP [227] for decision-making contributions in the agricultural sector.




5. Conclusions


This study identifies ML (76%) and DL (24%) as the most prevalent AI learning types in agricultural activities. The most commonly used AI algorithms/methods in agricultural mapping are RF, ANNs and SVMs (with ML), CNNs, DNNs, and Computer Vision (with DL). Of the studies, 60% are related to agricultural management and LULC in prominent countries such as China, the USA, India, Spain, and Mexico. AI contributes to agricultural mapping and management activities in agricultural production, disease control and mitigation, and crop identification or classification. Additionally, AI highlights its use in LULC mapping studies associated with forest dynamics, agricultural management, and agricultural land cover improvements. Also, GIS, RS, RPAS, and GNSS are geomatic tools for planning and generating agricultural cartography.



Of the studies analysed, 38% highlight issues associated with water management, agroclimatic risks, and the pedology/edaphology of crops in countries such as Turkey and Iran. AI improves irrigation system mapping in agriculture, detects underground/surface water, and evaluates water quality for domestic consumption and cultivation. Also, AI contributes to mapping, detecting and reducing agroclimatic risks such as droughts, fires, floods, and land subsidence. Regarding pedology/edaphology activities, AI techniques present advances in soil suitability mapping and soil property analysis to improve agricultural performance.



The types of learning, AI techniques, and geomatic tools contribute to the improvement of agricultural production through the speed of control processes in the cultivation phases, reliability, and incredible precision of agricultural performance, considering various regions and environmental conditions in the improvement or formulation of new policies so that farmers achieve sustainable agriculture. These technologies identify and classify pests and weeds through image processing, reducing unnecessary plants in less time and minimising using fertilisers and herbicides that degrade and contaminate the soil. Furthermore, AI makes it possible to evaluate the groundwater quality for human/agricultural consumption with proactive conservation measures and contributes to global problems of water scarcity, drought, and the effects of climate change. These technologies allow the extraction of information from historical maps to identify wetlands and river paleochannels for water storage and to detect burned areas to avoid fire risks.



This review finds a deficit in the use of AI in public management activities such as crop estimation, quality control, and the distribution-marketing of agricultural products. Furthermore, this study does not cover potential areas, such as food production and the challenge of agriculture’s impact on the environment. On the other hand, there is no research related to AI in the agriculture–environment dualism. Therefore, this review proposes future lines of research related to applying AI techniques, such as IoT, in post-harvest agricultural activities, as well as developing precise quality management models and the development of AI technologies for sustainable agriculture.
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Figure 1. Study phases. 
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Figure 2. Scientific contributions: (a) the annual publications from 1957 to 2023; (b) The increase in publications from 1990 to 2023. 
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Figure 3. A chord diagram of the top five countries with the most significant collaborations. 
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Figure 4. The keyword co-occurrence analysis. 
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Figure 5. A strategic diagram of trending topics related to AI in agricultural mapping applications. Motor, niche, emerging, and basic themes show the study themes’ importance (centrality) and degree of development (density). 
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Figure 6. The House of Quality validating the contributions of AI to agricultural mapping. 
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Table 1. The most productive countries in the subject of study.
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	Country
	Articles
	* SCP
	* MCP
	Total Citations





	Spain
	79
	69
	10
	1377



	Italy
	73
	57
	16
	1172



	USA
	60
	37
	23
	1672



	China
	60
	48
	12
	943



	India
	36
	33
	3
	614







* SCP: Single-Country Publications, MCP: Multiple-Country Publications.













 





Table 2. The reviewed studies’ classifications according to the agricultural themes.
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	Themes
	Variables
	Publications





	Agricultural management
	
	
Land preparation.



	
Fertilisation.



	
Control of pests and diseases.



	
Crop health and performance.



	
Sustainable management.



	
Phenology monitoring



	
Cultural practices.



	
Harvest.



	
Crop rotation.





	80



	LULC
	
	
Agricultural landscape.



	
Coverage and use.



	
Territorial regulation.



	
Agricultural frontier change.



	
Historical LULC.





	44



	Water management
	
	
Water quality.



	
Reservoir optimisation



	
Irrigation systems.





	31



	Agroclimatic risks
	
	
Floods, droughts, frosts, and desertification.



	
Water deficiencies.



	
Deforestation.



	
Forest fires.



	
Alterations in controllers and biological threats.



	
Ecological changes.



	
Soil and water pollution from agricultural activities.



	
Carbon capture.



	
Early warnings.



	
Land erosion.





	26



	Pedology/Edaphology
	
	
Soil classification and suitability.



	
Soil properties.



	
Soil topography.





	21



	Public management
	
	
Prediction of harvest and requirements.



	
Quality control and traceability.



	
Postharvest control, distribution, and marketing.





	4










 





Table 9. A summary of AI procedures in current agricultural topics.
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	AI Method/Learning
	Procedure
	Theme
	Application





	ML/DL
	
	-

	
Historical cartography, Digital Elevation Models.




	-

	
The extraction of mounds/rivers using DL detectors.




	-

	
Mounds identified as archaeological sites.






	Enhance archaeological sites through a historical hydrological network.
	The historical cartography of burned areas in Portugal. The mapping of river paleochannels in India.



	DL
	
	-

	
Preparation of the data set.




	-

	
Training using DL models, Explainable Artificial Intelligence (XAI), and the Grad-CAM algorithm.




	-

	
The validation of image recognition models.






	Intelligent agricultural support systems (harvesting fruit and eliminating poor quality fruits).
	The agricultural harvest pitaya in Taiwan, and rice, maize, soybeans, and apples in China. The phenological monitoring of vegetable crops in Portugal.



	ML/RF/XGBoost
	
	-

	
Flood conditioning factors (Slope, NDVI, LULC and flood points).




	-

	
Training through XGBoost.




	-

	
Optimisation (Artificial Bee Colony) and validation.






	Flood susceptibility mapping.
	Flood mapping by river basins in Spain, Italy, Greece, and Turkey.



	ML/SVM, RF
	
	-

	
Chemical factors conditioning water quality.




	-

	
Data interpolation in ArcGIS.




	-

	
Prepare a water quality map with SVM/RF.




	-

	
The validation of mapping with the mean absolute error.






	Groundwater quality mapping.
	The mapping and monitoring of groundwater quality in urban and rural areas of Iran, Turkey, and Greece due to droughts. The sustainable use of groundwater resources for human consumption and agriculture in Mexico, Brazil, and Italy.



	ML
	
	-

	
The behaviour modelling of bees.




	-

	
A pollination model for crop production.




	-

	
The application of the Artificial Intelligence Framework for the Environment and Sustainability (ARIES).




	-

	
Sensitivity analysis using variances and Gaussian regression.






	Mapping ecosystem services for crop yields in agricultural landscapes.
	Maize and wheat crop yield optimisation in Colombia, Canada, the USA, and China.



	ML/ANN
	
	-

	
The acquisition/processing of agri-food data.




	-

	
An ML algorithm using ANN automatically trains crop rotation patterns from the Cropland Data Layer (CDL) time series.




	-

	
The spatial estimation of seasonal crop distribution.






	The monitoring of seasonal and permanent crop types.
	The mapping of citrus crops in Spain, and of sorghum and finger millet in India.



	ML/RF, ANN, and XGBoost
	
	-

	
The creation of synthetic samples.




	-

	
Hierarchical classification.




	-

	
The generation of spectral indices using RF.




	-

	
The training of ML algorithms (ANN and XGBoost).




	-

	
Precision evaluation.






	Agricultural intensification.
	The mapping of the agricultural intensification of rice, beans, and soybeans in Brazil, and of saffron in India. Forest intensification in Greece and Poland.



	ML/CNN
	
	-

	
Soil data cube.




	-

	
Data extraction from Sentinel-2 images.




	-

	
Data processing and modelling using ground reflectance and heuristic bands.




	-

	
Soil modelling using RF, SVR, and CNN.




	-

	
Model uncertainty with a prediction interval.






	Soil monitoring for the agri-food sector.
	Soil monitoring of pine lands in Morocco, crops of fodder grasses in Lithuania, and crops of vegetables, strawberries, wheat, and alfalfa for Egypt.



	ML/ANN, YOLOv4
	
	-

	
Real-time object detection using YOLO.




	-

	
Image localisation boxes using bounding box regression.




	-

	
Confidence score to improve the precision of the prediction.




	-

	
Model performance.






	The detection of agricultural growth phases.
	The mapping of maize and sugar beet crop growth stages in Spain, and of soy and sunflower in France.



	ML/DL
	
	-

	
Obtaining images of crops remotely.




	-

	
The classification of images by quality.




	-

	
The estimation of crop yield with ML and DL.






	Crop yield estimation.
	The estimation of horticultural production in the USA, maize in the Netherlands, and sugarcane and paddy in India.
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