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Abstract: The number of grains per sea rice panicle is an important parameter directly related to
rice yield, and it is also a very important agronomic trait in research related to sea rice breeding.
However, the grain number per sea rice panicle still mainly relies on manual calculation, which has
the disadvantages of being time-consuming, error-prone, and labor-intensive. In this study, a novel
method was developed for the automatic calculation of the grain number per rice panicle based on a
deep convolutional neural network. Firstly, some sea rice panicle images were collected in complex
field environment and annotated to establish the sea rice panicle image data set. Then, a sea grain
detection model was developed using the Faster R-CNN embedded with a feature pyramid network
(FPN) for grain identification and location. Also, ROI Align was used to replace ROI pooling to solve
the problem of relatively large deviations in the prediction frame when the model detected small
grains. Finally, the mAP (mean Average Precision) and accuracy of the sea grain detection model
were 90.1% and 94.9%, demonstrating that the proposed method had high accuracy in identifying and
locating sea grains. The sea rice grain detection model can quickly and accurately predict the number
of grains per panicle, providing an effective, convenient, and low-cost tool for yield evaluation, crop
breeding, and genetic research. It also has great potential in assisting phenotypic research.

Keywords: grain number; rice whole panicle; grain detection; convolutional neural network;
plant phenotyping

1. Introduction

Sea rice is commonly known as salt–alkali-tolerant rice, which can grow in tidal flats
and saline–alkali land [1,2]. Due to the impact of human activities, land salinization is
becoming more and more serious [3]. Among the 230 million hectares of irrigated land in the
world, 20% has been affected by salinization, which would greatly affect rice cultivation [4].
Currently, the yield of sea rice is still low, so research about how to increase sea rice yield
is receiving more and more attention [5]. Simultaneously, the yield assessment of sea rice
has become increasingly important. Among them, the number of grains per panicle of sea
rice is a trait directly related to yield, which often needs to be measured in the process of
yield evaluation and variety breeding [6]. However, current counting of sea rice panicle
grains mainly relies on manual labor, and it is extremely time-consuming for researchers
to conduct large-scale field measurements. Therefore, it is of great significance to study a
method that can automatically identify grains on the sea rice panicle.

In recent years, many researchers have applied image processing technology to study
particle counting methods. For example, visible light and X-ray imaging technologies
were used to count grains on the panicle [7]. Also, a rice panicle phenotyping system
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that combined X-ray and RGB scanning to comprehensively evaluate spikelet and grain
traits was developed [8]. A high-throughput rice phenotyping facility (HRPF), which used
multi-angle color images combined with neural network algorithms, was developed to
measure the number of grains per panicle in rice plants [9]. Wu et al. used image processing
and deep learning algorithms to count grains on the rice panicles and solved the problem
of overlapping and dense grains on rice panicles [5]. Li et al. proposed a low-cost method
for calculating rapeseed inflorescences using YOLOv5 and a convolutional block attention
module (CBAM) based on unmanned aerial vehicle (UAV) RGB images [10]. The above
research methods have greatly advanced the detection level of small targets such as rice
panicle grains and achieved higher accuracy. However, the rice panicle images of these
methods are all taken under conditions with stable light sources and simple backgrounds,
and they are not suitable for complex field environments.

Liu et al. aimed at the problem of the detection accuracy of small and medium-sized
objects in an SSD (Single Shot Multibox Detector) and proposed to introduce a decon-
volution area amplification program and construct a new feature pyramid by extracting
features in shallow layers to achieve small-target detection [11]. Wang et al. proposed a
multi-scale residual aggregation feature pyramid network called MSRA-FPN, which ag-
gregated features from multiple levels to the top layer through a unidirectional cross-layer
residual module to enhance the semantic information of high-level feature maps [12]. The
information attenuation during the feature fusion process was alleviated, thereby achieving
better target detection performance. Wang et al. proposed a feature pyramid network called
an IFPN (Interconnected Feature Pyramid Network), which used an attention mechanism
to simultaneously select attention features and had significant improvements in feature
enhancement [13]. Ren et al. introduced a region proposal network (RPN) to achieve
almost free region proposals, which shared full-image convolutional features with the
detection network and could predict object boundaries and object scores at each location,
ultimately achieving target detection [14]. The aforementioned methods can well extract
the characteristics of small targets, improve the accuracy of small-target detection in target
detection tasks, and provide a reliable theoretical basis for research on the detection of
small targets such as wheat ears and grains.

With the development of computer science, some researchers have developed methods
for the intelligent counting of grains based on the crop plant structure. For example, Saeed
Khaki et al. proposed a sliding window-based counting method that could detect and
count corn ears under different lighting conditions [15]. Wang et al. proposed a new feature
pyramid network called an Adaptive Feature Pyramid Network (AFPN), which adopted
the design of adaptive feature upsampling and adaptive feature fusion to alleviate the
problems caused by medium-scale changes in target detection [16]. Wei et al. trained a
wheat grain detection and counting model, which can be used for wheat grain detection
and counting at multiple scales and angles in complex backgrounds [17]. Gong et al.
proposed an improved Faster R-CNN algorithm to solve problems such as object occlusion,
deformation, and small size in object detection [18]. Dandrifosse et al. collected RGB images
of wheat from heading to maturity in complex field environments and developed a wheat
ear counting and segmentation method [19]. Wang et al. also calculated the number of ears
in rice images with different lighting conditions, different backgrounds, and different input
sizes in complex field environments and achieved good robustness and accuracy [20]. Also,
a novel prototype, dubbed “GN-System”, was developed for the automatic calculation
of the grain number per rice panicle based on deep convolutional neural network and
panicle structure [21]. The above method obtains more accurate target information by
obtaining higher-scale image feature information, and it has strong adaptability when
performed under different backgrounds. However, its experimental environment is mainly
indoors, and its background complexity is relatively simple. It will reduce the detection
robustness of the model. The above research on detection in a field environment requires
the artificial addition of other backgrounds for occlusion. Although this method is effective
at improving detection robustness, it is very inconvenient.
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In summary, the existing methods for detecting rice panicle grains are all performed in
indoor environments, using a baffle that can highlight the characteristics of the rice panicles
as a background to improve the detection accuracy. Also, in the actual counting of the grain
number per rice panicle, the rice panicles need to be sent to a specific environment after
harvesting, and then they must be manually unfolded and placed flat in a fixed position
for photographing and counting. Alternatively, the rice panicles are threshed and then
counted grain by grain. These methods not only increase the workload of researchers but
may also cause damage to rice grain. Furthermore, there are few studies on how rice or
saline–alkali-tolerant rice can detect and count grains in the complex field environment.
Complex environments and unstable light sources will increase the difficulty of grain
identification. Simultaneously, the grains of saline–alkali-tolerant rice panicles are denser
than those of ordinary rice panicles, and overlapping rice panicle grains also make research
more difficult. Therefore, it is meaningful to study a method to directly count grains per sea
rice panicle in a field environment. Faster R-CNN, the FPN, and ROI Align have advantages
in small-target detection, such as high accuracy, strong multi-scale feature fusion capability,
and precise feature extraction. These advantages make the scheme have great application
potential and value in the field of small-grain detection. Given the above reasons, this
paper proposed an improved Faster RCNN algorithm to detect and count the number of
grains per sea rice panicle.

The main objectives of this research were to (a) collect the panicle images of sea rice
under complex field environment, (b) establish the grain detection and counting model
using a convolutional neural network, and (c) evaluate the detection stability and accuracy
of the proposed method.

2. Materials and Methods

The complete panicle images of saline–alkali-tolerant rice under different light con-
ditions were manually collected in the complex field environment, followed by manual
labeling. Then, the images were divided via a random method into three sub-data sets:
a training set, verification set, and test set. Also, data enhancement operations such as
Gaussion blur [22] and flip transformation were performed on the data set to enhance the
generalization ability of the model. The transfer learning method was adopted in training
the model, which significantly reduces the training time and quickly lowers the loss value.

2.1. Data Set Preparation
2.1.1. Image Acquisition

The panicles of sea rice in the filling stage were blue and white, like reeds. The grains
of sea rice had prickles, and the rice kernel inside was red. The height of sea rice was above
1.8–2.3 m, and the root depth was 30–40 cm, while the height of common rice was only
1.2–1.3 m. The rice panicle is an important reproductive organ of rice, and the growth of the
rice reproductive organ will directly affect the development of the rice panicle. Therefore,
the shape, size, color, texture, and posture of rice panicle region are closely related to the
final yield of rice.

The sea water rice panicle images were directly collected in rice fields at the Agricul-
tural Research Institute on Huguang Campus, Guangdong Ocean University, Zhanjiang
City, Guangdong Province, China (110.3342◦ N, 21.26333◦ E). The advantage of directly
collecting panicle images in rice fields is that the rice plants will not be damaged, which is
vital for rice research during the growing stage. The collection site in the sea rice panicle
image is shown in Figure 1a. The sea rice panicle images were collected from the paddy
field during the rice’s ripening period in two steps (Figure 1b). Firstly, the ends of sea rice
panicles were lifted manually, and the panicle branches were gently spread apart if the
grains on the rice panicles were highly dense. This step was to expose the grains on the
sea rice panicle as much as possible. Then, the RGB images of sea rice panicles were taken
30 cm parallel to the panicles (the side where more panicle grains can be seen) from the
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horizontal direction using a mobile phone. Thus, as many grains as possible of sea rice
panicles were captured in the image (Figure 1c).
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Figure 1. Illustration of sea rice panicle: (a) collection site for sea rice panicle mages; (b) sea rice
panicle being photographed with a mobile phone; (c) panicle image in the middle part of the rice
field; (d) panicle image at the edge of the rice field.

The rice panicle sample of sea rice selected in this paper was Haihong 12 cultivated by
Guangdong Ocean University. Its length was moderate, with an average panicle length of
23 cm, which was widely popular and typical. The row spacing of sea rice at the sampling
points in the rice fields was 20 cm. The data collection time was 12 November 2022, and the
weather was sunny with about 10% cloud. At this stage, the sea rice panicles were fully
formed, the grain size was full, and the rice panicles had basically reached a mature state.
Moreover, the color of the rice panicles was significantly different from the color of rice
stems and leaves. Choosing to collect sea rice panicle images at this stage would help the
model to fully learn characteristics such as grain color and grain surface texture, which
could further improve the grain detection accuracy of the model. The image collection tools
were four types of mobile phones. The specifications of the mobile phones are listed in
Table 1. The original images were saved in JPG format, and a total of 200 images were taken.
Among them, the number of images taken using different mobile phones was 41, 94, 45,
and 20 for Xiaomi Mi 11, Redmi K40, Apple iPhone 12, and Apple iPhone 11, respectively.

Table 1. Specifications of mobile phones used in photographing rice panicles.

Phone Model Brand Country Camera Resolution Focal Length Range

Xiaomi Mi 11 Xiaomi Inc. (Beijing, China) China 3200 × 1440 pixels 26–50 mm
Redmi K40 Xiaomi Inc. (Beijing, China) China 2400 × 1080 pixels 25–50 mm

Apple iPhone 12 Apple Inc. (Cupertino, CA, USA) USA 2532 × 1170 pixels 13–26 mm
Apple iPhone 11 Apple Inc. (Cupertino, CA, USA) USA 1792 × 828 pixels 13–26 mm

The advantages of using smartphones to collect sample data were small size, porta-
bility, easy operation, easy post-processing, etc., and the focusing function could improve
image clarity and ensure a high resolution. To avoid experimental errors caused by edge
effects (Figure 1d), images of rice panicles at the edge of rice field, whose background was
usually soil, were also collected. It can ensure the diversity of rice panicle grain data and
help to enhance the identification stability of the grain model.

2.1.2. Image Annotation

The collected data were manually screened to remove blurry and out-of-focus images.
The visual image annotation tool LabelImg (version 1.8.1, https://github.com/tzutalin/
labelImg (accessed on 10 January 2024)) was used to annotate sea rice panicle images
(Figure 2). LabelImg supported label output in PASCAL VOC, YOLO, and COCO formats.
The label file output by PASCAL VOC in XML format [23] was used. During the image
acquisition process, some rice panicles may have been blurred due to being out of focus or
obscured by other rice panicles. Therefore, when the area of the panicle grains was blocked

https://github.com/tzutalin/labelImg
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by more than 90% or the panicle grain boundaries were missing due to blur, no labeling
was performed.
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positions of sea rice grains in panicle image.

2.1.3. Image Processing

In the training process of our deep learning models, data augmentation was an es-
sential link. The existing deep learning models had many parameters. The number of
parameters that a general model could train was tens of thousands to millions. Still, the
number of samples in a general training set usually struggled to reach tens of thousands to
millions. Moreover, when deep learning was applied to actual engineering projects and
finally implemented, many problems would be encountered, such as issues with lighting,
occlusion, shadows, etc. The original data collected usually struggled to meet various real
environments. In this case, data augmentation was needed to increase the robustness and
generalization of the deep learning model. Commonly used data augmentation libraries in-
cluded torchvision [24], imgaug [25], and albumentations [26]. Since the imgaug third-party
library was not only easy to use but also highly customizable and extensible, the imgaug
library was ultimately used in this paper. Also, compared with the torchvision official
data augmentation library, the imgaug library provided more diverse data augmentation
methods and had a faster computing speed.

Compared with the algorithms’ third-party data augmentation library, the imgaug
library can very conveniently combine multiple methods. For example, the usage ratios
of different methods can be used to perform data augmentation on the original images,
which can truly improve the generalization ability of the deep model during the subsequent
training process. One of the most important reasons for choosing the imgaug library was
that it can perform corresponding transformations on keypoints and bounding boxes while
augmenting data.

After annotating the original images, the BoundingBoxsOnImage function in imgaug
was used to transform the labels and coordinates accordingly. Finally, a data set with
800 images was obtained. This step greatly reduced the time spent labeling the data set.
Through statistical analysis, it was known that the total number of sea rice grain labels
reached 89,125, which was enough for model training. Figure 3 shows a picture of some
of the data after augmentation. After a series of data augmentation steps, each image in
the data set corresponded to an XML format annotation file, which contained the label and
coordinates of each rice grain. The final data set was divided into a training set, verification
set, and test set according to a ratio of 8:1:1 by a random method.
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2.2. Grain Detection Model
2.2.1. Construction of the Sea Grain Detection Model

The Faster R-CNN model was selected to train the data [14]. It mainly consisted of the
RPN (region proposal network) and Fast R-CNN (Figure 4) [27]. Because RPN and Fast
R-CNN shared the same backbone network, choosing these models greatly increased the
inference speed. There were two reasons for choosing the Faster R-CNN model. First, it
was a two-stage target detection network that was more accurate than a one-stage network
and could better solve the problem of small targets. Secondly, Faster R-CNN had strong
versatility and robustness due to its ability to handle multi-scale and multi-target problems,
was easy to use to carry out transfer learning, and could be better applied to different
varieties of hybrid rice.
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Since the feature maps extracted by Faster R-CNN were all low-level, it was difficult
to obtain the semantic information of high-level features, but the bottom-level information
could not be lost to obtain accurate target positions. Therefore, the pyramid feature network
(FPN) [28] was integrated on this basis. The FPN enabled the features of different sizes to
contain rich semantic information, and the computational cost remains manageable. Its
structure consisted of three processes: bottom-up, top-down, and lateral connection. It was
suitable for multi-scale and small-target detection. Also, the performance was even better.

The backbone network extracted features from the original image through the ResNet101
network (Figure 5) [29] since, in small-target detection, higher-level feature information
was needed. Deepening the network layer could obtain richer feature information, and
ResNet solved the problem of gradient explosion that occurred as the number of network
layers increased. In this process, the layers with constant feature map size were classified
into one stage, and the output of each layer was defined as C1, C2, C3, C4, or C5. The
output sizes were 2, 4, 6, 8, and 32 times that of the original image. That is to say, the size of
the previous layer was twice that of the next layer. This process was the bottom-up stage of
the FPN, in which the model network could obtain features of different scales.
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The top-down process upsampled the high-level feature information obtained by
the bottom-up process and then passed it downward. High-level features contained
rich semantic information, and this feature information could be spread to low-level
features through top-down propagation. The upsampling method was nearest-neighbor
interpolation, also known as zero-order interpolation. It made equal the transformed gray
value to the gray value of the nearest input pixel. This algorithm could upsample the image
very quickly. Its job was to double the size of adjacent high-level feature maps and pass
them to the next layer. In this process, a lateral connection needed to be performed. In this
study, each layer was defined as M5, M4, M3, or M2. Therefore, except for the C1 layer, the
feature maps generated by bottom-up convolution would correspond to the feature maps
generated by top-down upsampling.

In the process of propagating each top-down layer to the next layer, it would be
integrated with the feature map output by each stage in the corresponding backbone
network. This process was the lateral connection of the FPN (Figure 6). The feature map Cn
output in the backbone network first underwent a 1× 1 convolution operation to reduce the
dimension, and then it was fused with the feature map Mn + 1 passed by downsampling,
which was directly added, and the corresponding Mn layer was obtained. Since in the
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bottom-up and top-down processes, the same ratio had been already used to adjust the
size of the feature map, the corresponding elements were added directly.
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Finally, a 3 × 3 convolution on the feature map Mn of each layer was performed
to obtain Pn as the output result of this layer. The purpose of 3 × 3 convolution was to
eliminate the aliasing effect caused by upsampling to re-extract features and ensure the
stability of their features. The number of output Pn channels of each layer obtained through
the above operations was 256. Finally, downsampling with a step size of 2 was performed
on P5 to obtain P6, which was introduced to cover a larger Anchor Scale, with a size of
512 × 512.

RPN was a fully convolutional network that simultaneously predicted object bound-
aries and objectness scores for each location (Figure 7). Firstly, the RPN used a 3 × 3 filter
to convolve on the feature map Pn generated by the FPN, which would make the extracted
features more robust. Also, the feature map was mapped into multiple proposal boxes
(reg layer branch) and semantic information as classification in the bounding box (cls layer
branch). Finally, the positive anchors and the corresponding bounding box regression
were combined to obtain proposal boxes. Also, the proposal boxes that were too small and
exceeded the boundary were eliminated.
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In the process of region of interest (RoI) extraction by Faster R-CNN, directly using
RoI Pooling to anchor the bounding box of the target would cause a certain deviation
between the candidate box at this time and the position obtained by the initial regression
(Figure 8). That is, the feature map was misaligned with the original image. However, for



Agriculture 2024, 14, 1135 9 of 17

small targets, such a method would lead to a relatively large deviation in the prediction
box. To solve this problem, RoI Align [30] was used for improvement. Compared with
RoI Pooling, RoI Align canceled its quantization operation but used the bilinear difference
method to calculate the corresponding pixel value. The advantage of this improvement
is that RoI Align is more accurate at and stable when extracting features, especially when
dealing with small grains or grain boundary details. Therefore, when using RoI Align for
small-grain detection, the position and size of the grain can be more accurately determined,
thereby reducing the error of grain detection. The formulas for bilinear interpolation were
as follows:

f(R1) ≈
x2 − x
x2 − x1

f(Q11) +
x− x1

x2 − x1
f(Q21) (1)

f(R2) ≈
x2 − x
x2 − x1

f(Q12) +
x− x1

x2 − x1
f(Q22) (2)

f(P) ≈
y2 − y
y2 − y1

f(R1) +
y− y1
y2 − y1

f(R2) (3)
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Among them, Q11, Q12, Q21, and Q22 represented the pixel positions in the feature
map; R1 and R2 were the intermediate values; and P was the projection position of the
feature frame on the feature map.

RoI Align was performed on the feature map Pn to extract 7 × 7 features, and then
the multi-layer feature map was made one-dimensional through the Flatter layer, and two
FC-ReLU were performed in sequence. The last two FC-ReLU inputs to the branch served
as regressions for classification and the bounding box.

2.2.2. Training of the Sea Grain Detection Model

The three image sub-sets served as inputs for transfer learning using a pre-trained deep
neural network model. The algorithm was implemented in MMDetection, a target detection
library based on the Pytorch deep learning framework developed by the MMLab Laboratory
of the Chinese University of Hong Kong, and executed on a graphics workstation. The
operating environment was the Windows 10 operating system, Pytorch 1.12.1, CUDA 11.6,
MMDetection 1.25.1. The training of the model was conducted by a workstation equipped
with a GPU (NVIDIA GeForce RTX 3090 with 12 GB Memory, NVIDIA Corporation,
California, USA). The parameters of the model were fine-tuned, and their specific values
were as follows: Among them, the learning rate was set to 0.001, the positive sample ratio
of the convolutional layer was set to 0.75, and the batch size was set to 2. Also, during
the entire model training process, the SGD (Stochastic Gradient Descent) was used and
momentum was added to speed up the convergence, so that the model had higher accuracy
after convergence. This could solve the problem of parameter optimization for large-scale
grain data, and it had high computational efficiency and strong adaptability during the
training process. The momentum was set to 0.8, while the epoch was set to 120. When
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the loss function converged and stabilized, training was stopped and the training model
was saved.

2.3. Evaluation Indicators

The RPN was trained end-to-end to generate high-quality region proposals, which
were used by Fast R-CNN for detection. When training the RPN, the model would generate
a large number of candidate frames based on the feature map, sort them according to their
confidence, and evaluate the frames in turn. Therefore, IoU (Intersection over Union) was
used as the measurement standard, and, finally, the non-maximum suppression was used
to determine which boxes were the expected grains. IoU was the ratio of the overlapping
area of the grain’s actual area and the estimated area to the area occupied by the two
areas as a whole. Generally speaking, when the IoU value was greater than 0.5, it could
be considered an acceptable result, and 0.5 was selected as the threshold and used as the
standard for evaluating the model [31]. Since the panicle grain covered a small area in the
image, it was difficult to achieve a high-precision match between its predicted bounding
box position and the position in the label. The appropriate IoU threshold was selected to
measure the accuracy of the panicle grain position information.

IoU =
target∩ predition
target∩ predition

(4)

The panicle grain results predicted by the proposed model were compared with the
manually labeled panicle grains. The correctly detected panicle grains were called true
positive (TP), and the undetected panicle grains were called false positive (FP). False
negative was recorded when the background was incorrectly detected as panicle grains.
From the three indicators, TP, FP, and FN, some indicators for model evaluation can be
derived as follows:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

The meaning of precision was the measure of how many of all predicted targets were
actually targets that were expected to be predicted, while the meaning of recall was how
many of all the targets that were expected to be predicted were correctly predicted by
model detection. Precision measured the model’s ability to find positive samples in the
entire data, while recall measured the model’s ability to find positive samples in the entire
positive-sample data set. The results of both were approximately as close to 1 as possible.

3. Results
3.1. Training of the Sea Grain Detection Model

The loss function and accuracy curves were used to evaluate the effect of sea rice
model training. Then, the hyperparameters in model training were adjusted to obtain
the optimal parameter configuration. Using the transfer learning method could greatly
shorten the training time, so a weighted summation of the losses of the RPN and Fast
R-CNN for joint training was used. The loss of Fast R-CNN was similar to that of the RPN.
Also, the loss of the box was only calculated when the proposal box was a positive sample.
Figure 9a showed the changes in the model loss function, where the abscissa represented
the number of iterations, and the ordinate represented the loss value of the model loss
function. It showed that the classification loss (cls loss) rapidly decreased in the first
20,000 iterations of training, then leveled off, and finally the model gradually converged.
The regression loss (bbox regression loss) gradually decreased in the first 40,000 iterations
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of training, then leveled off, and finally the model gradually converged. Figure 9b shows
that the accuracy increased rapidly in the first 20,000 iterations and then continued to
increase slowly between 20,000 and 40,000 iterations. After 40,000 iterations, the model
gradually converged.
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3.2. Detection Results of the Sea Grain Detection Model

Sea rice panicle images collected using different pixel-level cameras under different
lighting conditions were used to test the detection performance of the model. Figure 10a–c
are images of rice panicles collected at the center of the rice field. The backgrounds of
these images are mainly rice panicle leaves and other rice panicles. The color of the target
rice grain to be detected is relatively similar to the background, and there are also stacks
between the panicle grains. It can be seen from the detection results that the proposed
model can well identify most of the grains of rice panicles, and it does not identify the
grains of other rice panicles in the image as positive samples. Figure 10d–f are images
collected at the edge of the rice field. In the background of these images, in addition to
rice leaves and other rice panicles, there are also weeds, soil, etc. It can be seen that the
proposed model also had good accuracy for detecting grains in these cases. The above
testing results showed that the proposed model had strong robustness in detecting sea rice
grains in complex rice fields.
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represents the location of sea rice grains detected in panicle image.

3.3. Comparison with Other Detection Models

During the training process, the precision (P) was taken as the vertical axis, and the
recall rate (R) was taken as the horizontal axis; then, the precision–recall (P-R) array was
drawn and connected into a curve to identify the corresponding P-R curve. The area
enclosed by the P-R curve under different thresholds for each category was the Average
Precision (AP). The average AP of different categories was called the mAP (mean Average
Precision). Figure 11 shows the P-R curves of the sea grain detection model, YOLOv3, and
Grid R-CNN. When the IoU threshold was 0.5, the mAP of the sea grain detection model
reached above 0.9. For a detection model, the larger the area it encompassed, the better the
performance. As can be seen in Figure 11, as the recall rate increased, the overall precision
of the model showed a downward trend. When the recall rate was between 0% and 85%,
the downward trend was slow, and when the recall rate was between 85% and 95%, it
decreased rapidly. Overall, the area under the P-R curve of the sea grain detection model
was the largest, indicating that our proposed model had better recognition results.
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The accuracy of the sea grain detection model and the Grid R-CNN model was much
better than that of the YOLOv3 model (Table 2). Although the speed (epoch/s) of the
proposed method was not much different from that of the YOLOv3 model, it was better
than that of the Grid R-CNN model. Table 1 shows that the precision indicators of the sea
grain detection model and Grid R-CNN models could be stable above 0.96. The sea grain
detection model and Grid R-CNN model both had relatively strong abilities to discover
the correlation of positive samples, and the recall index can also reach above 0.89. The
precision indicators and recall indicators of YOLOv3 were much lower than that of the sea
grain detection model. Overall, the proposed method could quickly and accurately detect
sea rice grains in complex field environments.

Table 2. A comparison of the accuracy of the sea rice grain detection model with other models.

Index Sea Grain Detection Model YOLOv3 Grid R-CNN

Precision 0.97 ± 0.01 0.86 ± 0.01 0.96 ± 0.01
Recall 0.91 ± 0.03 0.83 ± 0.03 0.90 ± 0.03

mAP (%), IoU:0.5 90.1 ± 0.2 78.9 ± 0.2 89.3 ± 0.2
Time (epoch/s) 105 90 300

3.4. Counting Accuracy of the Sea Grain Detection Model

To evaluate the counting accuracy of the sea grain detection model, another 10 images
of sea rice panicle samples were randomly selected to carry out the counting experiments.
The counting results for these samples are summarized in Table 3. The average counting
accuracy for the sea grain detection model was 94.9%, demonstrating that the proposed
method performed well in counting the grain number per sea rice panicle.

Table 3. The counting accuracy of the sea grain detection model.

No. Actual Number Counting Result Accuracy

1 69 67 97.1%
2 75 64 85.3%
3 103 97 94.2%
4 87 81 93.1%
5 88 86 97.7%
6 97 93 95.9%
7 117 100 85.5%
8 82 82 100.0%
9 92 92 100.0%
10 93 93 100.0%

Mean 94.9%

4. Discussion

Since the aim of this paper was to directly detect sea rice grains in complex rice fields,
it was inevitable that there would be many external interference factors that may directly
affect the accuracy of the detection results. Therefore, it was necessary to analyze the impact
of these problems on the detection accuracy of the sea rice grain detection model. In the
experiment, the factors that may affect the detection accuracy mainly included blurred rice
panicle images, occlusion grains, and a complex background.

4.1. Effect of Blurred Rice Panicle Images

Since the images were taken in a complex field environment, the quality of the images
could be easily affected by many aspects, resulting in the blurring of the grains to be
detected and unclear boundaries. Through data analysis, it was known that the accuracy of
blurred images was 8% to 10% lower than that of the images with clear grains. To address
this type of problem, image enhancement technology was used to blur the images in the data
set so that the model could learn the characteristics of blurred grains, thereby enhancing the
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robustness of the model. By learning the characteristics of blurred grains, the established
model could also correctly predict blurred grains in actual detection (Figure 12a). This
showed that the generalization ability and adaptability of the model could be effectively
enhanced through data enhancement. Also, the proposed method could efficiently identify
sea rice grains in practical applications and meet the requirements of application promotion
and online identification.
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4.2. Effect of Covering Grains on Sea Rice Panicle

The experimental rice panicle data consisted of unharvested rice panicles. Thus, the
rice panicles were in a natural state when the images were taken, and the grains on the
rice panicles could not be separated. Additionally, since some grains had not yet reached
maturity, they had not spread out, leading to thorny covering problems. This article
addresses this issue from two aspects: data collection and model training.

Since the samples used were rice panicles in fully mature and withered stages, the
yellow color of most of the rice husks faded away, and the grain weight of the rice panicles
reached the maximum. The grains, therefore, clumped together due to gravity, resulting
in mutual occlusion. To achieve a more ideal recognition effect, the panicle grains were
separated and covered, which could more quickly and effectively solve the problem of
being unable to be identified as a positive sample due to the lack of panicle grain features.
Therefore, when collecting data, the camera shooting plane must be parallel to the plane
produced by the bending of the rice panicle to better obtain more characteristic information
about the rice grains. In most cases, it was necessary to manually lift the tip of the rice
panicle so that both ends of the rice panicle had support points. This allowed the grains to
be distributed as widely as possible. This method was effective both in model training and
practical applications.

The second issue was the mutual covering between rice panicles, which cannot be
directly solved by the above method. This is mainly due to immature rice panicles, causing
the grains to remain stick together. Directly separating the grains would damage the rice
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panicles. Therefore, the original state of panicles in this situation must be retained for
training to enhance the model’s robustness, but a large amount of such data is required for
effective training.

Figure 12b shows the detection results of overlapping grains on the rice panicles. Due
to the multi-scale feature fusion characteristics of the sea rice grain model, richer feature
information can be obtained to better understand the positional semantic information
between rice grains. However, the model may miss the detection of grains where grain
features were missing (Figure 12d). Since the features of obscured and blurred grains were
greatly reduced compared to normal grain features, it was difficult for the proposed model
to detect such grains.

4.3. Effect of Background in Complex Rice Fields

Compared with normal-sized targets in general target detection tasks, grains on rice
panicles as small targets had less feature information, so it was difficult for the model
to distinguish them from the background. To solve this problem, a multi-scale learning
method was adopted, which could not only obtain higher-scale features of the grain but
also ensure that the spatial position information of the grain was obtained. However, in a
field environment, the original color of rice panicles was very similar to the background,
and it was easy to mistakenly identify the background as a positive sample. To solve this
problem, the layers of the neural network were deepened so that the model could learn
richer feature information and better fit the features, but the training time also increased as
a result.

Since the grains on other rice panicles share the same characteristic information as
those on the target rice panicle, if the model identifies grains from other rice panicles in the
background as positive samples, it cannot be considered to have produced false positives.
However, the research purpose of this paper is to detect only the grains on one rice panicle
for finally obtaining the number of grains per rice panicle. Therefore, this problem cannot
be solved by existing methods. The model must first distinguish different rice panicles and
then identify the grains on a complete bunch of rice panicles. Therefore, some measures
were taken to reduce the occurrence of this situation as much as possible, such as avoiding
collecting images of non-target rice panicles during the data collection process or making
sure that there were no other rice panicles in the same focal section of the target rice panicle.
In this way, the grain itself, which was a small target, also lacked characteristic information
due to being out of focus. Even though some grains appeared turquoise, which was similar
to the background color, the model was still sensitive to color information and could
effectively separate the rice panicles from the background (Figure 12c).

4.4. Improvement of Model Performance

In the detection task of this paper, it was difficult to directly collect data from unhar-
vested rice panicles in the rice field to obtain relatively high-quality rice panicle images
since factors such as a complex background, unbalanced light, out-of-focus photographs,
and swinging rice panicles may affect the quality of the image. Even though some shooting
techniques had been put forward, there were still some difficult problems, such as the lack
of features caused by too-dense rice panicles. However, if excessive efforts were made
to ensure image quality during collection, it would increase researchers’ learning costs
and reduce efficiency. Therefore, in response to the above problems, it was necessary
to consider the training of the model, add rice panicle images collected under different
conditions, and input them into the model for training to further enhance the robustness of
the model. Adding an attention mechanism to the network could also slightly improve the
model’s performance. However, due to the complex image background in this study, the
attention mechanism would focus on significantly on noise points, increasing the training
time required for detection.
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5. Conclusions

This paper explores the feasibility of using deep-learning-based computer vision meth-
ods to detect and count the grain number of sea rice panicles in complex field environments.
Using the deep learning convolutional neural network (CNN) model, a high-precision and
high-efficiency method was developed and evaluated using images collected in a field. The
following conclusion was drawn. The developed sea grain detection model was capable of
identifying and calculating the grain number per sea rice panicle. The sea grain detection
model was found to be the most efficient model for recognizing and counting grains in a
complex field environment in terms of the mean Average Precision (mAP). When compared
to other deep learning models, the sea grain detection model had the highest mAP of
90.1%. The accuracy of the sea grain detection model was 94.9%. This method can provide
a reference for the computer-aided calculation of the number of sea grains per panicle,
help rice breeders to automatically collect yield-related data, and, thus, help agricultural
researchers to predict rice yields. However, more tests may be required to further verify
the sea grain detection model.
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