ﬁ\i agriculture

Article

Classification of Maize Growth Stages Based on Phenotypic
Traits and UAV Remote Sensing

Yihan Yao !, Jibo Yue 1'*{¥, Yang Liu 2, Hao Yang 3, Haikuan Feng 3, Jianing Shen !, Jingyu Hu ! and Qian Liu !

check for
updates

Citation: Yao, Y.; Yue, J.; Liu, Y,; Yang,
H.; Feng, H.; Shen, J.; Hu, J.; Liu, Q.
Classification of Maize Growth Stages
Based on Phenotypic Traits and UAV
Remote Sensing. Agriculture 2024, 14,
1175. https://doi.org/10.3390/
agriculture14071175

Academic Editor: Domenico

Pignone

Received: 27 May 2024
Revised: 1 July 2024

Accepted: 16 July 2024
Published: 18 July 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

College of Information and Management Science, Henan Agricultural University, Zhengzhou 450002, China;
yaoyihan@stu.henau.edu.cn (Y.Y.); shenjianing@stu.henau.edu.cn (J.S.); hujingyu@stu.henau.edu.cn (J.H.);
liugian@henau.edu.cn (Q.L.)

Key Lab of Smart Agriculture System, Ministry of Education, China Agricultural University, Beijing 100083,
China; liuyanghe810@cau.edu.cn

Key Laboratory of Quantitative Remote Sensing in Agriculture, Ministry of Agriculture and Rural Affairs,
Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences,

Beijing 100097, China; yangh@nercita.org.cn (H.Y.); fenghaikuan@nercita.org.cn (H.E)

Correspondence: yuejibo@henau.edu.cn

Abstract: Maize, an important cereal crop and crucial industrial material, is widely used in various
fields, including food, feed, and industry. Maize is also a highly adaptable crop, capable of thriving
under various climatic and soil conditions. Against the backdrop of intensified climate change,
studying the classification of maize growth stages can aid in adjusting planting strategies to enhance
yield and quality. Accurate classification of the growth stages of maize breeding materials is important
for enhancing yield and quality in breeding endeavors. Traditional remote sensing-based crop growth
stage classifications mainly rely on time series vegetation index (VI) analyses; however, Vls are
prone to saturation under high-coverage conditions. Maize phenotypic traits at different growth
stages may improve the accuracy of crop growth stage classifications. Therefore, we developed a
method for classifying maize growth stages during the vegetative growth phase by combining maize
phenotypic traits with different classification algorithms. First, we tested various VIs, texture features
(TFs), and combinations of VI and TF as input features to estimate the leaf chlorophyll content
(LCQ), leaf area index (LAI), and fractional vegetation cover (FVC). We determined the optimal
feature inputs and estimation methods and completed crop height (CH) extraction. Then, we tested
different combinations of maize phenotypic traits as input variables to determine their accuracy in
classifying growth stages and to identify the optimal combination and classification method. Finally,
we compared the proposed method with traditional growth stage classification methods based on
remote sensing VIs and machine learning models. The results indicate that (1) when the VI+TFs are
used as input features, random forest regression (RFR) shows a good estimation performance for the
LCC (R2: 0.920, RMSE: 3.655 SPAD units, MAE: 2.698 SPAD units), Gaussian process regression (GPR)
performs well for the LAI (R%: 0.621, RMSE: 0.494, MAE: 0.397), and linear regression (LR) exhibits a
good estimation performance for the FVC (R%: 0.777, RMSE: 0.051, MAE: 0.040); (2) when using the
maize LCC, LAI FVC, and CH phenotypic traits to classify maize growth stages, the random forest
(RF) classification method achieved the highest accuracy (accuracy: 0.951, precision: 0.951, recall:
0.951, F1: 0.951); and (3) the effectiveness of the growth stage classification based on maize phenotypic
traits outperforms that of traditional remote sensing-based crop growth stage classifications.

Keywords: unmanned aerial vehicle; maize growth stage; machine learning; vegetation index;
texture feature

1. Introduction

Maize, a staple food crop and vital industrial material, is extensively used in diverse
sectors, such as food, feed, and raw materials [1]. Phenology, the study of recurring natural
events that are influenced by environmental factors and human activities, encompasses
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plant germination, leaf unfolding, flowering, leaf discoloration, and leaf fall. In agricultural
production management, understanding crop growth stages is pivotal for crop breeding
management and yield prediction [2]. Therefore, an accurate classification of crop growth
stages has significant implications for making informed agricultural decisions and ensuring
food production safety [3].

Conventional methods of gathering crop phenology information involve field surveys
that are conducted by technical experts. However, these manual observations are limited
to small-scale, time-consuming assessments [4]. In contrast, remote sensing technology has
provided new possibilities. Significant strides have been made in using remote sensing data
for classifying crop growth stages. Traditional remote sensing-based crop growth stage
classifications primarily rely on time series analyses of the vegetation index (VI). However,
time series VI curves are susceptible to data noise, necessitating the use of algorithms, such
as Fourier filtering [5] and asymmetric Gaussian functions [6], to mitigate the noise.

Moreover, the requirement that time series VI data cover the entire growth period leads
to significant lags [7]. Additionally, VIs tend to saturate under high-coverage conditions
in crops [8]. Furthermore, there are often systematic deviations between the crop growth
stages that are extracted based on curve feature points and actual agronomic growth
stages [9] that pose numerous challenges in practical applications.

In recent years, unmanned aerial vehicles (UAVs) have rapidly been incorporated in
agricultural monitoring. With their high flexibility and lower costs, UAVs have greatly
facilitated agricultural field data collection efforts [10,11]. The sensors mounted on UAVs
actively acquire timely and highly spatially resolved high-throughput phenotypic infor-
mation on crops, and this methodology is now widely applied in crop phenotypic trait
monitoring (such as the leaf area index (LAI), leaf chlorophyll content (LCC) [12], crop
height (CH), and biomass [13-15]). In addition, some scholars have conducted studies
using UAV images to identify the maize tasselling stage [4]. The crop LCC represents
the turnover of leaf biochemical components [16]. The LAl is a widely used indicator of
crop growth status [17]. The fractional vegetation cover (FVC) describes the spatial distri-
bution of crop growth and can be used to effectively characterize the growth conditions
of maize [18,19]. CH is crucial for describing plant growth status during the vegetative
development of maize [20].

Use of phenotypic traits such as the LCC, LAI, FVC, and CH for classifying maize
growth stages may address the impact of VI saturation on growth stage classifications.
The following tasks were conducted in this study: (1) The phenotypic traits (e.g., LCC,
LAIL FVC) during the maize growth and development stages were estimated. (2) The
vegetative growth stages based on maize phenotypic traits (such as LCC, LAI FVC, and
CH) were classified. The first task involves estimating crop phenotypic traits with high
precision. A common approach is to determine the relationships among various VlIs, such
as the normalized difference vegetation index (NDVI), and crop phenotypic traits [21].
However, considering the significant differences in crop canopy structures during different
growth stages, the changes in VI may not effectively reflect these differences [22]. Yue
et al. [23] reported that using image texture features (TFs) combined with VIs improves
the accuracy of winter wheat ground biomass estimations. Manuel Campos-Taberner
et al. [24] concluded that TFs derived from high-resolution remote sensing images may
be more effective than spectral features in estimating rice LAL These studies provide new
perspectives for estimating crop phenotypic traits. Considering the similarities among
winter wheat, rice, and maize, this study attempted to use image TFs to estimate maize
phenotypic traits. The second task involves classifying the growth stages based on maize
phenotypic traits during the vegetative growth phase. Relying on a single phenotypic trait
cannot accurately evaluate maize growth stages. Combining multiple crop phenotypic
traits can help improve the classification of maize growth stages. This study used different
crop phenotypic trait combinations as inputs and combined them with different machine
learning models to determine the maize growth stages.
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In this study, we aimed to devise a method for classifying maize growth stages during
the vegetative growth phase by utilizing maize phenotypic traits in conjunction with
various classification algorithms. To achieve this, we conducted the following tasks:

(1) We used UAVs to collect maize canopy orthoimage data from seven phases (i.e.,
from the emergence to tasselling stages) and conducted ground measurements with LCC,
LAI, and CH data. We then converted the LAI to the FVC.

(2) We tested the combined use of VI, TF, and VI+TF to assess the accuracy of estimating
the LCC, LAI and FVC. This determination helped us identify the most accurate method
for estimating maize phenotypic traits and facilitated CH extraction.

(3) We tested the growth stage classification accuracy by using different combinations
of maize phenotypic traits, which led to the identification of the optimal combination of
phenotypic traits and classification methods.

(4) We compared this method with traditional classification methods based on vegeta-
tion index spectral information.

2. Materials and Methods
2.1. Study Area

The study area is located in Xingyang City, Zhengzhou City, Henan Province, China
(Figure 1, N: 34°36/-34°59', E: 113°7'-113°30’). Xingyang City is located at the junction of
the middle and lower reaches of the Yellow River in central Henan Province and has a warm
temperate continental monsoon climate. The annual average temperature is approximately
14.8 °C, and the annual average precipitation is approximately 608.8 mm. A total of
160 maize planting plots were arranged in 10 rows and 16 columns. Each planting plot had
dimensions of 2.5 m x 5 m, with four rows of maize planted with 9 to 10 plants per row.
We collected data for the seven stages of maize growth during the summer of 2023, from
emergence to tasselling. These stages corresponded to P1 (30 June), P2 (5 July), P3 (8 July),
P4 (16 July), P5 (22 July), P6 (27 July), and P7 (10 August).
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Figure 1. Study area and experimental maize field. (a) Henan Province, China; (b) Xingyang city; and
(c) the experimental maize field.

2.2. UAV Multispectral Images and Collection of Maize Phenotypic Traits
2.2.1. Measurements of Maize Phenotypic Traits

The LCC values were measured using a portable SPAD-502 sensor (Soil and Plant
Analyzer Development, Tokyo, Japan). The procedure involved selecting the first and
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second fully expanded leaves above the maize plants for the measurements and considered
both the tail and middle sections in non-vein areas. These measurements were repeated
three times at the center of each maize plot, and the mean values were recorded as the
final results. The LAI was obtained using an LAI-2200C Plant Canopy Analyzer (LI-
COR Biosciences, Lincoln, NE, USA). Prior to the measurements, the light intensities
were measured in an open backlight area. Subsequently, the LAI measurements were
obtained both parallel and perpendicular to the maize rows. The maize phenotypic trait
measurements were conducted on only one planting plot from each pair of adjacent plots.
The measurement method for CH involves randomly selecting three maize plants for
height measurements and using their average height as the average plant height for each
maize planting plot. The number of maize plots measured per stage was 80, and the field
measurement results are presented in Table 1.

Table 1. Field measurement results for LCC, LAI, and CH.

Stage LCC (SPAD Units) LAI CH (cm)
Num Max Min Mean Num Max Min Mean Num Max Min Mean
P1 (6.30) 80 - - - 80 - - - 80 - - -
P2 (7.05) 80 - - - 80 - - - 80 77.00 47.00 62.00
P3(7.08) 80 59.30 40.40 51.20 80 - - - 80 82.00 50.00 66.00
P4 (7.16) 80 54.10 43.40 54.30 80 3.88 1.19 2.80 80 144.00 80.00 106.00
P5 (7.22) 80 62.00 45.60 52.60 80 3.91 191 2.96 80 185.00 129.00 153.00
P6 (7.27) 80 61.50 47.40 53.98 80 4.17 2.21 3.11 80 217.00 160.00 190.00
P7 (8.10) 80 66.70 54.00 60.20 80 5.46 2.70 3.87 80 250.00 195.00 225.00
Total 560 66.70 40.40 54.46 560 5.46 1.19 2.55 560 250.00 47.00 133.67

Note: During the P1 stage, which corresponds to the emergence stage, no measurements were taken. During
stages P2-P3, the maize seedlings were too small to measure the LAls; hence, the unmeasured data are marked
as

The conversion of LAI to FVC uses Formula (1) as follows [25]:

~GxQx AL

FVC=1-¢ c0s(0) 1)

where G, 0, and () represent the leaf projection factor in the spherical direction, solar zenith
angle, and clumping index (G = 0.5, 0 = 0, (2 = 1), respectively.

Due to the small size of maize seedlings in the early stages, LCC was not measured for
P1 and P2, and LAI was not measured for P1 to 3. Based on the available data, we had a
total of 800 sets of LCC data from P3 to P7, 640 sets of LAI data from P4 to P7, and 640 sets
of FVC data from P4 to P7 for regression estimation.

2.2.2. UAV Flight and Average Spectral Extraction of Maize

We used a DJI Phantom 4 multispectral UAV (DJI Technology Co., Ltd., Shenzhen,
China) as the remote sensing platform. The UAV has a total weight of 1487 g and has
six camera sensors. The sensor size is 1/2.9” and consists of one RGB sensor for visible
light imaging and five monochrome sensors for multispectral imaging. Each sensor has an
effective pixel resolution of 2.08 MP, and the monochrome sensors include the R, G, B, red
edge (RE), and near-infrared (NIR) bands. Considering the UAV endurance capabilities and
safety concerns, the DJI Phantom 4 multispectral UAV flight altitude was set to 20 m. UAV
remote sensing data were acquired during periods with stable solar radiation and clear
weather conditions, which typically occurred between 10:00 and 14:00. The overlap settings
were 80% in the flight direction and 75% in the lateral direction. The UAV autonomously
followed predefined flight paths during data collection to capture the image data. After
UAV data collection, the captured images were imported into DJI Terra software V4.0.1
version (DJI, Shenzhen, China), where automated image stitching was performed based on
the UAV and camera parameters.
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The multispectral UAV imagery was utilized to construct regions of interest (ROIs)
based on the planting plots. Subsequently, ENVI 5.3 software (Exelis Visual Information
Solutions, Boulder, CO, USA) was used to extract spectral information from the ROIs of each
planting plot in the UAV images. A digital surface model (DSM) and five commonly used
VIs were extracted, namely, the green normalized difference vegetation index (GNDVI), leaf
chlorophyll index (LCI), normalized difference red edge (NDRE), normalized difference
vegetation index (NDVI), and optimized soil-adjusted vegetation index (OSAVI).

We extracted the spectral information from the multispectral UAV images collected
during the summer of 2023, with 160 sets of spectral information extracted for each growth
stage based on the ROlIs, totaling 1120 sets. These were categorized into six classes: emer-
gence stage (ES), three-leaf stage (TLS), jointing stage (JS), small trumpet stage (STS), big
trumpet stage (BTS), and tasselling stage (TS). Considering the characteristics of the data
and the sample size, the data were subsequently divided into training and testing sets at a
ratio of 6:4. Sample photos of each growth stages are shown in Figure 2.

(e)

Figure 2. Sample photos of the maize vegetation growth stage. (a) Emergence stage; (b) Three-leaf

stage; (c) Jointing stage; (d) Small trumpet stage; (e) Big trumpet stage; and (f) Tasseling stage.

It is important to note that our data collection periods are fixed as P1-P7, which do
not correspond exactly to the growth stages of maize. This is because the growth stages can
vary even among different maize plots within the same period. For each maize plot during
P1-P7, we determine the growth stages with the assistance of agronomy experts to ensure
that the data comprehensively cover the entire growth period from ES to TS.

3. Methods
3.1. Methodological Framework

For this study, we primarily compare and analyze maize growth stage classifications
that are based on remote sensing VIs and those that are based on maize phenotypic traits.
The research will be described in the following three aspects, as depicted in the technical
roadmap in Figure 3:

(1) Spectral information is extracted from UAV remote sensing images, and the ex-
tracted VI information is utilized for classifying maize growth stages.

(2) Based on the experimentally measured LCC and LAI and converted FVC data, we
estimated the LCC, LAL and FVC values of maize during its vegetative growth stages and
extracted the crop heights (CHs).
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(3) Different combinations of LCC, LAI, FVC, and CH phenotypic traits were tested.
The effectiveness of the various combinations in classifying the maize growth stages was
evaluated, and the optimal strategy for mapping maize growth stages was selected.

Field dataset collection UAYV dataset collection

e
I LAI l l LAI Semeny, FyC H LCC H CH }<—>{ CSM H—{ Multispectral images

y
( CatBoost, GPR.

> LR.RR.RFR.
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Methods [-=——- l SRS
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l RF. SVM. MLP,
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Yoo S e

/fBest technic: RF / //Bcst technic: MLP /
| Accuracy:0.951 / ;  Accuracy:0.904
J

Results S -==

v

Extraction and mapping of maize growth stages information

Figure 3. Methodological framework.

3.2. Vegetation Indices and Texture Features
3.2.1. Vegetation Indices

GNDVTI’s sensitivity to green light reflection makes it particularly effective in detecting
vegetation health. Its estimation of the LCC is valuable due to its direct correlation with
chlorophyll content. LCI directly utilizes the ratio of red and near-infrared light, rendering
it highly sensitive to changes in chlorophyll content. NDRE is more sensitive to moderate to
high concentrations of chlorophyll, suitable for monitoring the LCC and LAl in later stages
of crop growth, especially during leaf densification. NDVI, one of the most commonly used
vegetation indices, is widely applied for monitoring vegetation growth and coverage. NDVI
is particularly effective in estimating the LAI as it reflects vegetation biomass and density
well. OSAVI exhibits higher accuracy in regions heavily influenced by soil background,
providing more stable estimates of the LAI and LCC by minimizing the impact of soil
reflectance through optimized algorithms.

The VI primarily reflects the differences in vegetation reflectance between the visible
and near-infrared spectral bands. Based on the advantages of these five Vls in estimating
maize traits, this study selected GNDVI, LCI, NDRE, NDV], and OSAVI for estimating for
estimating the LCC, LAI, and FVC values. The specific calculation formulas are shown in
Table 2.

Table 2. Vegetation indices.

Name Calculation Reference
NDVI (NIR — R)/(NIR + R) [26]
NDRE (NIR — RE)/(NIR + RE) [27]
LCI (NIR — RE)/(NIR + R) [28]
OSAVI 1.16(NIR — R)/(NIR + R + 0.16) [29]
GNDVI (NIR — G)/(NIR + G) [30]
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3.2.2. Texture Features

Image TFs reflect spatial positional characteristics by capturing changes in grayscale
values within pixel neighborhoods. TFs do not exhibit saturation effects and represent
microscopic structural characteristics, unlike VIs. TFs can characterize the textures, struc-
tures, and spatial distributions of surfaces. In this study, eight TFs were extracted using the
grey-level co-occurrence matrix (GLCM) method: mean (Mea), variance (Var), homogeneity
(Hom), contrast (Con), dissimilarity (Dis), entropy (Ent), angular second moment (ASM),
and correlation (Cor). Considering the maize planting environment and the UAV image
pixel size, a 3 x 3 window size was utilized for TF extraction. This window size balances
spatial resolution and computational complexity effectively [10]. The calculation formulas
are shown in Table 3.

Table 3. Texture features.

Name (Abbreviation) Calculation
Mean (Mea) Z E]NO p(i,j) x
Variance (Var) Z ZN o p(i,j) x (i— mean)2
Homogeneity (Hom) Z Z}VO p(i,j) x 1+(i1—j)2
Contrast (Con) Z Z}VO p(i,j) x (i —j)?
Dissimilarity (Dis) Z ZN o p(i,j) x |i—jl
Entropy (Ent) A Z,NO p(i,j) x log(p(i,f))
Angular Second Moment (ASM) Z Z}V o P, ])
Correlation (Cor) Z Z (i- m””)sjfu ri’:;z;’)xf’(i'j)z

Note: i and j represent the row and column numbers of the image, respect1vely; p @i, j) denotes the relative
frequency of two adjacent pixels.

3.3. Extraction of Maize Crop Heights

Maize plant height is a significant indicator of the vegetative growth process of maize.
A digital elevation model (DEM) delineates the spatial distributions of regional topographic
features that were obtained using data collection methods such as contour lines or similar
solid models, followed by interpolation of the data. The DSM refers to a ground elevation
model that encompasses features such as surface structures, bridges, and tree heights.
Although DEMs solely capture elevation information related to terrain, they do not include
other surface details. Conversely, DSMs extend beyond DEMs by incorporating additional
surface features, including information on crop heights, in addition to ground-level data. A
crop surface model (CSM), which denotes maize CHs in this study, can be derived using
Formula (2) [23,31,32].
CSM = DSM — DEM )

3.4. Machine Learning Technigues
3.4.1. Machine Learning-Based Regression Techniques

CatBoost is a gradient-boosting algorithm specifically designed to handle categorical
features. Its unique feature is that it directly handles raw categorical features without re-
quiring preprocessing steps such as one-hot encoding. CatBoost generates models through
symmetric tree structures and gradient boosting and demonstrates excellent performance
on large-scale and high-cardinality categorical datasets [33].

Gaussian process regression (GPR) is a nonparametric regression method based on
Bayesian inference. It models the distribution of the output variable using Gaussian
processes. It can estimate uncertainty, making it suitable for small-sample datasets and
situations where accurate estimations of the classification uncertainty are required [34].

Linear regression (LR) is a fundamental method that establishes linear relationships
between input features and output variables. The model fits the data by minimizing the
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sum of squared residuals, making it simple and intuitive but limited in its ability to model
complex nonlinear relationships [35].

Ridge regression (RR) is a regularization method of linear regression that constrains
model parameters by adding an L2 regularization term. It mainly addresses multicollinear-
ity (high correlations between features) issues. Regularization helps prevent overfitting [36].

Random forest regression (RFR) is an ensemble learning method that reduces the risk
of overfitting by constructing multiple decision trees and integrating their prediction results
for regression tasks [37].

Support vector machine regression (SVR) achieves regression tasks by finding a hyper-
plane that minimizes the distances between data points and the hyperplane. SVR has strong
modelling capabilities for nonlinear relationships and can adapt to different regression
tasks by selecting kernel functions [38].

K-nearest neighbors regression (KNNR) is a nonparametric method that estimates new
data points by analyzing the nearest output values. It is typically suitable for regression
tasks with smaller datasets and less noise [39].

3.4.2. Machine Learning-Based Classification Techniques

RF is an ensemble learning method that is commonly used for both classification and
regression tasks. It is built on the foundation of decision trees; multiple decision trees
are constructed, and their results are integrated to enhance the model performance and
generalization capability [40].

A support vector machine (SVM) is a supervised learning method that is used for
binary and multiclass classifications. SVM produces classifications by finding the optimal
hyperplane in the feature space and maximizes the projections of samples from different
classes onto this hyperplane. It excels in handling high-dimensional data and nonlinear
relationships, exhibiting strong generalizability [38].

A multilayer perceptron (MLP) is a type of deep neural network with multiple hidden
layers and nonlinear activation functions. A MLP is trained using the backpropagation
algorithm and can learn complex relationships that are present in the input data. It per-
forms well on large-scale, high-dimensional data and demonstrates strong adaptability to
nonlinear classification tasks [41].

Naive bayes (NB) classifier is based on Bayes’ theorem and models prior probabilities
and conditional probabilities for classification. It assumes independence among features
and is suitable for handling high-dimensional data. The NB classifier, as a typical form, is
characterized by its simplicity and efficiency and is particularly suitable for small-sample
datasets [42].

Stacking is an ensemble learning method aimed at improving overall model per-
formance by combining the classification results of multiple base models. Compared to
traditional single models, stacking exhibits a stronger generalization capability and is
suitable for various complex data distributions and model fitting problems [43].

3.5. Accuracy Evaluation
3.5.1. Evaluation of the Accuracy of Regressions for Maize Phenotypic Traits

The coefficient of determination (R?) is a standard that is used to evaluate the fit of a
regression model. It represents the proportion of the variation in the dependent variable
that is explained by the model. Its calculation formula is shown in Formula (3).

The root mean squared error (RMSE) is a widely used metric for evaluating the perfor-
mance of regression models. It measures the average magnitude of the differences between
the estimated values and actual observed values. Its formula is shown in Formula (4).

The mean absolute error (MAE) is another metric that is used to assess the performance
of regression models. It represents the average absolute difference between the estimated
values and actual observed values. Its formula is shown in Formula (5).
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n PR— A. 2
R2 =1— i:l (yl :ZZ)Z (3)
1:1(%' - y)
n A YA
RMSE = w 4)
14, .,
MAE =~} [ —vil )
i=1

Here, y; represents the actual measured sample value, j; represents the estimated sample
value, and n represents the number of samples. For the same sample data, if the model
yields a higher coefficient of determination and a lower root mean squared error, it is
generally considered to have greater accuracy.

3.5.2. Evaluation of the Accuracy of Maize Growth Stage Classifications

A confusion matrix reflects the accuracy of sample classification and is represented in
matrix form with n rows and n columns. Each column of the confusion matrix represents an
estimated category, with the total in each column indicating the number of data estimated
as that category; each row represents the true category data, with the total in each row
indicating the number of data instances in that category. The values in each column indicate
the numbers of true data points estimated for that category.

In classification problems, by comparing the classification predictions with the true
results, one can evaluate the experimental effectiveness using the confusion matrix method.
Based on the confusion matrix, one can calculate the model accuracy to represent its overall
precision. The accuracy is defined as the proportion of correctly estimated samples by the
classifier relative to the total number of samples, and its formula is shown in Formula (6).
The precision is the ratio of the number of correctly estimated positive samples to the
total number of samples estimated to be positive and is used to measure the model’s
classification ability, and its formula is shown in Formula (7). The recall measures the
ratio of correctly estimated positive samples to the total positive samples, defined as the
proportion of samples actually belonging to the positive class that the model correctly
predicts as positive, and its formula is shown in Formula (8). The F1 score, composed of the
harmonic mean between precision and recall, can comprehensively consider precision and
recall, measure the stability of model performance, and reflect the generalization ability of
the model; its formula is shown in Formula (9).

TP +TN

Accuracy = TP T FP L FN + TN (6)
... TP
Precision = TP+ FP (7)
TP
Recall = m (8)

2 X Precision x Recall
F1 =
Score Precision + Recall ©)

Here, TP represents true positive samples, TN represents true negative samples, FP repre-
sents false positive samples, and FN represents false negative samples.

4. Results
4.1. Maize Growth Stage Classification Based on VIs and Machine Learning Techniques

We use the extracted VI information and employ several widely recognized high-
performance classifiers, specifically RE, SVM, MLP, NB, and stacking, to classify the maize
growth stages. The classification results are shown in Table 4. All the classification methods
achieved good performance, with the MLP showing the best overall classification perfor-
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mance (accuracy: 0.904, precision: 0.907, recall: 0.904, and F1: 0.904). The corresponding
confusion matrix for the MLP is shown in Figure 4. This indicates that when VI information
is used as a feature input, the MLP classification method can achieve better classification
results for the maize growth stages.

Table 4. Maize growth stage classification based on VIs and machine learning.

Model Accuracy Precision Recall F1
RF 0.877 0.881 0.877 0.878
SVM 0.897 0.897 0.897 0.897
MLP 0.904 0.907 0.904 0.904
NB 0.839 0.850 0.839 0.841
Stacking 0.891 0.889 0.891 0.889

100
n ©o o o o o

80
TLS- 0 13 0 0 0

w
&
8 I15- 0 9 33 7 0 0 60
wa
e
&
[+
-
BIS- 0 0 0 1 100 8
-20
IS- 0 0 0 0 2
| | | | | -0
ES TLS IS STS BTS TS

Estimated stages
Figure 4. Classification of maize growth stages based on the MLP.

4.2. Estimation of Maize Phenotypic Traits
4.2.1. Correlation Analysis Among Maize Phenotypic Traits, VIs, and TFs

Based on the VIs, we conducted a maize correlation analysis of the LCC, LAI, and FVC,
as shown in Figure 5. The results indicate that the correlation coefficients for the GNDVI,
LCI, NDRE, NDVI, OSAVI, and LCC were 0.770, 0.660, 0.485, 0.803, and 0.847, respectively.
The OSAVI showed the highest correlation with LCC (0.847), while the NDRE exhibited
the lowest correlation (0.485). The correlation coefficients between the five VIs and the LAI
were 0.579, 0.576, 0.523, 0.542, and 0.394, respectively, with the GNDVI showing the highest
correlation with the LAI (0.579) and the OSAVI demonstrating the lowest correlation (0.394).
The correlation coefficients between the five VIs and the FVC were 0.658, 0.601, 0.500, 0.639,
and 0.498, respectively, with the GNDVI showing the highest correlation with the FVC
(0.658) and the OSAVI exhibiting the lowest correlation (0.498).

Notably, the results of this study indicate that the correlation between NDRE and the
LCC is not as strong as that between OSAVI and the LCC. This may be because this study
focused on maize growth stages, primarily the vegetative growth stages. Therefore, soil
background effects may influence the correlation coefficients between the LCC and NDRE
in the early stages, while the OSAVI specifically optimizes the soil background, resulting in
a greater correlation.
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Figure 5. Correlation analysis between VIs and (a) the LCC, (b) the LAI, and (c) the FVC.

Based on the correlation analysis of VIs and the LCC, LAI, and FVC, the correlations
between OSAVI image texture features and the LCC, as well as the correlations between
the GNDVI image texture features and the LAI and FVC, were analyzed. The correlation
analysis between TFs and LCC, LAI, and FVC is presented in Figure 6. According to the
correlation analysis, LCC had a greater correlation with Mea (0.735); LAI had greater corre-
lations with Mea (0.574), ASM (0.482), and Hom (0.462); and FVC had greater correlations
with Mea (0.654), ASM (0.486), Con (—0.475), and Hom (0.464).
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Figure 6. Correlation analysis between TFs and (a) the LCC, (b) the LAI and (c) the FVC.

4.2.2. Estimation of Maize Phenotypic Traits Based on the VI

We tested the estimation performances of the LCC, LAI, and FVC for different models
when the five VIs were used as the feature variable input to the model, and the results
for the validation set are shown in Table 5. Based on the model estimation results, when
the VI was used as the feature variable input, the GPR regression model exhibited good
estimation performance for the LCC (R2: 0.900, RMSE: 4.071 SPAD units, and MAE: 3.192
SPAD units), LAI (R?: 0.621, RMSE: 0.494, and MAE: 0.397), and FVC (R?: 0.730, RMSE:
0.060, and MAE: 0.044).

4.2.3. Estimation of Maize Phenotypic Traits Based on TFs

Similarly, we tested the estimation performances of the LCC, LAI and FVC for different
models when the TFs were used as the feature variable input to the models, and the results
for the validation set are shown in Table 6. Based on the model estimation results, when
the TFs were used as the feature variable input to the models, the RFR regression model
exhibited good estimation performance for the LCC (R?: 0.898, RMSE: 4.113 SPAD units,
and MAE: 3.065 SPAD units) and LAI (R?: 0.641, RMSE: 0.482, and MAE: 0.378), while the
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LR regression model showed good estimation performance for the FVC (R%: 0.575, RMSE:
0.060, and MAE: 0.045).

Table 5. Estimation results based on the VI.

Traits Model R? RMSE MAE Traits Model R? RMSE MAE
CatBoost 0.883 4.408 3.393 CatBoost 0.678 0.066 0.048
GPR 0.900 4.071 3.192 GPR 0.730 0.060 0.044
LR 0.749 6.458 5.235 LR 0.723 0.061 0.047
LCC RR 0.686 7.230 5.730 FVvC RR 0.619 0.071 0.054
RFR 0.889 4.302 3.257 RFR 0.666 0.067 0.048
SVR 0.707 6.986 5.339 SVR 0.702 0.063 0.048
KNNR 0.886 4.361 3.346 KNNR 0.702 0.063 0.047
CatBoost 0.602 0.506 0.401
GPR 0.621 0.494 0.397
LR 0.578 0.522 0.413
LAI RR 0.496 0.570 0.467
RFR 0.594 0.512 0.409
SVR 0.572 0.525 0.408
KNNR 0.599 0.508 0.402
Table 6. Estimation results based on the TFs.
Traits Model R? RMSE MAE Traits Model R? RMSE MAE
CatBoost 0.893 4.223 3.172 CatBoost 0.562 0.060 0.045
GPR 0.863 4.767 3.417 GPR 0.571 0.060 0.044
LR 0.736 6.624 5.355 LR 0.575 0.060 0.045
LCC RR 0.704 7.022 5.713 FVC RR 0.558 0.061 0.045
RFR 0.898 4113 3.065 RFR 0.563 0.060 0.044
SVR 0.693 7.143 5.570 SVR 0.574 0.060 0.045
KNNR 0.856 4.895 3.543 KNNR 0.514 0.064 0.047
CatBoost 0.599 0.510 0.403
GPR 0.613 0.501 0.397
LR 0.620 0.496 0.393
LAI RR 0.544 0.543 0.430
RFR 0.641 0.482 0.378
SVR 0.591 0.515 0.405
KNNR 0.601 0.508 0.396

4.2.4. Estimation of Maize Phenotypic Traits Based on the VI+TFs

Similarly, we tested the estimation performance of the LCC, LAI, and FVC for different
models when VI and TF were used as the feature variables input to the model, and the
results for the validation set are shown in Table 7. Based on the model estimation results,
when VI and TF were jointly used as the feature variables input to the model, the RFR
regression model exhibited good estimation performance for the LCC (R?: 0.920, RMSE:
3.655 SPAD units, and MAE: 2.698 SPAD units), the GPR regression model showed good
estimation performance for the LAI (R%: 0.621, RMSE: 0.494, and MAE: 0.397), and the
LR regression model demonstrated good estimation performance for the FVC (R?: 0.777,
RMSE: 0.051, and MAE: 0.040).

By comparing the estimation performances of the LCC, LAI, and FVC for different
models (Table 7), this study adopted a comprehensive approach using both the VI and
TF to estimate the maize phenotypic traits. Specifically, the RFR model is chosen for LCC
estimation, the GPR model is chosen for LAI estimation, and the LR model is chosen for
FVC estimation. Scatter plots of the three optimal estimation models using the validation
set are shown in Figure 7.
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Table 7. Estimation results based on the VI and TF.

Traits Model R? RMSE MAE Traits Model R? RMSE MAE
CatBoost 0.916 3.744 2.840 CatBoost 0.750 0.054 0.041
GPR 0.899 4.090 3.034 GPR 0.769 0.052 0.042
LR 0.865 4.734 3.762 LR 0.777 0.051 0.040
LCC RR 0.784 6.001 4.895 FVC RR 0.736 0.056 0.045
RFR 0.920 3.655 2.698 RFR 0.771 0.052 0.040
SVR 0.819 5.493 4.265 SVR 0.759 0.053 0.041
KNNR 0.910 3.867 2.923 KNNR 0.753 0.054 0.041
CatBoost 0.603 0.506 0.401
GPR 0.621 0.494 0.397
LR 0.578 0.522 0.414
LAI RR 0.496 0.570 0.467
RFR 0.594 0.512 0.409
SVR 0.572 0.525 0.408
KNNR 0.599 0.508 0.402
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R>=0.920 LR R2=0.621 R*=0.777
__60|MAE=2.698 4.5/MAE =0.397 09 MAE =0.040
E 5 . 40 °;. . 038
g ;: 3 2 0.7
gm X ‘“é 3.0 g . i
T30 RN 205 F06 o
g P 2.0 . o e 0.5
oo Cw o
}iv%é" . \ﬂinne L5 o °'.°o. 04l
10 10 20 30 40 50 60 70 LOTo 15 20 25 30 35 40 45 50 04 05 06 07 08 09
Measured LCC (SPAD units) Measured LAI Measured FVC

Figure 7. Scatter plots for estimating maize phenotypic traits. (a) The LCC, (b) LAI, and (c) FVC.

4.2.5. Maize Crop Height Estimation Based on CSMs

We conducted CSM information extraction using DSM and DEM data, where CSM
represents the average plant height of each maize planting plot. The results of comparing
the extracted CSM information, which represents the estimated maize plant heights, and
the measured maize plant heights are shown in Figure 8. The research results indicate that
UAV DSM and DEM data can be used to extract maize plant heights with high accuracy
(R?%: 0.935, RMSE: 0.332 m, and MAE: 0.295 m).

25
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Figure 8. Comparison between the measured and estimated CHs.
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It should be noted that our measurement method uses three randomly selected maize
plants for height measurements and takes their average height as the average plant height
of each maize planting plot. During the early stage of maize nutrition, maize plants are
generally shorter and sparsely distributed. The UAV collected orthoimages of the maize
plant canopy during this stage, which may have resulted in small differences between the
DSM and DEM. Through a comparative analysis (R*: 0.935), the fit between the estimated
plant heights and the measured plant heights was good and met the requirements of this
study, so no further secondary corrections were needed.

4.3. Maize Growth Stage Mapping Based on Phenotypic Traits
4.3.1. Maize Growth Stage Classification Based on Phenotypic Traits

LCC, LAI FVC, and CH: This combination encompasses all four traits, providing
a comprehensive dataset for accurate classification. It captures various aspects of plant
growth, including canopy structure, leaf health, and overall biomass. LCC, FVC, and CH:
This combination excludes the LAI, simplifying the feature set while maintaining high
classification accuracy through the utilization of other significant traits. LAI, FVC, and
CH: Excluding LCC, this combination focuses on traits related to structure and coverage,
remaining effective in classifying growth stages. FVC and CH: This minimalistic com-
bination uses fundamental traits of coverage and height to achieve reasonably accurate
classification. LCC, LAI, and CH: This combination captures leaf health, the leaf area
index, and height, providing a balance between structural and health-related traits. LAI
and CH: This combination focuses on the canopy density and height, effective for certain
growth stages. LCC and CH: This combination captures the chlorophyll content and height,
offering insights into plant health and development.

Although the phenotypic traits for P1-P3 are incomplete, the VI and TF information
for this stage is complete. We used regression estimation methods to estimate the complete
maize trait parameters for the classification of the maize growth stages. Based on the
estimated maize LCC, LAI, FVC, and CH values, we classified the maize growth stages.
Specifically, different phenotypic trait combinations were utilized for maize growth stage
classifications using RF, SVM, MLP, NB, and stacking classifiers. The classification results
for different phenotypic trait combinations are shown in Table 8.

Table 8. Classification accuracy for maize growth stages.

Model Accuracy Precision Recall F1 Model Accuracy Precision Recall F1
N RF 0.951 0.951 0.951 0.951 an RF 0.942 0.942 0.942 0.942
i 5 SVM 0.908 0.912 0.908 0.909 8\ SVM 0.906 0.909 0.906 0.906
X9 MLP 0.913 0913 0913 0.912 g MLP 0.904 0.905 0.904 0.904
9 g NB 0.915 0.916 0.915 0.914 U NB 0.922 0.925 0.922 0.922
Stacking 0.946 0.945 0.946 0.946 = Stacking 0.945 0.945 0.945 0.945
T RF 0.915 0.920 0.915 0.916 RF 0.895 0.898 0.895 0.895
8 SVM 0.915 0.917 0.915 0.915 5 SVM 0.915 0.917 0.915 0.915
Z MLP 0.886 0.894 0.886 0.886 o) MLP 0.909 0.908 0.909 0.908
- NB 0.864 0.867 0.864 0.847 g NB 0.900 0.902 0.900 0.897
5 Stacking 0.924 0.925 0.924 0.924 Stacking 0.908 0.908 0.908 0.907
T RF 0.913 0.913 0.913 0.913 RF 0.833 0.829 0.833 0.830
8\ SVM 0.895 0.898 0.895 0.895 an SVM 0.837 0.760 0.837 0.793
5 MLP 0.888 0.890 0.888 0.889 ,L_‘)\ MLP 0.826 0.809 0.826 0.787
) NB 0.862 0.871 0.862 0.842 5 NB 0.842 0.840 0.842 0.814
9 Stacking 0.929 0.928 0.929 0.928 Stacking 0.862 0.859 0.862 0.854
RF 0.906 0.906 0.904 0.905
5 SVM 0.902 0.904 0.902 0.902
J MLP 0.886 0.886 0.884 0.885
9 NB 0.866 0.874 0.866 0.852
Stacking 0.913 0.913 0.912 0.911
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Notably, while the maize phenotypic traits P1-P3 are not fully comprehensive, the VI
and TF information at this stage is complete. We estimated the complete phenotypic traits
using regression methods for maize growth stage classification.

These results indicate that different phenotypic trait combinations provide distinct
results for maize growth stage classifications. According to the classification results, the
combination of the LCC, LAI, FVC, and CH yields better classification performance. There-
fore, we selected this combination of maize phenotypic traits for classifying the growth
stages in this study. Moreover, for the combination of the LCC, LAI, FVC, and CH, all the
mentioned classification methods achieved satisfactory classification performances. Among
them, the RF classification method exhibited the best overall classification performance
(accuracy: 0.951, precision: 0.951, recall: 0.951, and F1: 0.951), and the corresponding
confusion matrix is shown in Figure 9.
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Figure 9. Classification of maize growth stages based on the RF.

4.3.2. Maize Growth Stage Mapping

After comparing and analyzing the classification results presented in previous chap-
ters, we selected the optimal combination of phenotypic traits (e.g., LCC, LAI, FVC, and
CH). We chose to utilize the RF classifier, which achieved optimal performance metrics
(accuracy: 0.951, precision: 0.951, recall: 0.951, and F1: 0.951), for classifying the growth
stages of all the maize planting plots. Subsequently, we mapped the maize growth stages
based on the obtained classification results. The results are presented in Figure 10.

The mapping results presented above indicate that during stage P1, all maize planting
areas were in the emergence stage. During stage P2, all the maize planting areas were in
the three-leaf stage. By stage P3, there was noticeable differentiation in the maize growth
stages, with over half of the maize planting areas entering the jointing stage, while the
remaining areas were still in the three-leaf stage.

Moving to stage P4, most of the maize planting areas entered the small trumpet stage,
while a few remained in the jointing stage. In stage P5, the vast majority of the maize
planting areas reached the big trumpet stage, with very few remaining in the small trumpet
stage or tasselling stage. By stage P6, most maize planting areas were still in the big trumpet
stage, although a few had already entered the tasselling stage. Finally, in stage P7, nearly
all maize planting areas were in the tasselling stage, with only three areas remaining in the
big trumpet stage.
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Figure 10. Maize growth stage information maps. (a) Maize canopy digital images and (b) maize
growth stages.

5. Discussion
5.1. Impact of Different Phenotypic Traits on Maize Growth Stage Classification

Previous studies have shown that the LAI, FVC, and CH can indicate the spatial
changes in maize plant growth, particularly during significant shifts in the maize vegetative
growth stages. Mohamed Mouafik et al.’s [44] research highlights the pivotal role of the leaf
area index (LAI) in assessing vegetation vitality, crucial for agricultural and environmental
studies. LP de Magalhaes et al. [45] evaluated which VIs have the strongest correlations with
maize LAI and compared two regression methods based on UAV imagery. Liu et al. [46]
constructed a new method to improve the accuracy of LAI estimation. This method can
be improved by introducing a quantitative method to account for the contribution of soil
information, which eliminates soil interference in maize LAI estimation. LAI enables the
evaluation of canopy density, photosynthetic activity, tree health, and plant growth stages
across various temporal and spatial scales and significantly contributes to yield prediction
and biomass monitoring.

Gitelson et al.’s [47] study indicated that the FVC reflects the growth status of crops
during a specific growth period and is closely related to the crop growth period. Guo
et al.’s study [48] highlighted that the CH serves as a crucial agronomic indicator that is
capable of providing insights into the growth status. MA]J Ferraz et al.’s [49] research posits
that efficient and accurate assessment of plant height is paramount in appraising maize’s
growth potential. Hence, they are suitable for use as maize phenotypic trait combinations
for classifying maize growth stages. Zhai et al.’s [50] study posits that the LCC plays a vital
role in monitoring crop growth. Considering that the LCC also changes with the maize
nutrition growth stage, this study innovatively incorporated the LCC into a combination
of crop phenotypic traits. According to the classification results, when the LCC was
included in the combined analysis of the input phenotypic traits, there was a noticeable
improvement in classification accuracy (Table 8). This suggests that changes in maize
phenotypic traits during the vegetative growth stages can be demonstrated by the LCC. In
this study, different maize phenotypic trait combinations were used for classification based
on maize phenotypic traits. The combinations of the LCC, LAI, FVC, and CH phenotypic
traits provide information on different crop vegetative growth levels, thus resulting in good
growth stage classification effects (Table 8).

5.2. Comparative Analysis with Traditional Crop Growth Stage Classification Methods

Previous studies have focused primarily on extracting crop growth stage information
directly from spectral or textural information. For instance, R Rosle et al. [51] chose to
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utilize the NDVI generated by UAV to monitor the changes in rice crops, starting from the
day they were planted and continuing through the eleventh day of planting.

Yang et al. [52] determined the sowing and harvesting dates of maize and soybeans by
constructing NDVI curves based on time series data and employing a dynamic threshold
method. Alvaro Murguia-Cozar et al. [53] extracted texture and vegetation color indices
from Sentinel-2 imagery and classified maize growth stages using machine learning algo-
rithms. The quadratic SVM model emerged as the best classifier for maize crop phenology,
with an overall accuracy of 82.3%. Ye et al. [54] proposed a method based on derivative
dynamic time warping and established a maize growth stage detection model based on
Sentinel-2 time series data. The results demonstrated that the RMSE of the detected phenol-
ogy for corn was less than 6 days overall. Ernesto Sifuentes-Ibarra et al. [55] utilized remote
sensing data to establish enhanced vegetation index (EVI) and NDVI models and proposed
a method for classifying maize growth stages in large irrigation areas. This model indicated
that at the beginning of the crop season, the precision in monitoring the phenological
phases was more than 92% using the two VIs, and it decreased to 86.6% at the end of the
crop season.

This study demonstrated that the effectiveness of the growth stage classification
methods based on maize phenotypic traits surpassed that of traditional methods that rely
on remote sensing VI and machine learning models. We attribute this outcome to the
limited sensitivity of VI information to changes in maize growth during its vegetative
growth stages. For instance, during the mid-to-late stages of maize vegetative growth,
when the FVC is relatively high, the spectral indices often exhibit saturation trends, which
fail to accurately represent crop growth changes, consequently leading to lower accuracy
in classifications based on the VI. In contrast, classifications based on maize phenotypic
traits can directly leverage the differences in phenotypic traits at different growth stages
and thereby more precisely determine the various maize growth stages. The results of
this study suggested that utilizing phenotypic trait combinations (such as the LCC, LA,
FVC, and CH) for growth stage classification may mitigate these issues and achieve greater
classification accuracy.

5.3. The Advantages and Disadvantages of the Current Research

This study utilizes various traits closely related to the growth and development of
maize, such as the LCC, LAI, FVC, and CH, which are directly involved in the classification
of growth stages. By capturing information about maize growth and development from
different perspectives, it provides support for obtaining highly accurate classification
results. Traditional satellite remote sensing classification primarily relies on time series VI
analysis. However, VIs tend to saturate under high-coverage conditions in the later stages
of crop growth, leading to a decrease in classification accuracy. Moreover, satellite remote
sensing classification methods have drawbacks such as long cycles and poor flexibility,
making it challenging to monitor crop growth stages in a timely manner and achieve high-
precision classification. The combination of the LCC, LAI, FVC, and CH comprehensively
reflects maize growth information, effectively avoiding the shortcomings of traditional
classification methods.

However, there are still some shortcomings. Compared to satellite remote sensing
methods, UAVs cover smaller areas during flights, typically lasting approximately 30 min
per session. To ensure two-hour flight times, multiple batteries are needed, which makes
them unsuitable for large-scale crop growth stage classification. Alternative methods may
yield better results for certain maize growth stages. For instance, identifying the tasselling
stage could utilize object detection algorithms by recognizing maize tassels in UAV images.

Although we have selected the LCC, LAI FVC, and CH as maize phenotypic traits,
there are potentially crucial phenotypic traits that have not been considered. Ignoring
factors such as soil nutrients and environmental temperature may limit the model’s ability
to comprehensively capture all variables influencing crop growth stages. This limitation
could affect the accuracy and thoroughness of the classification. Future research could
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benefit from integrating multi-source data, including soil, climate, and management prac-
tices, to develop a more comprehensive growth stage classification model. Additionally,
incorporating maize stem diameters may enhance classification accuracy. In terms of model
selection, while the machine learning models we used achieved high classification accura-
cies, due to the nature of the data, ensemble learning models with superior performance
and stronger generalization capabilities did not yield satisfactory estimation results. In
further research, we can consider introducing various ensemble learning models to achieve
better research outcomes. Additionally, in this study, the CH extraction accuracy needs
further improvement. Future research could employ high-precision ground control points
to enhance plant height extraction accuracy. Estimations of the LAI and FVC could benefit
from incorporating deep features to further enhance the accuracy.

6. Conclusions

In this study, we developed a method for classifying maize growth stages during the
vegetative growth stage by combining maize phenotypic traits with different classification
algorithms. Additionally, we compared the accuracy of traditional classification methods
based on VI information for extracting maize growth stage information. The conclusions of
this study are as follows:

Combining VI and TF to estimate maize phenotypic traits yielded better results than
using VI or TF alone (Table 7). Utilizing VI+TF as input features, the RFR, GPR, and
LR regression models achieved optimal estimation results for the LCC (R?: 0.920, RMSE:
3.655 SPAD units, and MAE: 2.698 SPAD units), LAI (R?: 0.621, RMSE: 0.494, and MAE:
0.397), and FVC (R?: 0.777, RMSE:0.051, MAE: 0.040), respectively.

Using the RF classifier and combining maize phenotypic traits (LCC, LAI FVC, and
CH) as input for classifying maize growth stages, we achieved the highest classification
accuracy (accuracy: 0.951). This method significantly outperformed VI-based methods for
growth stage classification (accuracy: 0.904), enabling more precise classifications of maize
vegetative growth stages.

Future research requires more comprehensive data collection, such as incorporating
maize stem diameter information. To improve the CH extraction accuracy, future research
can attempt to introduce high-precision ground control points. In terms of estimating
maize phenotypic traits, future research can attempt to introduce deeper features to im-
prove the accuracy of the estimations. Additionally, future research could expand the
study area and conduct controlled experiments in different regions to evaluate the ap-
plicability and robustness of this technology under different environmental conditions.
This would further enhance its ability to provide decision support for the management of
agricultural production.
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