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Abstract: The quality of apple picking affects the sales of apples, and the grasping force of the end
effector of an apple picking robot is very important for apple picking. It is easy to cause apple damage
due to excessive contact force, or when the contact force is too small to grasp the apple. However, the
current research lacks an analysis of the minimum stable grasping force of apples. Therefore, in order
to realize the stable grasping of apples by the end-effector of a picking robot and reduce fruit damage,
this study first analyzes the grasping stability of the end-effector based on the force closure theory,
and comprehensively considers the force closure constraints, nonlinear friction cone constraints and
the introduction of torque constraints. Next, the constraint conditions are processed using an obstacle
function, and a penalty factor is introduced to construct an optimization model of the contact force
distribution of the end-effector. Then, the improved Newton method is used to grasp and solve
the contact force distribution model. Under the premise of selecting the penalty factor, the optimal
contact force of grasping an apple is determined using a method of numerical example simulation
analysis, and the validity of the solution is verified. In order to verify the reliability of the contact
force distribution optimization model, the practical significance of the method for apple grasping is
verified in an actual grasping experiment. The actual experiment shows that the method can provide
the minimum stable grasping force to the end-effector to achieve stable grasping.

Keywords: apple picking robot; end-effector; grasping stability; optimization of contact force;
constraints

1. Introduction

The apple picking robot hardware consists mostly of a chassis, manipulator, end-
effector, and camera [1,2]. The end-effector, in particular, has a crucial function as it is
responsible for the separation and picking of apples [3]. Hence, it is crucial to investigate
the optimization of contact force distribution throughout the apple picking process.

Researchers have conducted numerous studies on the ways to optimize grasping
stability and the contact force of items. Chen et al. [4] constructed regularization optimiza-
tion problems using obstacle functions, gave a comprehensive representation of objective
functions with different dimensions, and introduced a penalty factor to form an augmented
optimization objective function. For a specific operation task, a more compact, stable or
relaxed flexible grasping scheme can be obtained by adjusting the penalty factor. James
et al. [5] employed sliding detection to guarantee the stability of the gripping procedure.
The reliability of the detection method in unstructured situations was confirmed by em-
ploying the support vector product to identify sliding and test various sliding scenes. In
their study, Mavrakis et al. [6] introduced a novel approach for assessing the stability
of robot grasping. This method involves determining the intrinsic stiffness matrix of a
two-finger grasp and using it to establish a stability metric. The metric takes into account
many factors such as local contact curvature, material properties, contact force, and target
mass. Xu et al. [7] proposed a fast force-closure grasp synthesis (FFCGS) method for an
anthropomorphic hand to efficiently grasp unknown objects. The outcomes of this study
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have great significance in promoting the motion planning of robot hand-arm systems
and upper-limb prostheses. Li et al. [8] expanded upon the existing grasping stability
theory for rigid items to examine the stability of grabbing semi-ripened tomatoes. They
determined that curved fingers are better suited for securely holding tomatoes compared to
disc-shaped fingers.

While numerous scholars have examined the impact of different factors on grasping
stability, it is important to optimize the contact force applied to the fruit tissue to ensure
stability without causing damage. Buss et al. [9] introduced a recursive optimization
technique that is well-suited for dynamic situations. The purpose of this method is to
determine an appropriate set of internal grasping forces that can accomplish both grasping
stability and minimize grasping energy. In their study, Li et al. [10] aimed to identify the
contact point location during dynamic operations that fulfills the force closure criterion
based on the equivalency between the friction point constraint and the positive definite
symmetric matrix found by Buss, they employed an iterative optimization algorithm to
maximize the contact force of the jaw and determine the appropriate clamping force. In
order to facilitate a systematic and precise examination of the force closure of MCDRMs
with a cable routing design, Liang et al. [11] presented a novel force-closure analysis
approach for MCDRMs that takes into account both cable coupling and friction effects.
Nonlinear contact force distribution issues are defined by Liu et al. [12] as smooth manifold
optimization problems that relate to a positive definite matrix that is linearly limited. The
contact force is optimized using a quadratic index gradient flow method that is based on a
low-dimensional description matrix. Li et al. [13] introduced a technique for evaluating
the stability of envelope grasping using geometric analysis. They also developed an
optimal method for planning envelope grasps, which involves determining the necessary
deployment length of the DRH and ensuring a secure grip.

The above research has basically considered various constraints of force closure and
optimized the grasping force optimization algorithm to a certain extent, but the applications
for agricultural picking robots is relatively few. This study will conduct further research on
the basis of these studies and introduce torque constraints on the premise of synthesizing
the above constraints. At the same time, this study will consider optimizing the grasping
force of the grasping model under new constraints, and apply the idea of the penalty
function [14] to the apple picking robot in order to achieve higher computational efficiency
and finally achieve acquisition of the minimum stable grasping force of the apple picking
robot, which is also the focus of this research. The main contributions of this research are
as follows:

(1) The grasping stability of the end-effector will be analyzed based on the force closure
theory for an apple picking robot, and the optimal model of the end-effector contact
force distribution will be constructed by introducing a penalty factor;

(2) The improved Newton method will be applied to the contact force distribution model,
and the high computational efficiency of this method will be analyzed using numerical
simulation;

(3) The actual grasping experiment will further verify that this method can achieve
the minimum stable grasping force of an apple picking robot and realize the stable
grasping of the apple.

The rest of the paper is organized as follows. Section 2 introduces the stability analysis
of the end-effector based on the force closure theory, establishes the optimization model of
force distribution, and introduces how to solve it. Section 3 details the numerical example
calculation, simulation and experimental analysis and discussion. Section 4 summarizes
the full paper.

2. Materials and Methods

The contact force and joint velocity vector in the operating space represent the transla-
tion of the generalized contact force and velocity screw of each finger in the operating space.
This can be manifested as the coordination among numerous fingers [15]. The friction point
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contact model is used as the grasping model for force closure analysis as the end-effector
used in this paper is a rigid device [16], which has three fingers and will be introduced in
detail in the later experimental equipment introduction.

2.1. Friction Cone Constraint and Analysis

The contact force of the end-effector grasping the apple fi can be separated into a
unidirectional parameter fiz and two intersecting parameters fix and fiy, as seen in Figure 1.
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To avoid the apple from sliding, the contact force components must satisfy the con-
straint condition [17]. The constraint condition is shown in Equation (1).

∥∥( fix, fiy
)∥∥

2 =

√(
f 2
ix + f 2

iy

)
≤ µi fiz, i = 1, 2 . . . n (1)

Here, µi represents the friction coefficient.
The friction constraint condition at the contact point i of the apple picking robot

end-effector can be mathematically represented as a second-order cone, as illustrated in
Equation (2).

FHi =

{
fi ∈ R3

∣∣∣∣ 1
µi

√(
f 2
ix + f 2

iy

)
≤ fiz

}
, i = 1, 2 . . . n (2)

Here, FHi represents the friction constraint at contact point i of the end-effector.
The above friction cone constraint conditions can be made equivalent using a linear

matrix inequality (LMI), that is, fi ∈ FHi can be expressed as the form shown in Equation (3).µi fiz 0 fix
0 µi fiz fiy
fix fiy µi fiz

 ≥ 0 (3)

2.2. Force Closure Constraint and Analysis

To accurately represent the overall impact of the contact force, it is essential to convert
the contact force fi of each fingertip of the end-effector into the coordinate system where
the apple is positioned. The contact coordinate system at each contact point is denoted as
bi, while the coordinate system for the apple is denoted as ai. The position and orientation
of bi relative to ai are defined as wabi = (Pabi, Rabi). Consequently, the contact force fi at
each contact point can be represented in the apple coordinate system [18].[

Rabi 0
P̂abiRabi Rabi

]
× Bbi × fi = Gi fi (4)

Here, P̂abi is expressed as a cross product operator, Gi is the clamping matrix obtained
at the contact point i, and Bbi is the force spiral base of the contact type with friction
point contact.
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To stably grasp the apple, the grasping should satisfy the following force balance
relationship:

GF =
n

∑
i=1

Gi fi = −Wext (5)

where G represents the grasping matrix at each contact point in the apple coordinate system,
F represents the contact force at each contact point in the apple coordinate system, and
−Wext represents the external force spiral suffered by the apple. Only by ensuring that the
force balance equation has a solution, and the solution is inside the friction cone, can it be
explained that the apple grasp is a force-closed grasp.

The judgment condition of the contact force sealing of the end=effector is shown in
Figure 2.
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Therefore, combined with the analysis of Sections 2.1 and 2.2, when the end-effector
grabs the apple, the three fingers must meet the force closure condition when they are in a
balanced state, that is, the contact force spiral and the external force spiral satisfy the force
balance relationship shown in Equation (5), and the grasping matrix G row is full rank.

2.3. Torque Constraint and Analysis

The contact force exerted by the fingertip is a result of the joint torque produced by
the end-effector. Therefore, a constraint is imposed on the joint torque of the end-effector.
This work utilizes the Jacobian matrix to represent the mathematical correlation between
the joint torque and the fingertip contact force.

JT fi = τ, i = 1, 2 . . . n (6)

Here, J is the Jacobian matrix of the end finger, and τ is the joint torque of the
end finger.

In summary, in order to ensure that the damage caused by apple picking is as small as
possible, the grasping force of the end-effector needs to be optimized under the premise of
satisfying the constraints.

To minimize or prevent damage to the fragile and vulnerable apple, it is essential to
optimize the contact force applied to it [19].

2.4. Modeling Force Distribution Optimization for End-Effector

As shown in Figure 3, for optimization of the contact force of the end-effector, it is
necessary to comprehensively consider the three constraints to ensure the stability of the
entire grasping process.

Therefore, the optimization objective can be described as:

minmize Fmax = max
∥∥ fix, fiy, fiz

∥∥, i = 1, 2 . . . n

subject to 1
µi

√(
f 2
ix + f 2

iy

)
≤ fiz, i = 1, 2 . . . n

n
∑

i=1
Gi fi = −wext

τl ≤ JT
H fi ≤ τr

(7)
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The barrier function is a constraint function. The characteristic of this function is
that as the point approaches the feasible region boundary of the optimization problem, its
value tends to infinity. The main function deals with the inequality constraint by adding
a penalty term to the objective function, so that the optimization problem is easier to
deal with. Equation (8) is selected to deal with the inequality constraints in the opti-
mization model from the obstacle function [20] and is used as the penalty term for the
optimization goal.

k(u) =
{

0 u > 0
∞ u ≤ 0

(8)

For the torque constraint, this is processed by a logarithmic barrier function, which can
be defined as Equation (9). The domain of the barrier function is
dorm γ =

{
x ∈ Rn

∣∣gj(x) ≥ 0, j = 1, 2 · · · n
}

. At the same time, gj(x) = cj − dT
j x defines the

torque constraint form.

γ(x) = −
n

∑
j=1

ln
(

gj(x)
)

(9)

The expression of the torque constraint processed by the obstacle function can be
expressed as Equations (10) and (11).

γ1( fi) = − ln
(

τr − JT
H fi

)
(10)

γ2( fi) = − ln
(
−τl + JT

H fi

)
(11)

For the friction cone constraint, the constraint is a second-order inequality constraint.
A second-order cone is defined in the real range, which satisfies the following conditions:

β =
{

x ∈ Ri+1|∥x1, x2 . . . xi∥2 ≤ αxi+1

}
, i = 1, 2 . . . n (12)

Finally, after processing, the friction cone constraint processing results required in this
paper are as follows:

δ(x) = − ln
(
(µi fiz)

2 −
∥∥ fix, fiy

∥∥2
2

)
, i = 1, 2 . . . n (13)

The optimization challenge for the distribution of contact forces in the end-effector
primarily focuses on minimizing the contact force component while satisfying the given
constraints. Thus, due to the penalty imposed on the constraint border of the friction
cone, the contact force is prevented from approaching the boundary of the friction cone,
resulting in a reduction in the magnitude of the joint torque. The construction of the opti-
mization model for the distribution of contact force on the end-effector is demonstrated in
Equation (14) [21].

ω( fi, rk) = max
∥∥ fiz, fix, fiy

∥∥− rk
N
∑

u=1

1
γu( fi)

+
1√
rk

M
∑

v=1

[
δv( fi)

2
]

minimize ω( fi, rk)

subject to
M
∑

i=1
Gi fi = −wext

(14)

Here, rk represents the penalty factor, N represents the number of end-effector joints,
the second part represents the obstacle term, the third is the penalty term, and M represents
the number of friction cones in contact. At the same time, the values of rk and 1√

rk
are

selected according to the interior point method and the exterior point method, respectively.
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2.5. Solution to the Contact Force Distribution Optimization Model of End-Effector

The contact force distribution optimization of the three-finger end-effector has been
modeled above, and the optimization model will be solved below. The goal of this part
is to find the optimal contact force in multiple sets of feasible contact force solutions to
minimize the grasping damage on apples. Firstly, the solution set of the force closure
constraint condition is decomposed into two parts: the orthogonal special solution f p

i and
the homogeneous solution f h

i , as shown in Equation (15).

fi = f p
i + f h

i = G+wext + Mσ (15)

Here, G+ represents the pseudo-inverse of the grasping matrix G , the matrix M
represents the null space of the external force wext, and σ represents the vector weight of the
external force null space wext. The special solution f p

i represents the grasping force exerted
by the end-effector to balance the external force on the target apple. The homogeneous
solution f h

i represents the grasping internal force exerted by the end-effector under the zero
space of the grasping matrix G , and its role is mainly reflected in improving the grasping
stability on the apple.

Therefore, the core objective of dynamic force optimization is transformed as shown
in Equation (16).

minimize ϑ
(
G+wext + Mσ

)
(16)

The quadratic norm defined by the Hessian matrix is used as the step search direction
of the Newton iteration algorithm, and the stop criterion of the search is determined by the
defined Newton reduction σ + β∆σnt will be iterated as a new predictor for each round:

σ∗ = σ + β∆σnt = σ − β∇2C(σ)−1∇C(σ) (17)

Subsequently, the suitable magnitude of the step β is ascertained using the backtrack-
ing line search technique inside the range of (0, 1) to guarantee that each iteration remains
within the interval of the viable region [22]. Prior to meeting the search stop require-
ment, the algorithm will continue searching for a target value that surpasses the current
forecast value.

Typically, when the initially chosen feasible solution is far from the desired solution
we need to find, the Newton iteration method will require more iterations, and this will
significantly decrease computational efficiency. In this part, the solution set of the convex
optimization problem exhibits continuity. This means that while the input of σ∗ varies
smoothly, the output value similarly changes smoothly. Additionally, an estimated solution
for the ideal starting value can be obtained [23].

If a feasible initial iteration value cannot be obtained, the specific solution method and
steps for the contact force distribution optimization model are shown in Figure 4.
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Firstly, a strictly feasible initial solution satisfying the constraint condition of contact
force optimization is sought. If there is such a solution, the iterative solution is directly
solved. If it does not exist, the relaxation variable S is introduced, and the following
optimization description is constructed:

minimize s

subject to fi + se ∈ FHi, i = 1, 2 . . . n
n
∑

i=1
Gi fi = −wext

τl ≤ JT
H fi ≤ τr

(18)

where, the relaxation variable S ∈ R, S ≥ −1 guarantees that the solution cannot reach
negative infinity, e = (0, 0, 1).

In the above second-order optimization problem, the relaxation variable S can be
interpreted as a hypothetical force connected to the perpendicular component of the
contact force fi to satisfy the optimization requirements of the grasping issue. The ultimate
objective of the optimization problem outlined in Equation (18) is to minimize the virtual
force, aiming for a value of 0 or below [21], while ensuring that S is greater than or equal
to −1. If the optimization problem can find a suitable optimal solution, fi can serve as
the initial feasible answer for the original optimization problem related to apple grasping
contact force. If the value of the relaxation variable S is consistently greater than 0 in the
final solution, it signifies that optimization of the original problem is not possible.

The initial feasible solution in the optimization problem of the relaxation variable S
described in Equation (18) can be selected in the following ways. A set of minimum norm
solutions satisfying the force closure constraint is taken as the initial contact force fi:

fi = −GT
i

(
GiGT

i

)−1
wext (19)

For the initial relaxation variable S, simply select the value that satisfies the following
conditions as its initial value:

s > max

{
1
µi

√(
f 2
ix + f 2

iy

)
≤ fiz, i = 1, 2 . . . n

}
(20)

At this point, the obtained ( fi, s) can be used as the initial feasible solution for the
optimization problem of the relaxation variable S constructed using Equation (18).

3. Result and Discussion
3.1. Optimization Example and Simulation of End-Effector Contact Force Distribution
3.1.1. Numerical Example

This section uses MATLAB R2023A to implement the solution for the contact force
distribution optimization problem from the previous section. Since only the optimization
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solution is verified, and the influence of the penalty factor rk on the optimization model
is not considered, a fixed penalty factor is selected for calculation to verify the feasibility
of the optimization solution. Finally, this is compared with the semi-definite program-
ming algorithm in order to obtain better computational efficiency, and optimization of the
minimum stable apple grasping force is verified through simulation.

It is assumed that the end-effector is a three-fingered hand, and the apple is grasped
according to the position shown in Figure 5. The apple has a uniform centroid in its
orthocenter, a mass of 0.3 kg, and a radius of 50 mm. The three-fingered fingertips of the
end-effector are in contact with the apple. The positions are c1, c2, and c3. Zhang et al. [24]
conducted a friction measurement experiment, and obtained the friction coefficient. In this
paper, the appropriate friction coefficient is selected according to this friction experiment.
The friction coefficient is µi = 0.5, and the object coordinate system and the contact
coordinate system are established at the apple’s center and the contact point, respectively.
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The simulation involves using a three-finger end-effector to grip the apple. The
specific parameters for this numerical example can be found in Table 1. The contact point
coordinates specify the location of the three fingers in relation to the coordinate system of
the object.

Table 1. Contact point parameters of the end-effector.

Finger Number X Y Z

1 −48.51 0 −12.26
2 22.45 −41.25 −12.26
3 22.45 41.25 −12.26

Since the coordinates of the contact points are the representation of the contact points
in the object coordinate system, the pose of the contact coordinate system relative to the
object coordinate system can be calculated according to the coordinates of the contact
points, and the grasping matrix Gi of the three fingers can be obtained. The complete
grasping matrix G can be obtained by combining them:

G =



0 1 0 1 0 0 1 0 0
−0.5929 0 0.7914 0 −0.8137 −0.5812 0 0.8137 −0.5812
−0.7914 0 0.5929 0 0.5812 0.8137 0 0.5812 0.8137
−7.2689 0 9.7026 0 −33.9504 −40.6906 0 33.9504 26.4396
−33.6424 −12.26 25.2042 −12.26 −13.0749 −18.2672 −12.26 −13.0749 −18.2672
25.2042 0 −33.6424 41.25 −18.2672 −13.0749 −41.25 18.2672 −13.0749


The contact force vector is:

f =
[

f1,x, f1,y, f1,z, f2,x, f2,y, f2,z, f3,x, f3,y, f3,z
]

(21)
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The friction cone constraint is:

FH = FH1 × FH2 × FH3 (22)

FHi =

{
fi ∈ R3

∣∣∣∣ 1
µi

√(
f 2
ix + f 2

iy

)
≤ fiz, i = 1, 2, 3

}
(23)

The Jacobian matrix of the end-effector fingertips is:

JH =



0 54.276 102.244 0 0 0 0 0 0
0 −6.283 83.584 0 0 0 0 0 0
0 0 0 −61.576 0 114.012 0 0 0
0 0 0 13.014 0 −96.376 0 0 0
0 0 0 0 0 0 −61.576 0 114.012
0 0 0 0 0 0 −13.014 0 96.376


Each joint torque of the end-effector is τl = −3 N·m, τr = 3 N·m. According to the

selected penalty factor rk = 4, a set of optimal contact forces is obtained:

f = [2.483, 1.679, 4.073, 1.779, 1.613, 2.048, 2.569, 1.463, 3.164]T

Applying the semi-definite programming approach to determine the ideal contact
force in the given gripping scenario will need additional floating-point operations, re-
sulting in a significant decrease in computational efficiency. The precise calculation effi-
ciency is displayed in Table 2, and these are compared in the same context of a computer
with the Windows 11 operating system and MATLAB R2023A (9.14.0.2206163) 64-bit
(win64) software.

Table 2. Computational efficiency comparison index.

Contrast Ratio Method of this Article Semidefinite Programming Algorithm

Computing time (ms) 0.346 0.675
Number of convergences 5 9

Number of floating-point operations (kflops) 7 19

3.1.2. Grasping Simulation

The previous section verified the efficiency of the improved Newton iterative algorithm
in solving the optimization problem of contact force distribution under fixed penalty
factors. This section will continue to study the selection of penalty factors in MATLAB
R2023A by selecting appropriate penalty factors for the entire optimization model of contact
force distribution, simulating the three-finger grasp and observing the law of contact
force change.

In the simulation process, the apple object coordinate system is always kept at the
position of p = (0,−4, 2.5) relative to the end-effector coordinate system. At this time, the
contact position and vector of each end-effector fingertip are:

Roc1 = [0.87, 0, 0.5] Roc2 = [−0.8, 0.5, 0] Roc3 = [0.8, 0.5, 0]

poc1 = [0.87, 15,−2.5] Poc2 = [13, 7.5, 4.35] Poc3 = [−14, 7.5, 4.35]

The penalty factor rk is gradually increased from 0.1 to 100 with a step size of 0.1, and
the optimal contact force normal component fiz of each finger is recorded in turn. The
variation of the normal contact force fiz with the penalty factor rk is shown in Figure 6. By
observing the change rule of the following figure, it can be expected that when the penalty
factor rk gradually increases, the contact force of the end-effector’s three fingertips will be
significantly reduced, and this will also increase the possibility of grasping failure.
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To establish a well-defined boundary for the penalty factor rk, the friction residual
and the torque residual are introduced. These residuals serve as approximations to assess
the proximity of the constraint boundary of the friction cone and the difference between
the joint torque and the limit torque of each finger, respectively. The torque residual and
friction residual, which are normalized, are depicted in Figure 7, showcasing their variation
with the penalty factor rk as indicated in Equations (24) and (25).

φτ = minimize {|τi − τlim|}, i = 1, 2, 3 (24)

φF = minimize
{

µi fiz −
∥∥ fix, fiy

∥∥
2

}
, i = 1, 2, 3 (25)
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Figure 7. Residual variation diagram.

It can be seen from the Figure 7 that when rk is large, the penalty for the joint torque is
more severe, and the joint torque is small. At this time, there is a risk of grasping failure.
When rk is small, the penalty near the edge of the friction cone is more severe. At this time,
the torque is larger and the grasp is more stable. Therefore, when the friction residual φF
is equal to the torque residual φτ , the penalty factor value is the best trade-off between
improving grasping stability and reducing apple damage.

The selected penalty factor rk = 3.25 is substituted into the contact force optimization
model for grasp simulation. The gravity center of the apple is still maintained at the
position relative to the end-effector coordinate system p = (0,−4, 2.5). The movement time
of the simulation is 3 s. The law of the contact force generated by the three fingertips over
time and the torque residuals are shown in Figures 8 and 9. From the diagram, it can be
observed that the contact force component generated by the three fingertips does not exceed
the torque limit value. This shows that during the whole simulated grasping process, the
three fingers never slide, and the grasping is stable. Finally, the whole simulation proves
that the contact force distribution optimization scheme proposed in this study is feasible.
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The optimal contact force of the apple picking robot end-effector developed in the
laboratory is solved by the contact force optimization scheme proposed in this section.
Finally, a set of solutions are obtained as follows:

f = [4.597, 3.648, 5.152, 4.779, 3.793, 5.178]T

3.2. Contact Force Distribution Optimization Experiment of End-Effector
3.2.1. Experimental Equipment

The apple picking robot is shown in Figure 10a, which consists of a chassis, a robot
arm, an end-effector, a camera, and a controller. The experimental equipment will be used
to verify the optimization of grasping force in practical experiments.
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The control system diagram of the end-effector is shown in Figure 10b, which consists
of an end-effector, a Jetson AGX ORIN, an embedded controller, a force sensor, a cylinder,
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and an electric proportional valve. The end-effector is mounted on a Festo push rod for
picking apples. During the grasping task, the grasping force signal between the end-effector
and the apple is detected by the force sensor and transmitted to the embedded controller.
The embedded controller adjusts the electric proportional valve according to the error
to achieve force control. Finally, it determines whether the apple slips or the grasping is
successful based on whether there is a sudden change in the grasping force.

3.2.2. Grasping Experiment and Analysis

The numerical samples and simulation verify the practicality of the contact force
optimization approach when grasping apples. Nevertheless, throughout grasping, it is
possible for the position of contact and the friction coefficient to undergo alterations. These
changes can be specified to follow a normal distribution with a change rate of 0.05. The
following equation can be employed to define the threshold of grasping stability:

s = minimize
i=1,2

∥∥ fix, fiy, fiz
∥∥− optimize

i=1,2

∥∥ fix, fiy, fiz
∥∥ (26)

where, minimize
i=1,2

∥∥ fix, fiy, fiz
∥∥ represents the minimum grasping force required to satisfy

the grasping stability condition in the actual grasping process, and optimize
i=1,2

∥∥ fix, fiy, fiz
∥∥

represents the optimal grasping force obtained by the contact force distribution optimiza-
tion algorithm. When S < 0, it indicates that there is an unmet constraint condition for
grasping failure, otherwise it means that the grasp is successful.

Figure 11 shows the success rate results obtained by 1000 Monte Carlo simulation
probability analysis iterations for each penalty factor under different penalty factors. If the
above-mentioned conditions for successful grasping are met, it is recorded as Y, otherwise
it is recorded as N. Until the end of the iteration, the number of successful grasps is TY, and
the number of failed grasps is TN , so the success rate of grasping can be calculated as:

PY = TY/(TN + TY) (27)
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Figure 11. Curve of grasp success rate.

It can be observed from the above figure that when the penalty factor is in the range
of (1, 3.3), the grasping success rate is higher, basically above 90%, and the contact force
distribution optimization scheme proposed in this paper also shows high stability. When
the value of rk exceeds this interval, the probability of sliding during the actual grasping
process will increase. An rk value in the interval of (1, 3.3) and outside this interval are
simulated several times.

In the actual experiment, a red Fuji apple was used as the grasping object for grasping
verification. The red Fuji apple peel was smooth, shiny, medium thick, tough, and waxy.
The relatively stable apple grasp results and the sliding grasp results can be observed, as
shown in Figure 12a,b.
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Figure 12. Comparison of grasping phenomena with different penalty factors. (a) Stable grasp;
(b) sliding grasp.

The aforementioned studies demonstrate that selecting the penalty factor within the
range of (1, 3.3) results in the best success rate for grasping, hence confirming the reliability
of the contact force optimization model. To calculate the lowest stable grasping force input
for the end-effector controller, we will monitor the damping control variable [25] to detect
any sudden changes in the real grabbing force, which may indicate whether the apple is
sliding. Figure 13 displays the experimental results of the grasping force distribution with
different penalty factors.
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Figure 13. Experimental results of the grasping force distribution with different penalty factors.
(a) Stable grasp; (b) sliding grasp.

The experimental results show that there is no sudden change in contact force dur-
ing the grasping process, that is, the apple does not slide. When the penalty factor is
selected within the range of (1, 3.3), the optimal contact force solved by the contact force
optimization model can result in stable grasping.

3.3. Discussion

In this study, the grasp stability of end-effectors was analyzed based on the force
closure theory, the constraint conditions were treated using an obstacle function, and an
optimal model of end-effector contact force distribution was constructed by introducing
penalty factors. Then, the improved Newton method was used to solve the contact force
distribution model. The optimal contact force for grasping apples was determined using
numerical case simulation analysis on the premise of selecting the penalty factor, and the
effectiveness of the solution was verified. Finally, the practical significance of the method
for apple grasping is verified in an actual grasping experiment. The experiment showed
that the method can provide the minimum stable grasping force for the end-effector to
achieve a stable grasp, and avoid sliding caused by a too small grasp force or fruit damage
caused by a too large grasp force. Although this method realizes a stable grasp of the apple,
the computational cost still exists. In many special weather conditions such as rain, dew or



Agriculture 2024, 14, 996 14 of 15

high humidity, apples have less friction, which has not been studied. This would require a
lot of programming. The development of soft manipulator claws or slip detection are good
research directions, which could also achieve the lossless and stable grasp of apples. In the
future, we will study the sliding friction and sliding signal detection of an apple grasp.

4. Conclusions

In this paper, the grasping stability of end-effectors was analyzed based on the force
closure theory, considering the force closure constraint, the nonlinear friction cone con-
straint and the torque. The constraint conditions were processed using an obstacle function,
and the contact force distribution optimization model of a three-finger end-effector was
constructed by introducing a penalty factor. The improved Newton method was used to
solve the contact force distribution model, and through numerical simulation analysis, it
was found that the optimal contact force for grasping a target apple can be determined
under the premise of selecting the penalty factor. The calculation efficiency was compared
with that of the semi-definite programming algorithm. It was found that the calculation
time of the method proposed in this paper was 0.346 ms, while the semi-definite cost-
effective rule required 0.675 ms, which verified the efficiency of the proposed method.
It was found that the optimal contact force solved by the optimization method did not
exceed the torque limit by using MATLAB simulation. The iterative method of Monte Carlo
simulation probability analysis was used to calculate the optimal contact force required
for grasping stability under different penalty factors for multiple iterations. It was found
that when the penalty factor was selected within the range [1,3.3], the grasping success
rate was the highest, basically reaching more than 90%. The actual grasping experiment
further verified that this method can provide the minimum stable grasping force needed
for the apple picking robot and achieve the stable grasping of apples. Based on the results
of this experiment, we will consider comparing research on the friction force and friction
coefficient of an apple under wet and dry conditions in the future, and further study the
compliance control strategy based on sliding signal analysis.
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