
Citation: Senapaty, M.K.; Ray, A.;

Padhy, N. A Decision Support System

for Crop Recommendation Using

Machine Learning Classification

Algorithms. Agriculture 2024, 14, 1256.

https://doi.org/10.3390/

agriculture14081256

Academic Editor: Michele Pisante

Received: 2 May 2024

Revised: 15 July 2024

Accepted: 19 July 2024

Published: 30 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

A Decision Support System for Crop Recommendation Using
Machine Learning Classification Algorithms
Murali Krishna Senapaty 1 , Abhishek Ray 1 and Neelamadhab Padhy 2,*

1 School of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar Pin 751024, India;
muralisenapaty@gmail.com or 1881039@kiit.ac.in (M.K.S.); arayfcs@kiit.ac.in (A.R.)

2 School of Engineering, GIET University, Gunupur Pin 765022, India
* Correspondence: dr.neelamadhab@giet.edu

Abstract: Today, crop suggestions and necessary guidance have become a regular need for a farmer.
Farmers generally depend on their local agriculture officers regarding this, and it may be difficult
to obtain the right guidance at the right time. Nowadays, crop datasets are available on different
websites in the agriculture sector, and they play a crucial role in suggesting suitable crops. So, a
decision support system that analyzes the crop dataset using machine learning techniques can assist
farmers in making better choices regarding crop selections. The main objective of this research is
to provide quick guidance to farmers with more accurate and effective crop recommendations by
utilizing machine learning methods, global positioning system coordinates, and crop cloud data.
Here, the recommendation can be more personalized, which enables the farmers to predict crops in
their specific geographical context, taking into account factors like climate, soil composition, water
availability, and local conditions. In this regard, an existing historical crop dataset that contains
the state, district, year, area-wise production rate, crop name, and season was collected for 246,091
sample records from the Dataworld website, which holds data on 37 different crops from different
areas of India. Also, for better analysis, a dataset was collected from the agriculture offices of
the Rayagada, Koraput, and Gajapati districts in Odisha state, India. Both of these datasets were
combined and stored using a Firebase cloud service. Thirteen different machine learning algorithms
have been applied to the dataset to identify dependencies within the data. To facilitate this process,
an Android application was developed using Android Studio (Electric Eel | 2023.1.1) Emulator
(Version 32.1.14), Software Development Kit (SDK, Android SDK 33), and Tools. A model has been
proposed that implements the SMOTE (Synthetic Minority Oversampling Technique) to balance the
dataset, and then it allows for the implementation of 13 different classifiers, such as logistic regression,
decision tree (DT), K-Nearest Neighbor (KNN), SVC (Support Vector Classifier), random forest (RF),
Gradient Boost (GB), Bagged Tree, extreme gradient boosting (XGB classifier), Ada Boost Classifier,
Cat Boost, HGB (Histogram-based Gradient Boosting), SGDC (Stochastic Gradient Descent), and
MNB (Multinomial Naive Bayes) on the cloud dataset. It is observed that the performance of the
SGDC method is 1.00 in accuracy, precision, recall, F1-score, and ROC AUC (Receiver Operating
Characteristics–Area Under the Curve) and is 0.91 in sensitivity and 0.54 in specificity after applying
the SMOTE. Overall, SGDC has a better performance compared to all other classifiers implemented
in the predictions.

Keywords: crop recommendation; machine learning; global positioning system; accuracy rate;
precision agriculture

1. Introduction

In the agriculture sector, a lot of revolutionary changes have been observed in the
present scenario. Different technologies and tools, such as sensory technologies, drones,
smart irrigation systems, satellite image analysis, etc., are being used in farming for the
enhancement of crop production. Here, the selection of a crop for the land plays an
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important role in farming. Liakos, K. G. et al. [1] performed an extensive review of crop
recommendations and productions based on soil and water management. It has been
observed that crop selection is an important factor in increasing crop yield and reducing
the risk of crop loss, and the efficient use of resources like water, pesticides, and fertilizers
leads to a better agricultural outcome. New farmers mainly take opinions from fellow
experienced local farmers for crop selection. However, they may be misled due to human
errors and their relationships with others. So, the new farmers may obtain lots of confusing
information on crop selection, estimating the crop production and their profits. This
motivated us to believe that handy and appropriate guidance could be provided to the
new farmers using an application. If there is heavy production of a particular crop, then
it may lead to losses during its sales. The objective of this research is to identify and
recommend crops that are not only more suitable for optimal production but also have
higher market values.

Doshi, Z. et al. [2] discussed identifying suitable crops based on the season, geographi-
cal location, and soil mineral properties. So, we have analyzed area-wise and season-wise
crop production datasets so that suitable crops can be listed for a specific season and a
particular land. Vaishnavi, S. et al. [3] analyzed crop datasets based on season and pro-
ductivity. So, we collected datasets from different sources, such as Indian agriculture
websites, based on these factors. Again, a data collection process was also conducted
through interactions with experienced farmers based on their crop cultivation plans. The
locally collected data were combined with the cloud dataset in a balanced way. Then, this
dataset was analyzed for crop recommendations by applying suitable machine learning
methods. These algorithms are used to help farmers make decisions, which will improve
agriculture’s sustainability and profitability.

Contribution:

The major contributions of this paper are as follows:

• Analyzing the area-wise crop data for the Odisha state of India;
• Implementing 13 different classifiers and evaluating them using the SMOTE;
• Identifying the best classifier SGDC and prediction of suitable crops.

The rest of the paper is structured as follows. Section 2 contains a review of different
advancements and techniques used for improving crop productions and their comparative
analysis; Section 3 presents the details of the materials and methods implemented, the
proposed model, and the process of execution; Section 4 shows the experimental results;
and finally, Section 5 explains the conclusions and future work concisely.

2. Advancements and Techniques Used for Improving Crop Production

A brief study on the different approaches of decision support systems for predicting
crop suitability has been conducted. Many implementations are based on existing crop
mineral datasets, satellite image analyses, and real-time data analyses using sensors, Wi-Fi,
and drone technologies. Mainly, the recommendation is based on historical crop and soil
mineral data.

Satish Babu et al. [4] elaborated on the development of the agriculture sector at a large
scale in rich countries based on crop and soil parameters. In Kerala, India, to support
small and marginal farmers. the soil crop databases collected from cultivation fields and
crop calendars were prepared. This was achieved using different electronic devices for
the reduction of agricultural expenses. R. Balamurali et al. [5] collected soil–weather
parameters, such as temperature, humidity, Potential of Hydrogen (pH value), and NPK
(Nitrogen, Phosphorus, and Potassium) values using real-time observations over time.
The authors used a wireless sensor network and remote server for data collection and
analysis and concluded that the performance of the Medium Access Control (MAC) and
routing algorithm approach is the best. Fonthal, F. et al. [6] suggested a model that contains
networking and sensors to collect the environmental conditions of fields cultivated with
white cabbage crops. It helps the farmer monitor the environmental needs and reduces the
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losses in farming. Gábor Gyarmati et al. [7] performed a brief study on precision agriculture,
which can solve food problems and reduce labor costs. The authors explained leads taken
in precision farming to handle the day-to-day challenges of pollution and climate change.
Palazzi, V. et al. [8] suggested collecting the leaf temperature and water needs using the
sensor. It allows for better farming by identifying the season-wise crop suitability and its
needs. The authors discussed Radio Frequency Identification (RFID)-based sensors and
EM4325 ultra-high-frequency (UHF) chip utilization in the research. Yongsheng Wang
et al. [9] suggested different tools for improving crop production. They applied different
tools like Physical Layer Signaling (PLS), Packet Switching (PS), and Connectionless Mode
Service (CLS) for crop production. It has been observed that the precision seeding of PLS
is better in improving crop production. Dholu et al. [10] describe how the Internet of
Things (IoT) connects various devices such as mobiles, tablets, and personal computers
through machine-to-machine communication. They emphasize that IoT enhances precision
agriculture by optimizing the use of resources like pesticides, light, and water, thereby
increasing production efficiency and reducing waste.

O. Palagin et al. [11] explained the flora test to obtain information about the state of
plants, and then they discussed the two different types of data acquisition systems, which
depend on portable devices that are helpful in precision agriculture for controlling and
monitoring the growth of crops, the usage of water to crops, and managing the pesticides
to crops so that farmer can obtain more production using precision agriculture. Jitendra
Patidar et al. [12] discuss how traditional agriculture methods are currently used in India
and suggest that precision agriculture can replace these methods. Their work indicates that
farmers can grow various crops more effectively with precision agriculture. Vandana B
et al. [13] explained that the agriculture field in the Indian agriculture farming industry
adapts less innovative technology compared to other industries. In precision agriculture,
if we adapt communication and information technologies, which can easily provide less
cost-effective methods and can be helpful for smart agriculture, in this work, they prepared
a model for agriculture farming that can guide the farmers performing their farming in
rural and urban areas so that the production of crop yield increase rapidly, which improves
their profits about the farmer’s production rate. Xiaoshan Wang et al. [14] discussed the
design and understanding of precision agriculture systems depending on 5S technology.
Precision agriculture leads to the overall development of agriculture, like the utilization
of resources and fertilizer without wastage. In proper times, we have to use them, and
requirements that are needed by crops should be provided so that the production rate will
increase, which can benefit the farmers compared to traditional farming. So, smart farming
can replace traditional farming, which will improve the production rate of crops; ultimately,
a farmer will obtain benefits using precision agriculture.

Ranaweera et al. [15] focused on finding the crop price based on fuel price, crop
production, rainfall, and temperature. The authors considered four major crop data for
analysis. Machine learning methods have been applied, and the root mean square is chosen
as the measuring parameter. It has been observed that the tree-based models forecast better
than others. Bondre, D. A. et al. [16] used a previous dataset for crop yield estimation. The
SVC and RF are chosen for identifying crops and recommending their fertilizer needs. Crop
data over the last five years were collected from different sources and analyzed. The soil
classification, yield prediction, and fertilizer needs are three steps that have been proposed
to implement. Thilakarathne, N. N. et al. [17] suggested a crop recommendation platform
using cloud services. To find the best recommended details, KNN, DT, RF, XG-Boost,
and SVC were applied. The experimental results have been analyzed based on accuracy,
precision, recall, and F1-score. Here, the dataset has 2200 records that contain the soil
and weather parameters such as temperature, humidity, pH, NPK, and rainfall details.
Sonobe, R. et al. [18] presented TerraSAR-X satellite images of crops analyzed using the
random forest, classification, and regression tree (CART) methods. Crop classification was
applied and, overall, it has been observed that the performance of RF is better compared
to CART. Priyadharshini, A. et al. [19] proposed a system for crop suggestions to farmers
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based on soil parameters and season. Data analysis has been conducted using linear
regression, a neural network, KNN, Naive Bayes (NB), and SVC and compared based on
their performances, out of which neural networks have the highest of 89.88% accuracy.
Rajković, D. et al. [20] applied the ANN and random forest regression (RFR) tools for crop
yield prediction. The data on 4 years on winter rapeseeds from Serbia has been used for
analysis using both methods, out of which the prediction capability of the RFR is better than
the other. A high correlation between oil and seed crops has been observed. Bhattacharyya,
D. et al. [21] proposed an ensemble model by integrating Generalized Poisson Models
(GPMs), CNNs, and SVCs for analyzing sugarcane production. A benchmark Godavari
dataset of 5 years was used for analysis. It is observed that the CNN obtained the highest
accuracy of 89.53%. Rajak, R. K. et al. [22] performed an ensemble of the SVC and ANN,
and by applying majority voting, the recommendation is obtained. It has higher accuracy
compared to the SVC and ANN. The dataset collected from the polytest laboratories of
Maharashtra had a variety of crops such as cotton, ground nut, banana, paddy, sugar cane,
coriander, etc. Keerthana, M. et al. [23] used 28,242 instances with a 7-feature dataset. The
climate condition, rainfall, and crop type are important parameters for the dataset used.
Different ensemble approaches were applied from prediction, out of which the Ada Boost
Regressor with a decision tree had the highest accuracy of 95.7%.

Panigrahi, B. et al. [24] conducted a study on maize, groundnut, and Bengal gram
crops in Telangana state. The dataset from the Information Technology, Electronics, and
Communications Department (ITE&C) was analyzed. A dataset of different weather
throughout the year has been used. Different machine learning algorithms were applied
and verified based on the mean absolute error (MAE), mean squared error (MSE), coefficient
of determination (R2 score), and cross-validation. The RFR has a higher accuracy compared
to other approaches. Garg, D. et al. [25] suggested a hybrid method combining a grid search
and wrapper feature selection for crop recommendation. Its performance is compared with
the C4.5 decision tree and achieves the highest accuracy of 99.31%. The main aim is to
assist farmers in crop selection and increase crop yield. Shankar, P. et al. [26] conducted
a comprehensive study on rainfall, soil condition, and climate using machine learning.
The implementation of RF, SVC, DT, and logistic regression has been performed to predict
relevant plants. The relevant crop data collected from data.gov.in and Kaggle were analyzed
using machine learning methods. Escorcia-Gutierrez, J. et al. [27] evaluate nutrient levels
of soil and identify the nutrient requirements for the crop recommended. They proposed a
model that implements deep learning techniques along with the voting ensemble technique
for nutrient classification, which shows better performance with an accuracy of 0.928.
Pandey, V. et al. [28] used satellite data from the Ujjain district, Madhya Pradesh, and
applied RF, Naïve Bayes (NB), and ensemble techniques to analyze different classes of
crops. A ground study has been conducted in three different intervals of a crop such as early
wheat, mid wheat, and late wheat. It is seen that the RF algorithm implementation of images
and its performance is better than others for satellite image data classification. Dhanavel, S.
et al. [29] collected a detailed soil mineral dataset with 12 different parameters from Kaggle
and analyzed it using machine learning and artificial intelligence (AI) techniques. Seven
different techniques such as logistic, Hoeffding Tree, Random Tree, random forest, Repeated
Incremental Pruning Tree (REP Tree), and Multilayer Perceptron were applied and analyzed
for different performance analysis metrics on crop recommendation. Reddy, J. et al. [30]
implemented an ensemble of different techniques to recommend crops for better decision
making in the selection of crops for cultivation. The RF, DT, and SVC implemented on
the Felin dataset, thereby applying the voting classifier and improvised results, shall be
obtained. The performance measurement is analyzed based on accuracy, kappa score, and
log loss values. Sharma, N. et al. [31] implemented regression models for predicting the
production rate of crops in different areas of northeast India. The R2 score, root mean
squared error (RMSE), coefficients of variation (CVs), and MAE are verified to identify the
suitable prediction model. It predicts the top five crops with the highest average yield and is
further analyzed for the most profitable crop. Gosai, D. et al. [32] focused on sensory-based
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soil testing to reduce soil degradation. Different machine learning algorithms implemented
crop recommendation, in which XGBoost had the highest accuracy of 99.31%. Bandara, P.
et al. [33] proposed an Arduino controller sensory system to collect soil and weather details
and recommend crops in Srilankan cultivation lands. Machine learning techniques applied
for crop selection had a high accuracy on a dataset collected from the Agriculture dept. of
Sri Lanka.

Dubey, D. et al. [34] provided a proposal for an agricultural recommendation system,
which is given for a reduced loss. The dataset was collected from different districts of
Madhya Pradesh on crop production, rainfall, and soil type. Machine learning algorithms
such as KNN, RF, DT, and logistic regression are applied to find the best recommendations,
out of which RF has better accuracy. Sundari, V. et al. [35] used the historical dataset from
different regions of Karnataka based on soil weather parameters for analysis. A web page
was developed with a pattern-matching approach for recommending crops. A comparative
analysis based on accuracy is performed for the two districts dataset of Karnataka, out
of which DT has 76.8%. Kedlaya, A. et al. [36] prepared a dataset by combining the
collected soil and weather parameters for 20 different crops from the Indian Meteorological
Department (IMD), Pune, and Karnataka state. An application was developed to filter the
crops using pattern-matching techniques at multiple levels and predict the suitability of
crops. Garg, D. et al. [25] proposed a model that applies feature section using the Wrapper
method, classification using the partial decision tree algorithm, and hyperparameter tuning
using the grid method. Here, the soil features, humidity, and rainfall information of
2200 instances were used for analysis. It is observed that after hyperparameter tuning, an
accuracy of 99.31% was obtained. Bhatnagar, K. et al. [37] used a soil crop dataset from
Kaggle and applied machine learning algorithms, such as RF and KNN, for classification.
A total of 2201 records were used from previous historical data for analysis, and predicted
suitable crops based on production, and an accuracy of 99.5 was obtained for the random
forest method. Reyana, A. et al. [38] used a machine learning approach such as DT,
RF, Hoeffding Tree, and J48 for classification, and different performance metrics such
as precision, F-measure, and recall were implemented. Multiple sensors are installed in
different areas of agricultural land, and the real-time collected data from sensors are fused
for analysis. The result analysis observed that the performance of random forest is higher
than other approaches. Eddaoudi, R. et al. [39] suggested a recommendation system using
web application implementation for predicting crops using five different machine learning
algorithms. The performance of random forest is better than others in prediction with an
accuracy of 97.18%, which is applied to a dataset with 1800 entries. Islam, M. R. et al. [40]
proposed a machine-learning sensory device for soil nutrient monitoring and analysis.
The real-time data are collected using sensors and analyzed to generate recommended
crops and assess the device’s capabilities. It has been observed that the Cat Boost classifier,
having a 97.5% accuracy, is better than the rest of the applied methods. Bhuyan, S. et al. [41]
collected 180 soil samples from specific areas of Assam state and tested the samples to
obtain their physical properties. After pre-processing the samples, the data were used for
analysis using a decision tree with an accuracy of 94%. Based on water retention capacity,
hydraulic conductivity, and particle density, the crops are recommended. Dahiphale, D.
et al. [42] used soil and climate data for analysis and predicted the crops for improving
yield and profits. DT, RF, KNN, NB, SVC, NN, and logistic regression were applied to a
dataset from Kaggle and verified for their performance. A total of 22 different crops were
taken as labels for analysis using machine learning methods, and it is observed that the
RF and NB were obtained with an accuracy of 99.5%. Durai, S. K. S. et al. [43] focused on
guiding individuals in suggesting crops and nutrients needed for their growth. Datasets
from Kaggle based on crop and soil were analyzed. A total of 2200 samples with 22 labels
were analyzed for attributes such as NPK, pH, and rainfall. Also, weed identification and
pest identification have been conducted to take necessary measures. Pande, S. M. et al. [44]
conducted research in the Maharashtra and Karnataka region. A mobile application was
developed that collects the area and soil type as the input. The SVC, ANN, RF, KNN, and
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Multiple Linear Regression (MLR) were applied, out of which RF had the best performance
with 95% accuracy. Here, based on the global positioning system (GPS), the location has
been tracked, which helps identify the rate of rainfall, crop suitability, and fertilizer needs.

Katarya, R. et al. [45] proposed combining the data collection based on a sensory
system and historical data. A model was recommended, which was applied with principal
component analysis (PCA) and linear discriminant analysis (LDA) for feature extraction
and then applied with the ensemble technique, RF, KNN, and the artificial neural network
(ANN) method. An ensemble machine learning model was used to analyze datasets and
classify crops. Different evaluation metrics were used to verify the best method. It has been
observed that RF has the highest accuracy of 84.17% for prediction. Ashoka, D. V. et al. [46]
presented a Fused Classifier Algorithm (FCA) and an Interfused Machine Learning Al-
gorithm (IMLA) to predict suitable crops in the Karnataka region using agro-climatic
parameters. They evaluate various machine learning models and conclude that the IMLA
achieves the highest accuracy at 82.7%, outperforming other classifiers. It aims to improve
agricultural productivity by aiding farmers in crop selection for optimal yield in rural
Karnataka. Kawakura, S. et al. [47] applied explainable AI to analyze the agri-workers’
data to visualize the experienced and naive workers. The physical data are analyzed based
on shapely additive explanations and a Light Gradient Boosting Machine (Light GBM).
A wearable sensor is used to capture agri-workers’ motion pictures and analyze human
dynamics in fields. Mostafa, S. et al. [48] focused on plants to observe characteristics, such
as height, leaf shape, leaf count, biomass, etc., using explainable artificial intelligence. It
allows for the development of better crop management by identifying water requirements,
flowering time, etc. Kawakura, S. et al. [49] developed body-sensing systems, like wearable
sensors, for real-time motion data in agriculture. The data were analyzed using Python,
sharing insights with workers and managers. Employed explainable artificial intelligence
(XAI) and visualization-developed training methods for agricultural directors based on
diverse worker experiences. Ryo, M. et al. [50] applied XAI and interpretable machine learn-
ing on openly available data to observe the no-tillage effect on crops. They present insights
on variable importance, interactions, associations with the response variable, and reasons
behind predictions. Coulibaly, S. et al. [51] suggested detecting and locating insect pests in
crops using XAI techniques. The visualization of aiding human validation of the results is
implemented by the convolution neural network (CNN). Here, analysis was performed
on 75,000 images from 102 pest categories in the IP102 dataset. Iatrou, M. et al. [52] aimed
to provide rice growers with precise N-rate recommendations using precision agriculture
methods. By constructing a predictive rice yield model integrating soil, remote sensing, and
climatic data, machine learning systems were employed to analyze a 5-year dataset. The
variation Autoencoder is applied to enhance the model and find the correlation between
the variables. Apat, S. K. et al. [53] applied the SMOTE to balance the dataset and applied
different machine learning algorithms, in which Cat Boosting had the highest accuracy for
classification. The crop dataset on soil minerals was collected from Kaggle and analyzed
for crop recommendation. Sabrina, F. et al. [54] designed a model for smart controlling of
the agriculture system. The sensors are used to collect data and using the Fuzzy Controller,
the anomalous behavior is observed and notified to the farmer with suitable solutions. The
data for soil temperature and water availability were collected for approx. 8600 rows per
year. KNN, SVC, and Naive Bayes were applied for classification, out of which Naive Bayes
had the highest accuracy of 99.2%.

Paudel, D. et al. [55] demonstrate the efficacy of neural network models, particularly
long short-term memory and one-dimensional convolutional neural networks, in forecast-
ing the crop yield using data from the Monitoring Agricultural Resources (MARS) Crop
Yield Forecasting System. Comparative analyses reveal that the long short-term memory
(LSTM) recurrent neural network model outperforms the Gradient-Boosted Decision Trees
(GBDTs) model for soft wheat in Germany and performs comparably for other case studies.
Batchuluun, G. et al. [56] went for classification and disease prediction based on crop im-
ages. The model proposes a new plant based on analysis of 4720 thermal images. The CNN



Agriculture 2024, 14, 1256 7 of 40

and XAI are implemented to classify the crop diseases. A database of paddy crop disease
is used for analysis and comparison with the thermal images. It has been observed that
the classification with higher accuracy is 98.5% for thermal images compared to the paddy
crop dataset. Rajakumaran, M. et al. [57] propose the Multi-Attribute Weighted Tree-based
Support Vector Machine (MAWT-SVM) approach to predict crop yields. Data were collected
for 8 years from 1999 to 2007 on agriculture productivity and meteorological information.
The methodology employs z-score normalization, principal component analysis (PCA), and
genetic algorithms (GAs) to enhance performance. The results indicate that MAWT-SVM
outperforms other methods. It offers a better solution for improving economic growth
through optimal crop selection. Raju, C. et al. [58] proposed an ensemble model to enhance
crop production accuracy. The dataset used was from the agroecological zone. By leverag-
ing agricultural, environmental, and soil conditions, this approach aids farmers in informed
crop selection decisions, employing a multilayered ensemble model to improve prediction
performance. The evaluation metrics, including accuracy (97.1%) and F1-score (97.09%),
validate the model’s effectiveness. Olofintuyi, S. S. et al. [59] developed a deep learning
approach by an ensemble of the CNN and recurrent neural network. (RNN) applied to
long short-term memory for cocoa yield prediction. The climate data of 31,320 samples
were collected from 1988 to 2017 from cocoa-producing areas of southwest Nigeria. Mainly,
the ensemble model utilizes the CNN for handling climatic data and the RNN for yield
prediction. Benchmarking against other machine learning algorithms, the CNN-RNN with
LSTM demonstrates superior performance based on metrics, like the MAE and MSE, high-
lighting its efficiency for cocoa yield prediction. Bandaiaha, K. et al. [60] classified fertilizers
based on soil minerals obtained and the number of fertilizers required. The voting classifier
and the decision tree were supplied with a sample of 10 data. It has been observed that
the voting classifier (VTC) acquired a higher accuracy of 96% compared to the decision
tree. Neupane, J. et al. [61] briefly discussed variable rate irrigation technologies to reduce
water usage and focused on agronomic factors. It has been seen that the author gives
importance to different tools to measure soil water status and crop growing conditions,
which shall be analyzed using proximal sensing data. Ishak, M. et al. [62] suggested a
methodology for crop yield prediction, monitoring crops and their market value analysis.
A dataset from 64 districts of Bangladesh has been collected for analysis. They applied
random forest, Support Vector Machine, and Voting Ensemble Regression. It was found
that the voting regression has the highest R2 value of 82.8% compared to the others. It
was observed that there was a seasonal analysis of six crops: Aus Rice, Aman Rice, Boro
Rice, Wheat, Maize, and Lentil. Shams, M. Y. et al. [63] suggested an XAI-CROP algorithm
that uses local interpretable model agnostic explanations for crop recommendations. They
compared the performance of gradient boosting, decision tree, Gaussian Naive Bayes, and
Multimodal Naive Bayes with XAI. XAI has the higher performance, with a mean squared
error of 0.9412, a mean absolute error of 0.9874, consistently below 1, and an R-squared
value of 0.94152. Shook, J. et al. [64] utilized the long short-term memory recurrent neural
network (LSTM-RNN) model, implementing weekly weather data from Uniform Soybean
Tests to predict the genotype responses in diverse environments. It was presented as being
superior compared to the others in crop output accuracy. In the results, the R-squared
value is 0.796 between the observed and predicted yields, which shows an adaptation
of environmental variability. Wu, J. et al. [65] proposed a framework for intelligent crop
management using a language model and reinforcement learning. Here, the study on maize
crops results in presenting an enhanced approach that provides over 49% improvement
in economic profit by reducing the environmental factors. Tabar, M. et al. [66] developed
a machine-learning-based Met algorithm for forecasting the productivity of crops using
data-driven techniques in the farms of Africa by collecting remotely sensed data from
2200 farms. They suggested a model that works as an early warning system on climates to
provide an impact on agriculture productivity.

It has been observed from the extensive literature review that many researchers applied
different approaches to their datasets for soil and crops. Many technological tools are used,
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such as sensors, drones, and automated devices, to collect and analyze real-time data.
Different methods, including machine learning, deep learning, fuzzy systems, explainable
AI, etc., were used to analyze the real-time data and the existing standard soil mineral
dataset. Here, different measuring parameters were important to identify the best methods
for predictions.

2.1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
Flow Diagram

A systematic and detailed review of the meta-analysis is shown using the PRISMA
flow diagram given in Figure 1.
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Figure 1. PRISMA chart on the reviewed papers and the dataset.

The review analysis shown in Table represents the research work performed using
different technologies for improving crop production such as the use of sensors and drones,
analyzing crop growth, recommendations based on real-time data, and crop recommen-
dations using historical datasets. An application of machine learning and deep learning
algorithms has been observed. Here, it is observed that the dataset of crops, the ideal
mineral needs of crops, and different geographical locations suitable for specific crops are
used for analysis. In the last row in Table 1, we have represented the performance of our
proposed model and its advantages compared to other models in different papers.
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Table 1. A Comparison of the proposed models and performance analysis in the literature review
and our proposed model.

Ref.
No. Author Proposed

Model/Framework Dataset Algorithms or
Techniques Used

Performance
Analysis

Discussions
(Pros and Cons)

[2] Doshi et al.
(2018)

An agro consultant
architecture that
predicts
crop suitability.

The dataset used for
Agriculture and
climate conditions
in India.

MLC, DT, K-NN, RF,
and a neural
network.

NN with an
accuracy of 91%.

An intelligent system of
decision-making designed
for crop recommendations
based on location, soil
properties, temperature,
water, and season. The
analysis is in two phases
for soil characteristics
and rainfall.

[15]
Ranaweera
et al.
(2023)

A general framework
to analyze the
historical data using
machine learning tools
for predicting the crop
price.

The vegetable
dataset of Sri Lanka
between 2018 and
2021 is used.

LR, SMO, multilayer,
RF, and M5P are
used with the
evaluation metrics
MAE and RMS.

RF has an accuracy
of 85% in
predictions.

The machine learning
techniques are applied for
crop price prediction based
on rainfall, temperature,
fuel price, and crop
production rate.

[16]
Bondre, D. A.
et al.
(2019)

System architecture
for soil classification,
crop yield prediction,
and fertilizer
recommendation.

The dataset was
collected for wheat,
chili, onion, rice,
soybean, sunflower,
tobacco, etc., for
5 years from
different sources.

RF and SVM. SVM with
99.47% accuracy.

An architecture proposed
for soil classification, crop
prediction, and fertilizer
recommendation using
machine learning
algorithms and further
verified for best fit. The
SVM has the highest
accuracy for crop
yield prediction.

[17]
Thilakarathne,
N. N. et al.
(2022)

A design of the crop
recommendation
platform, which is
developed as a web
app deployed in the
cloud and predicts
using AI models.

The crop
recommendation
dataset was
collected for 2200
records with 8
features from
Kaggle such as
climate, fertilizer
need, rainfall, etc.

NN 0.1.1,
DT 1.1.64,
RF 1.1.0,
XG Boost 2.1.0, and
SVM 0.1.0
algorithms.

RF with
97.18% accuracy.

A cloud-based
ML-powered crop
recommendation platform
was proposed, which
assists the farmers in crop
recommendation. The
KNN 1.0.0, DT 1.1.64, RF
1.1.0, XG Boost 2.1.0, and
SVM 0.1.0 are applied for
analysis based on different
measuring parameters.

[18] Sonobe et al.
(2014)

Proposed an approach
to analyzing the
multi-temporal terra
dual-polar metric data
using machine
learning tools.

The dataset was
collected using the
TerraSAR-X radar
system using
horizontal and
vertical transmits.

RF and
Classification and
Regression Tree
(CART).

RF has an overall
accuracy is 91% to
93% in
image analysis.

Sixteen TerraSAR-X
images were captured and
analyzed for crop
classification.

[19]
Priyadharshini
et al.
(2021)

A system proposed for
crop recommendation
based on historical
data analysis.

The dataset was
collected from
Kaggle and govt.
websites for 16 types
of crops. The
different datasets
collected are yield
dataset, cost of
cultivation, model
price of the crop,
soil nutrients,
and rainfall.

Different machine
learning techniques
such as DT, KNN,
LR 0.0.1, NB 0.1.2,
NN, and SVM
were applied.

The model obtained
that the NN has the
highest accuracy of
89.88%.

A historical dataset from
Kaggle has been used to
analyze and identify crop
profit, recommendation,
and sustainability.

[22] Rajak et al.
(2017)

Model for
recommended crops
using the
voting classifier.

The soil dataset was
collected politest
labs from
Maharashtra and
crop data from
Marat Wada
University.

Methods such as
SVM, ANN 0.1.0,
and voting
classifiers
were applied.

Ensemble SVM,
ANN, and RF along
with majority voting
have better
performance, with
an average accuracy
of 97%.

An analysis using the
ensemble voting classifier
provides better crop
recommendations.

[62] Ishak, M.
et al.

Methodology for crop
yield prediction,
monitoring, and
market analysis.

The dataset was
collected in
64 districts of
Bangladesh during
2013–2019.

Random forest,
Support Vector
Machine, and Voting
Ensemble
Regressor applied.

Performance
measuring based on
the RMSE and R2,
and the voting
regression has the
highest R2 value
of 82.8%.

It applied crop
recommendations using
the following parameters:
district and crop price on
6 different crops.
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Table 1. Cont.

Ref.
No. Author Proposed

Model/Framework Dataset Algorithms or
Techniques Used

Performance
Analysis

Discussions
(Pros and Cons)

[63] Shams, M. Y.
et al.

Crop recommendation
systems with
explainable artificial
intelligence.

Historical Indian
dataset on crops,
soil type, weather,
area, and
production per
square kilometer.

XAI-CROP GB, DT,
RF, Gaussian Naïve
Bayes (GNB), and
Multimodal Naïve
Bayes (MNB).

Compared to others,
the performance of
XAI-CROP for the
RMSE is 0.9412, the
mean absolute error
(MAI) is 0.9874, and
the R-squared
is 0.94152.

In this research work, a
standard Indian dataset is
pre-processed and
implemented. Here, the
performance of XAI
techniques with other
machine learning models
is compared. However, the
size of the dataset and No.
of years are not mentioned.

[64] Shook, J. et al.

Developed stacked
LSTM (long-short
term memory) model
and temporal
attention model,
which output yearly
seed yield.

The dataset consists
of 103,365 records
over a period of
13 years
representing 5839
unique genotypes.

Applied the Support
Vector Regression
with Radial Basis
Function kernel
(SVR-RBF), least
absolute shrinkage,
and selection
operator (LASSO)
regression, stacked
LSTM, and temporal
attention techniques.

The temporal
attention model has
an RMSE of 7.226 to
7.257 bu/acre, the
MAE is 5.441
bu/acre, and the R2

score is 0.795 to
0.796. This model
performs better
compared to LASSO,
SVR-RBF, and
stacked LSTM in
predicting
agricultural yield.

Mainly, the research work
is based on deep learning
models to analyze the
genotype information and
weather variables to
improve the accuracy of
crop yield prediction.

[65] Wu, J. et al.

A model was
proposed that
integrates deep
reinforcement learning
and language models
using the gym
decision support
system for
agrotechnology
transfer.

The research was
conducted on
historical records or
simulated data in
Florida, USA, and
Zaragoza, Spain.

The techniques
implemented are the
Finite Markov
Decision Process
(MDP), language
model, Deep
Q-Network,
Bidirectional
Encoder
Representations
from Transformers
(BERTs), and
Gym-DSSAT for
agricultural
simulations.

The performance of
reinforcement
learning and
language models is
better than
traditional
techniques based on
different metrics
and reward
functions in
optimizing agricul-
tural activities.

The research is on
optimizing nitrogen
fertilization and irrigation
management processes
using a reinforcement
learning framework and
language model.

[66] Tabar, M.
et al.

A meta-algorithm,
namely, CLIMATES,
was proposed to
analyze time series
data. This model
combines machine
learning and deep
learning models.

A time series dataset
was collected from
small farmlands of
about 2264 villages
in Africa for 5 years.
The dataset is on
water availability,
water needs for
crops, and the
amount of carbon
uptake by plants.

It implemented
statistical methods,
Linear Regression,
RF, XGBoost, SVM,
LSTM, LSTM, the
State Frequency
Model (SFM), and
the Temporal
Convolutional
Network (TCN).

The CLIMATES
meta-algorithm has
a lower coefficient of
variation (CV) of
0.2075 compared to
other methods,
which shows its
better performance
in forecasting using
the Actual
Evapotranspiration
(AET) dataset.

CLIMATES is helpful for
forecasting crop
productivity based on
water stress, irrigation
schedules, and monitoring
of crop growth.

Research Contributions in our Paper

Our paper titled A
Decision Support
System for Crop
Recommendation
Using Machine
Learning
Classification
Algorithms

Seasonal and
area-wise crop data
analysis and
recommendation.

Three district
datasets were
collected from the
website and
improved by the
survey data
collected from
experienced local
farmers and
agriculture officers.

The SMOTE along
with classifiers such
as NN 0.1.1,
DT 1.1.64, RF 1.1.0,
XG Boost 2.1.0,
SVM 0.1.0, KNN
1.0.0, LR-0.0.1,
NB-0.1.2, ANN-0.1.0,
SVC 0.1, GB-0.1.4,
CatBoost 1.2.2,
and AdaBoost, HGB
, SGDC and MNB
using scikit-learn
1.0.1 module.

Data balancing is
performed using the
SMOTE,
and then 13
classifiers were
applied to analyze
their performance.
Here, the accuracy
rate is considered an
important metric,
and it is seen that
the SGDC has the
highest accuracy of
1.0 for prediction.

The analysis was
performed on a historical
dataset in 3 districts with
37 different crops.
However, the limitation of
our research is the use of
sensors and drone
technology.

2.2. Research Gap

It has been observed that lots of researchers have applied RF, SVC, KNN, NB, and
other methods for the prediction of recommended crops. It has been seen that many
times, random forest and ensemble methods were suggested by researchers. Still, the
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performance shall be improved by applying different classification approaches with a
continuous verification of performance evolution metrics. Also, some techniques that will
handle the overfitting problems should be implemented. Finally, quick and optimized
guidance will be provided to the new farmers who do not have much strategic knowledge
of the soil minerals of their locations.

2.3. Research Questions

Research Question (RQ1): How does applying the Synthetic Minority Oversampling Technique
(SMOTE) influence the performance of classifier techniques in crop recommendation, and what are
the observed changes before and after the SMOTE?
Research Question (RQ2): How do accuracy, recall, precision, F1-score, ROC AUC, sensitivity,
and specificity change for different classifiers before and after the application of the SMOTE?
Research Question (RQ3): How do the classification performance metrics vary among different
classifiers before and after the SMOTE regarding boxplots, AUC-ROC curves, and
statistical summaries?
Research Question (RQ4): Does the SMOTE along with classifiers contribute an improvement in
the prediction of area-wise suitable crops accurately?

2.4. Technical Roadmap

Figure 2 presents a systematic overall technical roadmap for our research work. Here,
initially, we have gone through many research papers for review and observed that most
of the models implement sensors, drones, Wi-Fi, GPS, satellite images, and automated
tools for crop recommendation, cultivation, monitoring, and effective production. We
thought of finding a novel way to support the naïve farmers in recommending a quick and
appropriate crop. For this, we explored extensively for suitable datasets. We found a dataset
that contains details on different regular crops along with their season-wise productions
from URL: https://data.world/thatzprem/agriculture-india (accessed on 5 January 2024).
Then, data reduction was applied to the collected dataset, and it was confined to only three
districts. We had a continuous visit to the local experienced farmers and interacted with
them to learn about their expertise in crops in the last 10 years, and we also visited officers
of agriculture offices for a period of 3 months. The collected crop information has been
combined into the existing dataset. This dataset is cleaned, pre-processed, and converted
into CSV format and stored in Firebase cloud memory. This CSV file has been trained using
13 classifiers based on production rate and season to identify suitable crops. Here, initially,
we have seen that the dataset is not balanced properly. So, we applied the SMOTE and
balanced the dataset. Then, we trained for 80% of the dataset using these classifiers and
tested for 20% of the data. Then, we analyzed their performance based on the accuracy
rate, and it was observed that the SGDC technique had the highest accuracy compared to
the others.

Further, we have developed an Android application using Android Studio and SDK
tools, which allows the farmer to input field location and season, which will be fed as an
input to the model, and it identifies the suitable crop for the field.

https://data.world/thatzprem/agriculture-india
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3. Materials and Methods

A study has been conducted to understand the best way to find predictions on our
dataset. The classifiers, such as LR, DT, KNN, SVC, RF, GB, XGBoost, Ada Boost, Histogram
Gradient Boosting (HGB), SGDC, Multinomial Naive Bayes (MNV), etc., were applied to
the dataset to identify the most suitable method and approach so that there will be an
improvement in the predictions.
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3.1. Logistic Regression

Logistic regression was applied using the crop suggestion as a dependent variable
and other variables such as area, production rate, and soil temperature as independent
variables. Here, the regression based on multinomial or ordinal shall be applied along with
the different kernel functions for data analysis. The slope of the rate of crop production
using logistic regression is presented in Equation (1).

f (x) =
L

1 + e−k(x−x0)
x (1)

where L is the maximum value in a curve, x is the real number, x0 is the middle point value
in the sigmoid, and k is the growth rate of the curve.

3.2. Decision Tree

The decision tree is applied to the dataset based on the crop quantity produced. Here,
the crop quantity shall be the feature to compare for high-rated production, and the outcome
shall be the suggested crop that is expected to have better production. A decision tree will
present the flow of decisions to reach the final node.

The DT is a popular classification method that is used to train the model using simple
decision rules. It always starts with the root node, and by comparing the root with the
record’s attribute, the branching begins. The decisions can be based on a categorical or
continuous target variable. In this tree, each node is treated as a test case for some attribute.
Then, the CART method shall be applied here for analysis. The value of the attribute shall
be obtained by finding entropy, information gain, gain ratios, Gini index, reduction of
variance, and chi-square. The standard equations to measure the above metrics are entropy
shown in Equation (2), information gain in Equation (3), and Gini index in Equation (4).

E(S) =
c

∑
i=1

−Pilog2Pi (2)

where E(S) is entropy, Pi is the probability of a random variable S, and c is the categories
that S can take in Equation (2).

Information gain (G) is measured based on the following:

G(T, X) = E(T)− E(T, X) (3)

where X is the attribute, T is the dataset, E(T) is the entropy of the dataset, and E(T, X) is
the entropy of T after a split based on X, as shown in Equation (3).

The cost function Gini index shall be used to calculate the splits in the dataset. It shall
be used with the CART to identify the spit points in the dataset. In Equation (4), the Gini
index Gi, c is the count of classes in the crop dataset, and Pi is the probability of a particular
crop at class i.

Gi = 1 −
c

∑
i=1

(Pi)
2 (4)

3.3. K-Nearest Neighbors

It is a simple supervised algorithm in which, based on the neighboring data points,
crop classification can be performed. Here, the soil features, weather conditions, and
production rate shall be the feature points for KNN to classify crops and identify nearest
neighbors based on the suitable K value chosen. While training the dataset, a new data
point is chosen, and the Euclidean distance is calculated from it to the nearest data points.
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The Euclidean distance formula D is shown in Equation (5), where the coordinate values of
the 1st point are x1, y1 and x2, y2 for the 2nd point.

Distance D =

√[(
x2 − x1)

2 +
(

y2 − y1)
2
]

(5)

So, by finding the distance matrix and applying voting majority, it is decided that the
new data point belongs to the class. The number of neighboring points is determined by
the K value. The main benefit of KNN is that new data points can be added, as it will not
learn from the training dataset. Here, choosing a K value is a crucial task.

3.4. Support Vector Classifier

The Support Vector Classifier (SVC) is used for both regression and classification. Here,
we have used regression to find suitable crop detection. We identify the production rate as
a parameter for it and expect the crops to be suitable for output. The independent variables
are the production rate and area name, whereas the dependent variable crop is taken into
consideration. The SVC shall evaluate the non-linear decision boundaries and classify them
using its kernel functions. Here, we can apply four kernel functions, Gaussian, Gaussian
Kernel Radial Basis Function, Polynomial Kernel, and Sigmoid Kernel, to identify the most
suitable function for improving the performance of the SVC. The classification of crops
based on variations in crop production in different areas is to be obtained here.

In the SVC, the hyperplane is used to identify the closest points to the margin. Here,
the margin shall be the maximum for classification.

Based on the input features, the hyperplane can be a line or a 2D plane. The standard
equations for classification using the SVC are presented in Equations (6)–(8).

Equation (6) shows the decision function; w is the direction of the plane, b is the
threshold value, and x is the feature vector.

w ∗ x − b shall be within range {−1, 0, 1} (6)

In Equations (7) and (8), w ∗ x − b shows the distance of the hyperplane along with
vector w.

For positive class (1), it will be

w ∗ x − b ≥ +1 (7)

For negative class (−1), it will be

w ∗ x − b ≤ −1 (8)

In a multi-class SVM with three classes, we create hyperplanes to separate each pair of
classes. To classify a new sample, we use a one-vs-rest approach, where a hyperplane is
constructed for each class against all other classes combined.

f (x) = 0

f (x) = w · x + b

f (x) > 0

f (x) < 0

In Equation (9), a hyperplane for separating the data points of three classes the decision
function w · xi + b calculates the distance between xi and the hyperplane.

yi (w·xi + b) (9)
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3.5. Random Forest

A combination of multiple decision trees is used to predict more stably. RF is a very
adaptable approach to implement in our study. As it handles complex datasets and over
fits, it will have better performance in predictions. The crop datasets can have subsets to
apply a decision tree, and then based on averaging in a random forest, we can classify the
crops. Here, we can obtain better results without tuning its hyper parameters. By lowering
the Gini index, we can predict the more appropriate crop for the area.

In Equation (10), the final prediction P(a) is shown, and Ti is the prediction for each
input a.

P(a) = mode {T1(a), T2(a), T3(a), . . . , Tn(a)} (10)

where the n decision trees available are T1, T2, T3, . . ., Tn, and the input supplied to each
tree is a. Here, the mode shows the majority voting applied among the predictions.

3.6. Gradient Boosting

Gradient Boosting is an ensemble method that sequentially trains the models. Here,
each model tries to rectify the previous model. Each time, the new model gets trained
based on the loss observed by applying the log-likelihood function in the previous old
model. The location-based crop dataset shall be used in recommending, with the help of
the gradient boosting technique.

In this approach, at first, a base model was used for prediction based on a crop dataset.
Equation (11) shows the current model fi(x) for sample i evaluated at x, Yi is the predicted
value, γ is the adjustment for prediction value by the min loss function, and L(Yi, γ) is the
loss function.

fi(x) = minloss γ
n

∑
i=1

L(Yi, γ) (11)

Equation (12) shows the loss function L, the number of samples n, the predicted
probability for crops pi, and the true binary label yi.

L = −
n

∑
i=1

yi·log(pi) + (1 − pi) log(1 − pi) (12)

Equation (13) shows that each model fm+1(x) is constructed by adding a weak learner
tree hm(x) to the ensemble fm(x). There are m samples, and we need to fit the hm(x) at each
iteration of m. So, the new weak learner is predicted for our model.

fm+1(x) = fm(x) + γ·hm(x) (13)

Finally, Equation (14) shows the prediction probability p, a sigmoid function to the
sum of all the individual models and linear score f (x).

probability p = sigmoid( f (x)) =
1(

1 + e− f (x)
) (14)

3.7. Bagged Tree

Bagging is the aggregation of bootstrapping. During the presence of noise in the
crop dataset, bagging shall be used for classification by reducing the overfitting problem.
Bagging builds different models using a sample subset of the crop dataset.

In bagging, there are divisions of the crop dataset, and then the bagging concept is
applied to it. Then, by aggregating the predictions of the different models, it reduces
the variance. So, instead of depending on the output of one model, it executes multiple
models to find better accuracy in prediction. Here, bootstrapping is performed by training
the model using a random collection of records from the dataset. The outputs from
bootstrapping are taken for aggregation to reduce the variance. The aggregation is carried
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out using the standard deviation, mean, or median. The bagging is represented in the
Equation (15) as follows:

f(x) = sign(∑ T
i=1 fi(x)) (15)

where

T is a sample subset element from training dataset D;
D1, D2, . . . DT is the copy of the training sets;
f 1(x), f 2(x),. . . ft(x) are the functions that return a sequence of outputs.

3.8. Ada Boost Classifier

Adaptive Boosting is an ensemble method that can be used for classification and
regression. Here, we shall apply this method for crop data analysis and its classification. It
trains all the weak learners iteratively, uplifts the previous weak learners who are not well
trained, and then combines all of them to prepare a strong classifier.

Initially, consider wi is the weight of training instances and ht is a weak learner in the
first iteration.

During each iteration t, consider dt = (xi, yi, wi
t) and train the learner ht using weighted

dataset dt. Now, find the error et of ht on the weighted dataset, the weight of weak learner
dt, and update the weights of the instances.

By combining these weak learners, we can obtain Equation (16) as follows:

h(x) = sign(
t

∑
1

∝ t·ht(x)) (16)

When some samples are misclassified, the value of alpha shall be positive.

3.9. Extreme Gradient Boosting Classifier

In crop recommendation, the extreme gradient boosting classifier predicts suggested
crops based on decision trees, repeatedly. Features like soil, climate, season, and economic
factors shall be used as inputs. Here, the trees are generated in parallel. They handle
the complex relationships in the data and regularize them to stop the overfitting prob-
lem. Extreme gradient boosting (XGBoost) has higher performance in classification than
gradient boosting.

Consider Yi as the output predicted for the ith observation, Q is the count of trees
observed in the model, Fq shows the qth tree in the ensemble approach, and Xi is the feature
for the ith observation.

Then, the Equation (17) for XGBoost can be represented as follows:

Yi =
Q

∑
q=1

Fq(Xi) (17)

Here, Fq is a tree that gives out results for each observation. Then, the final prediction
shall be found by the summation of all the predictions.

3.10. Cat Boost

Categorical boosting is mainly used for classification, regression, and ranking. It is
mainly implemented on categorical numerical data. Here, we shall implement it for the
ordering of categories by splitting the crop data. It has regularization techniques to block
overfitting. Cat Boost reduces memory usage and at the same time improves the speed
of training.

In the crop dataset, consider n samples and m features (xi, yi). Equation (18) shows
that the prediction function F(x) takes the input variables x and predict the target variable y.
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Here, F0(x) is the baseline prediction, M is the count of trees in the ensemble, N is the total
training samples, and Fm(xi) is a prediction of the mth tree for the ith sample.

F(x) = F0(x) +
M

∑
m=1

N

∑
i=1

fm (xi)
(18)

3.11. Histogram Gradient Boosting

The Histogram Gradient Boosting (HGB) approach works faster in predicting the
crops as it uses the histograms for splitting the crop data. In HGB, the feature points
are categorized and stored into buckets. Then, these buckets are used for constructing
histograms. During the construction of decision trees, histograms are used to identify the
split points. For each split point, they create a tree node and then find the leaf values for
each leaf node to reduce the loss function. This approach allows us to train the model faster
with less memory usage.

When there is a large dataset with more dimensional values, this method is useful.
Equation (19) shows F(x) the overall prediction for input x, M number of models,

m = 1 to M represents the boosting iterations, v is the learning rate, and T(x) is a prediction
of the new tree, and finally, the summation of all the trees is represented.

F(x) = ∑ M
m=1v·T(x) (19)

3.12. Stochastic Gradient Descent Classifier

When the crop dataset is larger, we will apply the Stochastic Gradient Descent al-
gorithm. It processes each piece of training data independently. It chooses an instance
randomly and calculates the gradient, and it is faster as a result. For each training example
(xi, yi), the output and the loss function are shown in Equations (20) and (21), respectively.

ŷi = f (xi, θ) (20)

Loss function is ∇θ L(yi, ŷi)
Then θ = θ − α·∇θ L(yi, ŷi)

(21)

3.13. Multinomial Naive Bayes

Multinomial Naive Bayes (MNB) is a variant of Naive Bayes and is useful for classify-
ing the discrete features of crop data. Here, the text data are pre-processed and converted
into a vector format. In MNB, at the beginning, the soil and season feature vectors are
identified, such as the frequency of a particular word in a document. Then, it computes the
probability of a feature in each class and then finds the highest probability that a document
belongs to that class.

Let us consider the features w1, w2, w3, . . . wn.
D is the document and C is the class; then, Equation (22) shows that P(C|D) the

posterior probability of C for data D, P(C) is the prior probability, and P(wi|C) is the
product of likelihoods.

P(C|D) ∝ P(C)
n

∏
i=1

P(wi|C) (22)

3.14. Synthetic Minority Oversampling Technique

The Synthetic Minority Oversampling Technique (SMOTE) is used to handle the
class imbalance problem while dealing with crop datasets. It identifies a minor class and
then finds the nearest neighbors to generate synthetic samples to balance the minor class.
With this approach, the problem of overfitting is avoided, which improves the overall
performance of crop recommendations.
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When we train a model having a dataset with a minor class, its performance will
become poor. If we randomize the observations here, it leads to overfitting. But, we can
apply the SMOTE as follows:

Choose a sample X and identify its nearest neighbor N. Find the difference between the
sample and nearest neighbor, i.e., D = (X − N).
Consider a random number from 0 to 1. For example, the number is Rn and it is multiplied
by the difference D. So, it is (Rn ∗ D).

Add these results to the sample X to generate a new synthetic feature Y shown in
Equation (23) as follows:

Y = X + (Rn ∗ D) (23)

3.15. Explainable AI

Explainable artificial intelligence (XAI) is used in the role of validating the crop
classification algorithms. It allows us to identify the important features in crop data,
which influence decisions. It authenticates the performance of predictions by reducing the
influence of noisy features. So, the model prediction shall be fair and unbiased in different
demographic groups.

Overall, XAI validates the classification methods by providing insights into decision-
making, identifying features, and promoting transparency and error analysis.

3.16. Evaluation Metrics Applied to the Different Algorithms

We shall apply the performance evaluation metrics, i.e., sensitivity, specificity, pre-
cision, F-measure, AUC, training time, and testing time, on different machine learning
algorithms used for crop classification. They help to analyze the performance of each
method and improve the performance of our model by tuning.

We can derive the confusion matrix from the multi-class model. The predictions in the
confusion matrix are P (positive), N (negative), T (true), F (false), TP (true positive), TN
(true negative), FP (false positive), and FN (false negative). Then, the common measures
we can observe from the matrix are as follows:

Accuracy: The accuracy rate is the ratio of correct predictions and total predictions,
and it is used for identifying the performance of a model.

The Accuracy rate = (TP + TN)/(TP + TN + FP + FN)

Precision: The measuring of the ability of a model by finding the ratio between true
positive instances and all positive instances.

The precision = TP/(TP + FP)

Recall: It evaluates the performance of classification models, particularly when the fast
negative is costly. This means that the recall should minimize the number of false negatives.

The recall is = TP/(TP + FN)

F-measure/F1-score or F-score: We have considered the F-measure as a parameter here,
as it is more useful than accuracy. Even though there are uneven classes of distribution, we
can use the F-measure to measure performance.

F-Measure = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

AUC: We apply the AUC-ROC (Area Under the Receiver Operating Characteristic
Curve) to visualize the performance of the classification models. We have obtained the
AUC range to see the percentage of right predictions and wrong predictions in terms of
a curve.
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Sensitivity, true positive rate, or recall: We have identified the fraction of correct
prediction using the recall measure or sensitivity.

Sensitivity = TP/(TP + FN)

Specificity (or True Negative Rate): This measures the fraction of negative samples
correctly identified by the model. It is defined as: specificity = TN/(TN + FP).

Where TN is the number of true negative and FP is the false positives.

3.17. Proposed Model for Seasonal Crop Recommendation

When a farmer seeks the recommended crops for a specific location based on a set of
conditions, such as season, water availability, and other environmental factors, the model
will predict the most suitable crop varieties that are most likely to perform well in those
conditions. In this regard, a group of classification techniques will be applied to predict
suitable crops for the specific field area.

We have proposed a procedure shown in Figure 3, which mainly focuses on area-wise
crop data collected from standard agriculture websites in India. It is considered to have
a smartphone application and a cloud memory dataset for the implementation of the
support system.
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The model consists of two phases. Phase 1 consists of maintaining the dataset in the
cloud and using an Android app interface to collect the GPS location from a farmer’s land.
Then comes Phase 2, consisting of applying the machine learning methods, identifying the
best method, and resulting in crop recommendations.

3.17.1. Phase I
Dataset Description

A detailed historical dataset has been collected from URL: https://data.world/thatz
prem/agriculture-india (accessed on 26 January 2024) with 246,091 sample records with 37
different crops such as Arhar, Bajra, Castor seed, Coriander, Cotton, Dry chilies, Dry gunger,
Garlic, Gram, Groundnut, Horse-gram, Jowar, Jute, Linseed, Maize, Mesta, Moong, Niger
seed, Onion, Other Rabi Pulsesm Other Kharif pulses, Paddy, Potato, Ragi, Rapeseeds and
Mustard, Rice, Safflower, Sannhamp, Sesamum, Small millets, Sugarcane, Sunflower, Sweet
potato, Tobacco, Turmeric, Urad, and Wheat. Also, the metadata of the dataset contains
state, district, crop year, season, crop name, area, and production per hectare.

The dataset is pre-processed to remove fields. Other Rabi pulses and Other Kharif
pulses and removed records have empty locations. Then, the dataset was reduced to three
districts, Koraput, Gajapati, and Rayagada, in Odisha State, which resulted in 1480 records.
Figure 4 shows four different Agriculture Offices in three districts, Koraput, Gajapati, and
Rayagada, in Odisha, where we have consulted the agriculture officers for their suggestions.
We have also consulted experienced farmers from different areas of these districts and
collected data on the crops and their productivity. We have combined both datasets and
prepared a customized final dataset for analysis.
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Data Cleaning and Pre-Processing

The collected data from different sources have been cleaned by removing the irrele-
vant fields and correcting erroneous data inputs and empty fields. Then, the data have
been processed to change their formats to be suitable for analysis. Mostly, the data have
been converted into Comma-Separated Values (CSV) format. Feature selection has been
performed to select the best set of features and apply predictions. Then, finally, the dataset
is obtained for analysis.

https://data.world/thatzprem/agriculture-india
https://data.world/thatzprem/agriculture-india
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Training and Testing

The cleaned and useful data are further divided into training and testing phases. A
total of 80% of the data is used for training in a standard way and 20% is used for testing
the model.

Cloud Storage

We have stored the final dataset in a low-cost cloud memory, i.e., Firebase service. We
can also use any other cloud memory such as Google Cloud, Cloud Ways, Amazon Web
Services, Digital Oceans, etc. Then, 80% of the dataset is used for training the model and
20% is used for testing purposes. Figure 5 below presents the cloud Firebase services used
for maintaining the crops dataset in the cloud, which shall be used to interact with the
Android mobile application for predictions.
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Android Application

Nowadays, a smartphone device is available for common farmers. So, an Android
application, “Area-wise Seasonal Crop Recommendation”, is developed using Android
Studio, Emulator, SDK, and Tools. Figure 6 shows a screenshot of the application that
contains the crop’s details and their relevant information. The application is tested for
analyzing the crop dataset, which is in CSV file format using SMOTEs shown in the
proposed model. A farmer can use our application interface using his Android smartphone,
and it can present the suitable crop as per his field data, season, and water availability. He
shall choose the specific location area available in the app and the present date to know
the present season. Then, he shall go for the prediction option. This leads to executing
different classification algorithms along with the SMOTE technology on these datasets. Also,
different kernel functions are applied to fine-tune and improve the model’s performance.

Based on the rate of performance, a suitable classifier technique is chosen, which shall
suggest the crops based on season for a specific area. Finally, the suggested crops shall be
visualized in the farmer’s mobile phone as per the area and season given.

3.17.2. Phase II

We shall apply different machine learning classifiers, analyze their performance based
on different parameters, and identify the best technique.

Implementing the SMOTE

Here, we have applied 13 different methods such as logistic regression, decision tree,
K-Neighbors, SVC, random forest, Gradient Boosting, bagging tree, XGB Classifier, Ada
Boost Classifier, Cat Boost, HGB, SGDC, and MNB.
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Here, we observed that the data imbalance may sometimes provide inaccurate results.
So, we applied the Synthetic Minority Oversampling Technique (SMOTE) to balance
the dataset.
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Performance Analysis

We applied these methods before the SMOTE and after the SMOTE and compared
their performance extensively using 7 different measuring parameters such as accuracy,
precision, recall, F1-score, ROC, sensitivity, and specificity. The outcome of the comparison
leads to identifying the best technique that shall be used for predictions. This approach
shall guide the new farmers in making better decisions in crop selection.

4. Results and Discussion

The implementation is verified using 13 different machine learning algorithms such
as logistic regression, K-Neighbors, decision tree, random forest, SVC, Gradient Boosting,
bagging tree, XGB Classifier, Ada Boost Classifier, Cat Boost, HGB, SGDC, and MNB. The
analysis of all these methods based on their performance has been observed using the
confusion matrix, ROC curve, and precision–recall curve.

Generally, there is always the problem of data imbalance that may be present. It leads
to many problems such as bias towards the majority classes, overfitting during smaller
datasets, and the reduction in samples for major classes.

Below, Table 2 shows the implementation of different machine learning algorithms for
the analysis of data without the SMOTE using the confusion matrix, ROC, and precision–
recall curves.

The Synthetic Minority Oversampling Technique (SMOTE) is a popular method used
in dealing with imbalanced datasets in machine learning, particularly in classification tasks.
The SMOTE oversamples the minor classes by creating synthetic examples rather than
duplicating samples. The SMOTE performs operations such as identifying a minor class,
selecting the neighbors of the minor class, creating synthetic samples based on neighboring
points, and adding these samples to balance the minor class.
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Table 2. A comparison of results of machine learning algorithms before the SMOTE.

1. Logistic Regression

Confusion Matrix ROC Curve Precision–Recall Curve
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It has been observed that the confusion matrix provides true positives and true neg-
atives with a good number of values in predictions. But, the false positive value is 48 in 
logistic regression, as shown in Table 2. 

It is understood that after applying the SMOTE to balance the dataset, prediction is 
possible and the results shall be determined. 

We have seen that the values of the confusion matrix after the SMOTE are improved. 
Here, the false negatives for logistic regression, SVC, and SGDC are 64, 78 and 47, respec-
tively, as shown in Table 3. 

Performance Analysis and Summary 
Solution to Research Question RQ1: 

To handle this research question, we experimented on the crop dataset. As the dataset 
is imbalanced, we used a technique like the SMOTE. Further, we have used several ma-
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It has been observed that the confusion matrix provides true positives and true neg-
atives with a good number of values in predictions. But, the false positive value is 48 in
logistic regression, as shown in Table 2.

It is understood that after applying the SMOTE to balance the dataset, prediction is
possible and the results shall be determined.

We have seen that the values of the confusion matrix after the SMOTE are improved.
Here, the false negatives for logistic regression, SVC, and SGDC are 64, 78 and 47, respec-
tively, as shown in Table 3.

Performance Analysis and Summary

Solution to Research Question RQ1:

To handle this research question, we experimented on the crop dataset. As the dataset
is imbalanced, we used a technique like the SMOTE. Further, we have used several ma-
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chine learning classifiers along with the SMOTE before and after the SMOTE to see the
recommendation.

Table 4 shows the performance measuring values of different classifiers before the
SMOTE. There are several performance parameters used, like accuracy, precision, recall,
F1-score, ROC AUC, sensitivity, and specificity.

Table 4. Summary report before the SMOTE.

Classifier Name Accuracy Precision Recall F1-Score ROC AUC Sensitivity Specificity

Logistic Regression 0.76 0.84 0.42 0.56 0.68 1.0 1.0

Decision Tree 0.95 0.94 0.93 0.93 0.95 0.96 0.96

K-Neighbors 0.95 0.94 0.91 0.93 0.95 0.92 0.96

SVC 1.0 1.0 1.0 1.0 1.0 0.95 1.0

Random Forest 0.94 0.93 0.90 0.91 0.96 0.90 0.96

Gradient Boosting 0.95 0.95 0.91 0.93 0.94 0.97 0.90

Bagged Tree 0.96 0.96 0.93 0.94 0.95 0.91 0.97

XGB Classifier 0.97 0.96 0.95 0.96 0.96 0.98 0.95

Ada Boost Classifier 0.92 0.93 0.83 0.98 0.98 0.83 0.97

Cat Boost 0.98 0.98 0.95 0.96 0.99 0.95 0.99

HGB 0.96 0.95 0.95 0.84 0.95 0.97 0.94

SGDC 0.95 0.95 0.90 0.96 0.94 0.90 0.90

MNB 0.97 1.0 0.92 0.96 0.96 0.91 1.0

In Figure 7, the logistic regression obtained 76% accuracy but at the same time obtained
a low precision–recall of 42%. That indicates that logistic regression suffers from accurate
prediction for certain crops, whereas the other classifiers like SVC, RF, and GB prove the
balanced classifier performances throughout the performance metrics.
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In Figure 8, the heat map representation for crop recommendation after applying the
SMOTE exhibits the performance metrics result.
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A comparison of all of the classifiers by considering the accuracy rate as a prime
parameter before and after the SMOTE is shown in Table 6.

Table 6. Comparison based on the accuracy rate.

Classifier Name Accuracy before the SMOTE Accuracy after the SMOTE

Logistic Regression 0.76 0.76

Decision Tree 0.95 0.95

K-Neighbors 0.95 0.94

SVC 1.00 0.74

Random Forest 0.94 0.95

Gradient Boosting 0.95 0.94

Bagged Tree 0.96 0.96

XGB Classifier 0.97 0.97

Ada Boost Classifier 0.92 0.90

Cat Boost 0.98 0.96

HGB 0.96 0.96

SGDC 0.95 1.00

MNB 0.97 0.96

In the above-mentioned Tables 4 and 5, we observed some of the key points, and they
are shown below. The performance parameter recall is improved after applying the SMOTE,
which signifies that the performance metrics performed well in identifying minority class
instances. It has been observed that some of the classifier performance metrics, especially
the F1-score, and specificity decrease leading to potential misclassifications. However most
of the cases accuracy of the performance parameter remains stable. The (SVCs) performance
about the accuracy shows only slight changes. Similarly, the performance metrics and ROC
AUC values show minor fluctuations. This indicates that the classifiers can distinguish
between the remaining classes, which exhibit consistent characteristics. Here are minimal
fluctuations observed in performance before and after applying SMOTE. Our objective was
to handle the imbalanced dataset using the SMOTE, which improves the recall for most of
the classifiers. It was also observed that some of the classifier’s performance had a high
precision and recall but after the SMOTE, it became stable. The reason behind this is that
after the SMOTE, the performance increased, i.e., its ability to detect the minority class
instances that reduce the bias towards the majority class, which enhances the balanced
performance in terms of measurement. The model performances are enhanced so that the
minority classes are recognized, which is an important factor for crop recommendations.
Those classifier performance metrics (precision and recall in most cases) are high before
applying the SMOTE because of the data imbalance nature. After using the SMOTE, we
found overall performance improvement, which signifies that those classifiers are better
suggested for crop recommendation in different conditions.

In the polar graph shown in Figure 9, it has been observed that the classifier LR and
accuracy remain the same before and after some techniques, i.e., 76%. The obtained result
does not impact performance. Similarly, the same effect on the DT and the obtained result is
95%. In KNN, the performance decreased after implementing the SMOTE, demonstrating
that the SMOTE technology produces a negative impact on the K-NN classifier. In the same
way as the SVC, the performance slightly decreased from 1.00 to 0.74.RF. In the SGDC, these
classifiers increased after the SMOTEs. However, some of the classifiers have performances
that decreased after the SMOTE, like Ada Boost, Cat Boost, and MNV. It has been also
observed that some of the classifier’s performance remains the same before the SMOTE
and after the SMOTE, and these are Bagged Tree, HGB, etc. The provided radar graph
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demonstrates that the classifier RF and SGDC provide a positive impact and no impact
(logistic regression, decision tree, Bagged Tree, XGB Classifier, HGB), as well as a negative
impact (K-Neighbors, SVC, Gradient Boosting, Ada Boost Classifier, Cat Boost, MNV),
on the classifiers. The classifier SGDC improved performance, and the SVC provided a
negative impact.
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Figure 10 demonstrates the ROC curve applied before the SMOTE and after the
SMOTE. Before the SMOTE a value of 0.92 was obtained, and after, a value of 0.96 was
obtained, which indicates that the model perfectly identifies the two classes after applying
the SMOTE. The model obtained a higher ROC AUC, which means that the model perfectly
differentiates between the two classes. Increasing the ROC AUC achieves the ability to
classify instances of the minority class.
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The performance measuring metrics of different machine learning algorithms are
compared. Figure 11 shows a bar chart and box plot that compare the algorithms based on
the accuracy rate and here, the SVC has more accuracy before the SMOTE.

Agriculture 2024, 13, x FOR PEER REVIEW 36 of 42 
 

 

 
 

Figure 11. Bar chart and box plot for analyzing the classifiers using the accuracy rate. 

Solution to Research Question RQ3: 
The scores of different algorithms are generated and compared here. Figure 12 shows 

a box plot that compares the changes observed in the performance of algorithms. It is seen 
that the SGDC has good score compared to others after the SMOTE. 

  

Figure 12. Comparison using a box plot before and after the SMOTE. 

The research question can be solved using the SMOTE to enhance the performance 
of crop recommendation classifiers. Our objective was to determine whether the over-
sampling technique contributes to enhanced model discrimination and overall classifica-
tion performance in imbalanced datasets related to crop recommendation. Figure 13 
shows the ROC AUC curve for comparison. It seems that it continuously improved model 
discrimination and overall classification performance in the context of imbalanced da-
tasets related to crop recommendation. 

Figure 11. Bar chart and box plot for analyzing the classifiers using the accuracy rate.

Solution to Research Question RQ3:

The scores of different algorithms are generated and compared here. Figure 12 shows
a box plot that compares the changes observed in the performance of algorithms. It is seen
that the SGDC has good score compared to others after the SMOTE.
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The research question can be solved using the SMOTE to enhance the performance of
crop recommendation classifiers. Our objective was to determine whether the oversam-
pling technique contributes to enhanced model discrimination and overall classification
performance in imbalanced datasets related to crop recommendation. Figure 13 shows the
ROC AUC curve for comparison. It seems that it continuously improved model discrimina-
tion and overall classification performance in the context of imbalanced datasets related to
crop recommendation.
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Solution for Research Question RQ4:

Figure 14 shows a graph on precision vs. recall, which is a representation of different
thresholds of a classifier. When the first curve reaches the upper-right corner, it indicates
that it produces better performance. Figure 15 shows a curve that indicates the performance
of the classifier after applying the SMOTE. The curve shifted towards the higher precision
and recall values, which is why it improved the performance on the balanced dataset after
the SMOTE.
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5. Conclusions and Future Work

An extended literature survey that includes many different techniques and method-
ologies was applied in crop recommendations and used for improving profitability in
cropping. In the survey, it is observed that many researchers applied research on using
wireless sensors, RFID-based sensors, sensors for monitoring water usage, and the use of
satellite images for analysis. Also, they analyzed soil minerals and weather parameters
and the suitability of different crops in fields using machine and deep learning tools on
different datasets. The objective of the proper use of agriculture fields without wastage of
water and minerals is seen.

We have analyzed the collected crop production dataset at URL: (https://data.wor
ld/thatzprem/agriculture-india (accessed on 5 January 2024). We applied 13 different
classifiers to it to find the most suitable technique that can recommend crops with a higher
accuracy. We applied data reduction and confined our dataset in three districts of Odisha
state, India. Also, by collecting suggestions from local agriculture officers and experienced
farmers, the data were improvised.

We proposed a model to identify a suitable classifier based on performance analysis,
and we can predict the crops without any anomalies. Initially, we applied 13 different
classifiers without the SMOTE, and we saw that the accuracy of the SVC is 1.0, the XGB
Classifier is 0.97, and the SGDC is 0.95. But, for appropriate prediction, dataset balancing is
very important. So, after cleaning and pre-processing in a standard way, we applied the
classifiers after the SMOTE to the data. It has been observed that the accuracy of the SVC is
reduced to 0.74 and XGBoost to 0.97, and the SGDC is improved to 1.0.

So, we conclude that the prediction after balancing the dataset shall be more accurate.
In the future, we shall extend our work by implementing XAI techniques to optimize and
enhance performance. Also, we shall implement a large dataset that shall cover a vast area.
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Abbreviations

Word Abbreviations
SMOTE Synthetic Minority Over-sampling Technique
SGDC Stochastic Gradient Descent
SVC Support Vector Classifier
GB Gradient Boost
NPK Nitrogen Phosphorus, Potassium
MAC Medium Access Control
RFID Radio Frequency Identification
UHF Ultra high frequency
PLS Physical Layer Signalling
PS Packet Switching
CLS Connectionless Mode Service
KNN K-Nearest Neighbor
RF Random Forest
SVC Support Vector Classifier
DT Decision Tree
XGBoost Extreme Gradient Boosting
pH Potential of Hydrogen
CART classification and regression tree
NB Naïve Bayes
ANN Artificial Neural Network
RFR Random Forest Regression
GPM Generalized Poisson Models
CNN Convolution Neural Network
ITE&C Information Technology, Electronics and Communications Department
MAE Mean Absolute Error
MSE Mean Squared Error
R2 score R-squared score
AI Artificial Intelligence
REP Tree Repeated Incremental Pruning Tree
RMSE Root mean squared error
CV coefficients of variation
IMD, Pune India Meteorological Department, Pune
DT, NN Decision Tree, Neural Network
MLR Multiple Linear Regression
PCA and LDA principal component analysis, linear discriminant analysis
GBM Gradient Boosting Machine
MARS Monitoring Agricultural ResourceS
LSTM long short-term memory
GBDT model Gradient-Boosted Decision Trees
XAI Explainable Artificial Intelligence
VTC Voting Classifier
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
MNB Multinomial Naive Bayes
HGB Histogram Gradient Boosting
AUC ROC Area under the Receiver Operating Characteristic Curve
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RFR Random Forest Regression
IoT Internet of Things
GPS Global Positioning System
LightGBM Light Gradient Boosting Machine
CSV Comma-Separated Values
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