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Abstract: Maintaining agricultural machinery is crucial for efficient mechanized farming. Specifically,
diagnosing faults in rolling bearings, which are essential rotating components, is of significant importance.
Domain-adaptive technology often addresses the challenge of limited labeled data from a single source
domain. However, information transfer can sometimes fall short in providing adequate relevant details
for supporting target diagnosis tasks, leading to poor recognition performance. This paper introduces
a novel fault diagnosis model based on a multi-source locally adaptive graph convolution network to
diagnose rolling bearing faults in agricultural machinery. The model initially employs an overlapping
sampling method to enhance sample data. Recognizing that two-dimensional time–frequency signals
possess richer spatial characteristics in neural networks, wavelet transform is used to convert time
series samples into time–frequency graph samples before feeding them into the feature network. This
approach constructs a sample data pair from both source and target domains. Furthermore, a feature
extraction network is developed by integrating the strengths of deep residual networks and graph
convolutional networks, enabling the model to better learn invariant features across domains. The
locally adaptive method aids the model in more effectively aligning features from the source and target
domains. The model incorporates a Softmax layer as the bearing state classifier, which is set up after the
graph convolutional network layer, and outputs bearing state recognition results upon reaching a set
number of iterations. The proposed method’s effectiveness was validated using a bearing dataset from
Jiangnan University. For three different groups of bearing fault diagnosis tasks under varying working
conditions, the proposed method achieved recognition accuracies above 99%, with an improvement of
0.30%-4.33% compared to single-source domain diagnosis models. Comparative results indicate that the
proposed method can effectively identify bearing states even without target domain labels, showcasing
its practical engineering application value.

Keywords: agricultural machinery; rolling bearings; subdomain adaptive; transfer learning; graph
convolutional network; fault diagnosis

1. Introduction

China, as a large agricultural country, feeds nearly 20% of the global population with
9% of the world’s arable land; thus, with the country’s high-speed development of industrial
growth, agricultural mechanization is increasing on a global level [1]. However, in the
face of variable load conditions and a complex working environment, the occurrence of
agricultural machinery failure is inevitable. Rolling bearings are widely used in agricultural
production as the core components of rotating agricultural machinery, serving the purposes
of supporting the rotating body of the machinery and reducing the friction between various
components [2]. According to research, bearings can lose effectiveness due to their real-
world operation in the environment, their rotational speed, and other factors that cause
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wear, fracture, fatigue, and other degrees of failure [3], affecting the operation of agricultural
machinery and equipment safety; therefore, rolling bearings require extensive equipment
testing and fault diagnosis to ensure their reliability and safety.

Bearings, which are essential components of rotating machinery, are utilized in both
agricultural and transportation machinery. The primary differences between bearings for
agricultural machinery and transportation vehicles revolve around the operating environ-
ment, load requirements, maintenance demands, and design considerations. Agricultural
machinery bearings need to be rugged and capable of handling contamination, shock loads,
and frequent maintenance [4]. In contrast, transportation vehicle bearings are designed for
smoother, more controlled environments with an emphasis on precision, efficiency, and
longer maintenance intervals.

Bearings in agricultural machinery often work in harsh environments, exposed to dirt,
dust, mud, and moisture, and they need to have good sealing to prevent pollution; due to
outdoor use, complex terrain, and seasonal changes, bearings in agricultural machinery
often withstand high impact loads and vibration and temperature changes. Bearings in
transport vehicles typically operate in more controlled environments such as roads or
tracks, where they withstand a more stable temperature range and less impact load than
agricultural machinery [5].

Due to harsh operating conditions, bearings for agricultural machinery often require
frequent lubrication and maintenance to ensure longevity and performance, and they are
designed to be robust and to minimize downtime during critical planting or harvesting
seasons [6]. Bearings in transport vehicles typically have longer maintenance intervals com-
pared to bearings in agricultural machinery, and these bearings are often precision-designed
to provide high reliability and long-distance performance with minimal maintenance [7].

Agricultural machinery usually needs to work under heavy loads and high impact
loads, so bearings must have a high load carrying capacity to cope with these extreme
conditions [8]. In addition, agricultural machinery often works in dusty, muddy, and humid
environments, so bearings must have good wear resistance to extend the service life; in
order to prevent soil, dust, and moisture from entering into the bearings, bearings need
good sealing performance. Agricultural machinery is often exposed to water, fertilizers, and
pesticides during use, so bearings need to have good corrosion resistance to prevent rust
and corrosion. The design of bearings should take into account the ease of maintenance to
reduce maintenance time and cost. Agricultural machinery will produce a high temperature
when running for a long time, so the bearing needs to have a certain high-temperature
resistance to ensure that it can still work normally in a high-temperature environment. In
order to improve the comfort of operation and reduce noise pollution, bearings need to
have low-noise and low-vibration characteristics [9].

Currently, deep learning is extensively applied in the realm of fault diagnosis; deep
learning is widely used in the field of fault diagnosis, with the advantage that there is
no need to carry out manual feature extraction steps, as the automatic mining of the
hidden nonlinear features in the input signal allows researchers to achieve end-to-end fault
classification [10]. In real-world engineering, due to the influences of environmental noise,
equipment wear and tear, changing operating conditions, and other factors, the distribution
of data collected with sensors is inconsistent, while the collection of a large amount of
labeled data requires high labor costs or the presence of field staff who are able to label the
state type of the collected signals; therefore, the intelligent fault diagnostic method often
fails to achieve satisfactory diagnostic results [11].

The impact of variable operating conditions is as follows [12]: (1) Load variation.
Rolling bearings may exhibit different vibration characteristics under different load condi-
tions. As the load increases or decreases, the bearing’s vibration pattern will also change,
impacting the accuracy of fault detection. (2) Speed change. The change in speed will cause
the vibration frequency of the bearing to change, which may mask the fault signal, making
fault diagnosis more difficult. (3) Temperature changes. Changes in temperature affect
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the physical properties of the bearing material, such as expansion and contraction, which
affects the vibration characteristics of the bearing.

The impact of environmental noise is as follows [13]: (1) Background vibration from
other components in the mechanical system will also mix with the bearing’s fault signal,
making signal processing more challenging. (2) Electromagnetic interference. There is
strong electromagnetic interference in some industrial environments, which can affect the
performance of vibration sensors and lead to inaccurate data acquisition. (3) Environmental
sound. In some noisy environments, acoustic sensors may capture a large amount of
environmental noise, interfering with the extraction of fault signals.

The impact of the lack of labeled data is as follows [14]: (1) Data acquisition difficulty.
Obtaining real fault data is often very difficult because the chance of equipment failure
during operation is relatively small. Artificially creating faults is not only costly but can
also cause irreversible damage to the equipment. (2) Data imbalance. In most cases, there
are far more working data than faulty data, which can lead to data imbalance when training
the model, which in turn affects the performance of the model. (3) Labeling errors. Data
labeling requires expertise and is prone to errors. Incorrect labeling can lead the model to
learn inaccurate information, thereby decreasing the diagnostic accuracy.

In order to obtain accurate results with the diagnostic model in the above situations,
scholars introduced the migration learning method.

As a crucial area of research in transfer learning, experts and scholars address the
challenges of unlabeled and sparsely labeled data by focusing on features. By measuring
and increasing the similarity between source domain data and target domain data, they
enhance the target domain’s ability to learn from the source domain. The existing methods
are based on the mechanism of antagonism and the two aspects of the statistical metrics, and
combining these with deep learning algorithms achieves the purpose of bringing the two
domains closer together [15]. For example, Zhang et al. [16] improved the diagnostic accuracy
for rolling bearings under different operating conditions by proposing a transfer sparse auto-
encoder (SAE) based on the local maximum mean difference (LMMD) and K-means. Qian
et al. [17] realized fault diagnosis by improving the joint distribution adaptation to be more
comprehensive to the marginal and conditional distributions of their source domain and
target domain data. Cheng et al. [18] proposed an intelligent diagnostic network inspired by
the Wasserstein distance; their model minimized the distribution distance between the source
and target domains through adversarial training and achieved the highest diagnostic accuracy
in multiple sets of migration tasks. Li et al. [19] utilized the correlation alignment (CORAL)
loss to compute the similarity between the source and the target domains in order to solve
the difficulties brought to bearing fault diagnosis under variable operating conditions more
effectively. Wang et al. [20] proposed a subdomain-based adaptive fault diagnosis model,
which takes the local maximum difference as the metric criterion and considers the fine-
grained relationship of each category. The aforementioned methods can effectively address
the issue of inconsistent distributions between the source and target domains. However,
these models primarily focus on the geometrical structure of the data for feature extraction,
overlooking the connectivity between data points.

Given that multiple sets of source domain data with varying distributions can be obtained
in real-world engineering, a multi-source domain transfer learning approach is theoretically
viable and can significantly enhance the model’s diagnostic performance. In recent years,
MUDA has been widely used in the field of fault diagnosis. Liu et al. [21] proposed a bearing
fault diagnosis algorithm based on a multi-feature spatially adaptive network; the algorithm
is based on the feature extraction of the input samples through the feature extractor, while
multi-core MMD is used to learn the domain-invariant representations of the source and
target domain features, and, finally, the classifiers output the results of the target domain data
state recognition. Tian et al. [22] established a new multi-source domain migration learning
fault diagnosis framework, in which the source–target domain data pairs are constructed
using anchor adapters, the shared features are extracted, and then the classifiers are weighted
and integrated to ultimately achieve the purpose of fault diagnosis. Nguyen et al. [23]
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proposed a multi-source teacher–student learning network for optimal transmission, and the
feasibility of the model was verified on multiple datasets. Despite the promising results of
the above research, it only performs a global alignment of source and target domain data,
overlooking category-specific differences and losing detailed information between categories.
Ghorvei et al. [24] introduced local maximum mean difference to realize the transfer of feature
knowledge between the source domain and target domain and verified the feasibility of the
proposed method under different noise ratios. The above method effectively addresses the
issue of distribution inconsistency between the target and source domains. However, most
current research primarily focuses on knowledge transfer within a single domain. In complex
scenarios, relying on a single source domain may not suffice for diagnostic tasks, leading to
reduced diagnostic effectiveness.

While the methods discussed offer innovative solutions and address the issue of
limited diagnostic information in a single source domain, there is still a need for researchers
to continuously develop new models in the field of multi-source transfer learning for
bearing fault diagnosis. Graph neural networks, as an innovative approach through which
to capture the information of nodes between samples in a “graph” representation, were
first proposed by Scarselli et al. [25], who indicated that graph neural networks can pay
more attention to the connectivity of the data. Zhang et al. [26] proposed a deep graph
convolutional network for rolling bearing acoustic fault diagnosis and achieved better
diagnostic results. Li et al. [27] converted the data into weighted graphs and proposed
a fault diagnosis method based on a multisensory wild graph convolution network. Yin
et al. [28] proposed a depth graph convolution network, combining multiscale data fusion
and multiscale graph convolution fusion, for rotor-bearing fault diagnosis. Li et al. [29]
combined a CNN and a graph convolutional network to realize the fault diagnosis of
machinery under variable operating conditions, using domain confrontation and maximum
mean difference methods.

When domain-adaptive technology addresses the issue of limited labels in data from
a single source domain, knowledge transfer often fails to provide sufficient relevant in-
formation for the target diagnosis task, leading to poor recognition performance. This
study introduces a graph convolutional network approach for diagnosing rolling bear-
ing faults under varying operating conditions, leveraging multi-source domain trans-
fer learning and incorporating a subdomain-adaptive strategy to enhance model perfor-
mance despite significant data distribution differences. The main objectives are as follows:
(1) To propose a multi-source subdomain-adaptive network model for rolling bearing fault
diagnosis that integrates feature-related information from various source domains, thereby
improving diagnostic accuracy in the absence of target domain labels. (2) To combine
the strengths of deep convolutional networks and graph convolutional networks to learn
the geometric structural information of sample data and enhance the network’s feature
learning capability.

2. Basic Principles
2.1. Spectral Convolution

The graph convolutional neural network (GCN) approach involves applying convolu-
tional operations to graphs, serving a similar purpose to CNNs in feature extraction. Graph
convolutional networks are typically classified into two main groups based on current
standards: (1) based on spatial or vertex domains and (2) based on frequency domains or
spectrograms [30]. The core of spatial domain convolution lies in aggregating the informa-
tion of neighboring nodes—for example, summing up the states of all directly connected
neighboring nodes as hidden states of the current node—while frequency domain convolu-
tion uses graph spectral theory to perform convolution operations on a topological graph.
In the field of graph studies, this method can be represented as a graph G = (V, E) with
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N nodes, where V and E are the set of nodes and the set of edges, respectively, and the
graph can be represented with a Laplace matrix in its general form [31].

L = D − A (1)

where D ∈ Rn×n denotes the degree matrix and A is the adjacency matrix.

Ai,j =

{
1 node < vi, vj > is connect

0 node < vi, vj > is not connect
(2)

Di,j =

{
d(i) i = j
0 i ̸= j

(3)

From the above equation, D is the diagonal matrix and Di,i =
n
∑

j=1
Ai,j is the degree of

node vi. The conversion relationship of the above formulas is illustrated in Figure 1.
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The Laplace matrix is represented as follows, and a spectral decomposition of the
Laplace matrix is performed:

Lsym = D−1/2LD−1/2 = I − D−1/2 AD−1/2 (4)

Lsym = UΛU−1 = U


λ1

λ2
. . .

λn

U−1 = U


λ1

λ2
. . .

λn

UT (5)

where I represents the unit diagonal matrix as a positive definite matrix, U represents the
orthogonal matrix, formed by combining the eigenvectors of the Laplace matrix, Λ is the
eigenvalue matrix of the Laplace matrix, and λi,i is the matrix eigenvalue.

According to the convolution theorem, which states that “the Fourier transform of
the convolution of two signals in the spatial domain equals the product of their Fourier
transforms”, the following transforms can be applied to graph convolution networks:

x ∗G g = F−1(F(x)⊙ F(g)) = U(UTx ⊙ UT g) = U(UT g ⊙ UTx) (6)

where x is the input signal, ∗G is the graph convolution operation, F(x) and F−1 are the
Fourier forward transform and Fourier inverse transform, i.e., the signal is transformed
from the spatial domain to the spectral domain and then to the spatial domain signal, and
⊙ is the Hadamard product.

2.2. Local Maximum Mean Difference

Domain-adaptive methods are generally categorized into feature-based, instance-
based, and model parameter-based approaches. Feature-based methods are particularly
popular in fault diagnosis because they are not constrained by whether diagnostic samples
are labeled. These methods can be further divided into difference-based, adversarial-
based, and reconstruction-based approaches. The difference-based method measures the
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distribution difference between the source and target domains and maps their data features
to a shared feature space, reducing the distribution gap. The adversarial-based approach,
inspired by generative adversarial networks, involves generators that produce effective
features to mislead domain discriminators, which distinguish between the source and target
domains; this interaction enhances the model’s performance on target domain samples.
The reconstruction-based method incorporates auto-encoders, using an encoder and a
decoder to produce features similar to those from both domains. In practice, it is crucial to
not only qualitatively assess the similarity between the source and target domains but also
to quantitatively measure this similarity. Designing appropriate measurement criteria is
essential for effectively narrowing the gap between the domains.

Common adaptive measurement criteria include MK-MMD, JMMD, CORAL, etc. [32],
but these methods achieve domain adaptation only by aligning the global distributions of the
source and target domains. The local maximum mean difference (LMMD), on the other hand,
takes interregional categories into account, with the goal of aligning the differences between
each category, rather than narrowing the overall distribution. Suppose samples xs

i and xt
j

belong to each class, with weights ωsc
i and ωtc

j , where yic is the CTH element of the label
vector yi, and c is the number of classes. As an extension of the MMD method, MK-MMD
adopts a linear combination of multiple nuclei to find the optimal nucleus K, as follows:

ωc
i =

yic

∑
(xj ,yj)∈D

yjc
(7)

D̂(Xs, Xt) =
1
C

C

∑
c=1

∥∥∥∥∥ m

∑
i=1

ωsc
i ϕ(xs

i )−
n

∑
j=1

ωtc
j ϕ(xt

j)

∥∥∥∥∥
2

H

(8)

ϕ() cannot be calculated directly, so the above equation must be equivalent-transformed,
as shown in Formula (9), where k(zs

i , zs
j ) represents the inner product of the vector.

losslmmd = D̂(Xs, Xt) =
1
C

C

∑
c=1

[
m
∑

i=1

m
∑

j=1
ωsc

i ωsc
j k(zs

i , zs
j )

+
n
∑

i=1

n
∑

j=1
ωtc

i ωtc
j k(zt

i , zt
j)

−2
m
∑

i=1

n
∑

j=1
ωsc

i ωtc
j k(zs

i , zt
j)]

(9)

2.3. Ranger Optimization Algorithm

The Ranger optimization algorithm combines the highly advanced natures of the
Radam and Lookahead optimization algorithms [33] and presents new breakthroughs in
deep learning optimization. The Ranger optimization algorithm utilizes Radam as the
internal optimizer and Lookahead as the external optimizer, where the internal optimizer ς
updates the fast weight. The updated rule of the fast weight is as follows:

θt,i+1 = θt,i + ς(L, θt,i−1, d) (10)

where L represents the objective function, ς represents the optimization algorithm, d
represents the small sample training batch, i = 1, 2. . . k represents the exploration of the i
batch, and t is the number of iterations. The update of the slow weights is affected by the
fast weights, and when the internal optimizer ς completes k batch explorations, the slow
weights are updated to the following:

ϕt+1 = ϕt + α(θt,k − ϕt)

= α
[
θt,k + (1 − α)θt−1,k + . . . + (1 − α)t−1θ0,k

]
+(1 − α)tϕ0

(11)
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3. Fault Diagnosis Process

In this article, we present a multi-source locally adaptive (MSLA) fault diagnosis model
utilizing the local maximum mean difference measurement method. The model’s structure
varies based on the number of source domains N, and it encompasses three primary stages:
signal preprocessing, feature extraction, and classification. During signal preprocessing,
bearing vibration signals from Jiangnan University are overlapped, and continuous wavelet
transformation is performed using the cmor wavelet on each type of signal sample after
expanding the sample size. This process constructs group N, a source domain–target
domain data pair, facilitating network training. In the feature extraction stage, the model
consists of a shared feature extraction network and a domain-specific feature extraction
network. Resnet50 [34] is used as the shared feature extraction network to capture common
features from the data pairs, which are then fed into the domain-specific feature extraction
network. This network employs a graph convolutional network to extract the domain-
specific features for each data pair. The Softmax layer, positioned after the feature extraction
network, serves as the bearing state classifier. The training loss function of the network
includes three components: the local maximum mean difference measurement loss function
to minimize distribution differences and aid in learning domain-invariant representations;
the difference loss between classifiers to reduce classification errors near the target domain
class boundaries; and cross-entropy loss to measure discrepancies between the actual and
predicted labels in the source domain. The model uses Radam and Lookahead algorithms
for parameter optimization. After reaching the specified number of iterations, the trained
model processes the target domain data and generates diagnostic results. The diagnostic
flow chart is illustrated in Figure 2.

Agriculture 2024, 14, x FOR PEER REVIEW  8  of  17 
 

 

 

Figure 2. The diagnostic flow chart. 

In  the  continuous  wavelet  transform,  it  is  assumed  that  the  original  signal 
2( ) ( )x t L R   exists, and  the continuous wavelet  transform  formula  is obtained by  the 

convolution between  ( )x t   and the wavelet cluster  , ( )a b  : 

,

1
( ) ( )e f

t f
t

ee
  

   (12)

,( , ) ( ) ( )e fcwt e f x t t dt    (13)

In the formula,  e   and  f   represent the stretching factor and displacement factor, 

respectively,  t   represents time, and  , ( )e f    represents the wavelet basis function after 
stretching and displacement. 

Since the depth of neural networks impacts their feature extraction capability, shal-

low networks often have weaker feature extraction abilities. To address this, ResNet50 is 

used as the shared feature extraction network. ResNet50 consists of 50 layers, organized 

into five stages. Detailed network parameters are provided in Table 1. 

Table 1. The values of network parameters. 

Network Architecture  Category  Coverage Area 

input  224 × 224 × 3   

Con1  Convolution layer  7 × 7;64 

Max pool  Maximum pooling layer  3× 3;64 

Conv2_x  Residual block1 × 3 

…

1 1 64

3 3 64

1 1 25

3

6

;

;

;








  

Conv3_x  Residual block1 × 4 

…

1 1 256

3 3 128

1 1 512

4

;

;

;


 




 

Figure 2. The diagnostic flow chart.

In the continuous wavelet transform, it is assumed that the original signal x(t) ∈ L2(R)
exists, and the continuous wavelet transform formula is obtained by the convolution
between x(t) and the wavelet cluster ψa,b(·):

ψe, f (t) =
1√

e
ψ(

t − f
e

) (12)

cwt(e, f ) =
∫

x(t)ψe, f (t)dt (13)

In the formula, e and f represent the stretching factor and displacement factor, respec-
tively, t represents time, and ψe, f (·) represents the wavelet basis function after stretching
and displacement.
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Since the depth of neural networks impacts their feature extraction capability, shallow
networks often have weaker feature extraction abilities. To address this, ResNet50 is used
as the shared feature extraction network. ResNet50 consists of 50 layers, organized into
five stages. Detailed network parameters are provided in Table 1.

Table 1. The values of network parameters.

Network Architecture Category Coverage Area

input 224 × 224 × 3
Con1 Convolution layer 7 × 7; 64

Max pool Maximum pooling layer 3 × 3; 64

Conv2_x Residual block1 × 3
1 × 1; 64
3 × 3; 64

. . . 1 × 1; 256

× 3

Conv3_x Residual block1 × 4
1 × 1; 256
3 × 3; 128

. . . 1 × 1; 512

× 4

Conv4_x Residual block1 × 6
1 × 1; 256
3 × 3; 256

. . . 1 × 1; 1024

× 6

Conv5_x Residual block1 × 3
1 × 1; 512
3 × 3; 512

. . . 1 × 1; 2048

× 3

Average Average pooling layer

The diagram of the fault diagnosis model structure is presented below (Figure 3).

Agriculture 2024, 14, x FOR PEER REVIEW  9  of  17 
 

 

Conv4_x  Residual block1 × 6 

…

1 1 256

3 3 256

1 1 1024

6

;

;

;











 

Conv5_x  Residual block1 × 3 

…

1 1 512

3 3 512

1 1 2048

3

;

;

;











 

Average  Average pooling layer   

The diagram of the fault diagnosis model structure is presented below (Figure 3). 

 

Figure 3. Multi-source rolling bearing fault diagnosis under variable working conditions. 

The feature extraction network consists of the shared ResNet50 and domain-specific 

graph convolutional networks, working together to learn high-dimensional features  X . 

The structural parameters of this network are detailed in Table 2. 

Table 2. Feature extraction network structural parameters. 

Network  Network Structure and Parameters 

Shared feature extraction network 

50(  )ResNet  
ResNet50( ) 

Domain-specific feature extraction net-

work  (   )CNN  

Conv2d(2048,256)-BN2d (256)-ReLu( )- 

Conv2d(256,256)-BN2d (256)-ReLu( )- 

Conv2d(256,256)-BN2d (256)-ReLu( )- 

MRF-GCN( ) 

The high-dimensional feature  X serves as  the node feature matrix. The adjacency 
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Figure 3. Multi-source rolling bearing fault diagnosis under variable working conditions.

The feature extraction network consists of the shared ResNet50 and domain-specific
graph convolutional networks, working together to learn high-dimensional features X. The
structural parameters of this network are detailed in Table 2.

Table 2. Feature extraction network structural parameters.

Network Network Structure and Parameters

Shared feature extraction network ResNet50( ) ResNet50( )

Domain-specific feature extraction network
CNN( )

Conv2d(2048,256)-BN2d (256)-ReLu( )-
Conv2d(256,256)-BN2d (256)-ReLu( )-
Conv2d(256,256)-BN2d (256)-ReLu( )-

MRF-GCN( )
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The high-dimensional feature X serves as the node feature matrix. The adjacency
matrix Â is derived by multiplying the feature vector by its transpose using the graph
generation layer (GGL). Subsequently, the sparse adjacency matrix A is obtained through a
Top-K sorting mechanism.

X1 = Resnet50(Xinput)X = CNN(X1) (14)
X̂ = MLP(X)

Â = nol(X × X̂)
A = Top − k(A)

(15)

In the formula, X̂ represents the feature vector output using node feature matrix X
after multilayer perceptron (MLP), nol represents the normalized function, and Top − k( )
represents the calculation of each row of the matrix; the index corresponding to the top
k maximum values in each row is returned. The model incorporates a multi-receptive
field convolutional layer (MRF-GCN) to extract image features. The MRF-GCN aggregates
information from multiple receptive fields to capture more detailed information. In this
study, a double-layer MRF-GCN is used to learn the feature representation of sample data,
as follows:

H =
[
∑K0−1

k0
θk0 Λk0 X, ∑K1−1

k1
θk1Λk1 X, . . . ∑Kv−1

kv
θkΛKv X

]
H0 = MRFConv(AXW0)
H1 = MRFConv(AHW1)

(16)

where H0 and H1 represent the feature representation extracted from the first and second
layers MRF-Conv, respectively.

The Softmax layer was employed for bearing state classification. Once the classifier
was integrated into the graph convolutional network, three optimization objectives were
established for the network training process: minimizing the classification loss Lossclass
in the source domain, minimizing the invariant loss Losslmmd within the domain, and
minimizing the dissimilarity loss Lossdisc between different classifiers. The loss function is
defined as follows:

lossclass =
N
∑

j=1
J(Cj(Gj(Hj(F(X

sj
i )))), Y

sj
i )

Lossdisc = C2
n

n−1
∑

i=1

n
∑

j=i+1

∣∣Cj(Gj(Hj(F(xt))))− Ci(Gj(Hi(F(xi))))
∣∣

Loss = Lossclass + λ · Losslmmd + τ · Lossdisc

(17)

where Xs
i and Ys

i represent different distributions of source domain data and labels, re-
spectively; J is the cross-entropy function; Cj represents the prediction results of the label
classifier; Gj represents the graph convolutional feature extraction network; λ and γ repre-
sent the hyperparameters of Losslmmd and Lossdisc, respectively.

4. Experimental Platform and Result Analysis
4.1. Experimental Setup

The datasets from Jiangnan University (JNU) are often used to verify the effectiveness
of transfer learning algorithms in the field of fault diagnosis for induction motors, accelera-
tors, signal regulators, etc. [35]. The JNU bearing dataset consists of vibration data recorded
at three different speeds (600 RPM, 800 RPM, and 1000 RPM) with a sampling frequency of
50 kHz. This dataset includes four types of bearing conditions: normal, inner ring failure,
outer ring failure, and rolling element failure. To represent various working conditions, the
data collected at 600 RPM, 800 RPM, and 1000 RPM are labeled as A, B, and C, respectively.
The dataset includes a total of six transfer learning tasks. Each vibration data sample from
these conditions was processed using overlapping sampling, with a window length of 1024
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and a sliding step of 256, resulting in 800 data groups per state. Table 3 details the division
of the JNU data used in this study.

Table 3. JNU bearing dataset settings.

Dataset Speed
(r/min)

Bearing
Condition Label

Sample
Points per

Set
Sample Size

A/B/C

600/800/1000 Normal state 0 1024 800

600/800/1000 Inner ring
fault 1 1024 800

600/800/1000 Outer ring
fault 2 1024 800

600/800/1000 Rolling
element fault 3 1024 800

The schematic diagram of the experimental platform structure and the data acquisition
diagram are shown in Figure 4.
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Comparison experiments were conducted using the Jiangnan University bearing
dataset. The source domain samples were used entirely as the training set, while all target
domain samples (which were unlabeled) served as both the training and test sets. Network
hyperparameters were determined through several preliminary experiments, and the same
hyperparameter values were applied across all comparison methods. Details of these
hyperparameters can be found in Table 4.

Table 4. Model parameter settings.

Parameter Name Parameter Value

Number of samples per batch 32
Learning rate lr0 0.0005
Learning rate lr1 0.000005

Number of iterations 1000
Activation function ReLU
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4.2. Comparative Analysis of Experimental Results for Adaptive Methods in Different Fields

Table 5 presents the classification accuracy of various methods for the three migration
tasks: B + C→A; A + C→B; and A + B→C. In these tasks, datasets B and C were used as
the source domain data with dataset A as the target domain; datasets A and C served as
the source domains with dataset B as the target domain; and datasets A and B acted as the
source domains with dataset C as the target domain. To demonstrate the effectiveness of
the MSLA approach more objectively, joint maximum mean discrepancy (JMMD) loss [36],
CORrelation ALignment (CORAL) loss [37], and multiple kernel maximum mean are
selected discrepancy (MK-MMD) loss [38] are compared as adaptive algorithms.

Table 5. Comparison of experimental mean diagnostic results of different methods.

Tasks/Adaptive
Methods JMMD CORAL MK-MMD MSLA

B + C→A 96.97% 97.56% 97.56% 99.17%
A + C→B 96.56% 98.16% 98.09% 99.47%
A + B→C 98.83% 99.54% 99.29% 99.88%

It can be observed from the data in Table 5 that high-precision diagnosis has been
obtained by comparing several models, the reason for which may be that, compared to the
globally adaptive method, the enhanced subdomain-adaptive approach allows the model to
capture detailed information from each category and more effectively align the subdomain
distributions within the same category. At the same time, the diagnostic accuracy of the MSLA
method was further improved, and the diagnostic accuracy results from the three groups of
tasks were 99.17%, 99.47%, and 99.88%. Compared with other models, the diagnostic accuracy
results for the MSLA model were increased by 1.61–2.20%, 1.31–2.91%, and 0.34–1.05%, thus
showing that the graph convolution layer can help the model learn the structural features
between samples and achieve the purpose of extracting richer feature information.

Figure 5 illustrates the confusion matrix of the output categories after the model
performs fault diagnosis for task A + C→B. In this matrix, the horizontal axis represents
the predicted categories for the target domain samples, while the vertical axis shows their
true labels. Comparing the confusion matrices of the four methods, it is observed that the
first three methods (a–c) misclassified 110, 59, and 61 target domain samples, respectively.
In contrast, the MSLA method misclassified only 17 out of 3200 target domain samples.
Specifically, the misclassifications included nine rolling element fault samples labeled as
normal, three rolling element fault samples labeled as outer ring fault, one inner ring fault
sample labeled as normal, two normal samples labeled as outer ring fault, and two normal
samples labeled as rolling element fault. All other target domain samples were correctly
classified, resulting in a recognition accuracy of 99.47%.

To further assess the effectiveness of the multi-source domain method, we compared it
with experiments involving single-source domain migration models. Specifically, datasets
B, C, and B + C were used as the source domains, with dataset A as the target domain.
For simplicity, these cases are denoted as B→A, C→A, and B + C→A, respectively. Given
that the difference between single-domain and multi-domain sample data might impact
the results, Table 6 presents the average diagnostic outcomes for various models. In this
context, SSLA refers to a single-source local domain-adaptive transfer learning method
enhanced with graph convolutional networks.

The data in Table 6 show that, compared with A→C and B→C, the diagnostic accuracy
results of A + B→C increased by 1.29%, 1.20%, and 1.20%; compared with A→B and C→B,
the diagnostic accuracy results of A and C→B were increased by 1.16%, 0.59%, and 0.3%,
respectively. The diagnostic accuracy results of B + C→A increased by 2.94%, 4.33%, and
2.24%, compared with B→A and C→A. The results indicate that the MSLA model significantly
enhances the diagnostic performance compared to any single-transfer learning task. Simply
aggregating source domain data does not substantially improve the model’s diagnostic
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accuracy, and the results for the three single-source migration tasks are lower than those of the
MSLA model. Thus, it can be concluded that by effectively integrating multi-source domain
models, we can capture more domain-invariant information, boost classification performance,
and address the limitations of single-source domain migration methods.
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(d) accuracy of the MSLA method for the B, C→A tasks.

Table 6. Comparison of experimental average diagnostic results.

Tasks MSLA Tasks SSLA

B→A 96.23%
B + C→A 99.17% C→A 94.84%

B + C→A 96.93%
A→B 98.73%

A + C→B 99.89% C→A 99.30%
A + C→B 99.59%

A→C 98.59%
A + B→C 99.88% B→C 98.68%

A + B→C 98.68%

In this study, t-SNE visualization was used to examine the results of experiments
migrating to dataset A, specifically for B + C→A. t-SNE is a nonlinear dimensionality
reduction technique that effectively reveals clustering relationships among different cate-
gories, making it useful for visual analysis in fault diagnosis. The results for this study are
shown in Figure 6. Compared to the SSLA model, the MSLA model exhibits less overlap
in visualization and clearer boundaries between different states. This indicates that after
training with the MSLA model, the feature information is more effectively differentiated,
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allowing the classifier to identify bearing states with greater accuracy. To highlight the
advantages of the MSLA method, the paper uses t-SNE visualization for a group of variable
condition migration tasks that showed the most distinct effects. The dimensionality of the
features from the last layer of the network was reduced to a two-dimensional plane, as
shown in Figure 6. Compared to the visualizations from the three SSLA models, the MSLA
model exhibits less overlap and more pronounced boundaries between states, demonstrat-
ing improved feature differentiation and more accurate bearing state recognition.
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After the single working condition migration tasks B→A, C→A, and B + C→A, the
recognition accuracy results were 96.23%, 94.84%, and 96.93%. As can be seen from Figure 6,
different bearing states overlap more, making it difficult for the classifier to accurately
determine the actual state. After multi-source transfer learning, by using the proposed
MSLA method, the four types of fault samples are essentially separated, resulting in an
improved classification accuracy of 99.17%. Model validation was carried out on the
JNU bearing dataset, and the results showed that the recognition accuracy of the MSLA
model was increased by 0.30–4.33% compared with its corresponding single-source domain
diagnosis model, which indicates that the proposed method can still effectively identify the
bearing state in the absence of target domain labels. It can learn more domain-invariant
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information, improve the classification performance of the model, and make up for the
shortcomings of the single-source domain migration method.

5. Conclusions

To address the issues of a lack of labels in target domains and poor model training,
we propose a multi-source locally adaptive (MSLA) fault diagnosis model that leverages
data geometry and data connectivity. This model combines the strengths of deep convolu-
tional networks and graph convolutional networks to learn more comprehensive features.
Validation using the JNU bearing dataset demonstrated that the MSLA model achieved
a recognition accuracy improvement of 0.30–4.33% over its corresponding single-source
domain diagnosis model. This indicates that the proposed method can effectively identify
bearing states even in the absence of target domain labels.

The main contributions are as follows: (1) We propose a multi-source subdomain-
adaptive network model for rolling bearing fault diagnosis, which learns feature knowledge
from various source domains, enhancing diagnosis accuracy when target domain label in-
formation is absent. (2) This study integrates the strengths of deep convolutional networks
and graph convolutional networks to learn the geometric structure information of sample
data, thereby improving the network’s feature learning capability.

In addition to time–frequency analysis, in the future, this can be combined with the
data from a variety of sensors, such as image sensors, lidar, temperature and humidity
sensors, etc., for multi-modal data fusion to provide more comprehensive and accurate
condition monitoring and fault diagnosis of agricultural machinery. The existing approach
has been successful with specific types of agricultural machinery, but its potential can
also be validated and applied in other types of agricultural machinery, such as plant
protection drones, planters, and irrigation systems. This not only helps to improve the
intelligence of agricultural machinery but also improves the overall efficiency and benefits
of agricultural production. The next step will be to develop real-time monitoring and
remote diagnosis systems based on the Internet of Things (IoT) to achieve the real-time
monitoring, data acquisition, and remote fault diagnosis of agricultural machinery, thereby
reducing downtime and improving production efficiency.
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