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Abstract: The Mexican oregano by-products are a source of bioactive molecules (polyphenols) that
could be extracted using solid-state fermentation (SSF). This study fermented the by-products via SSF
(120 h) with a lactic acid bacteria (LAB) Leuconostoc mesenteroides. Sequentially, a bioactive and chemi-
cal determination was made according to the phenolic content, antioxidant activity (DPPH•/FRAP),
bioactive properties (α-amylase inhibition and antimicrobial activity against Escherichia coli), and
chemical composition (HPLC-MS). The results showed that the total phenolics and flavonoid content,
as well as the antioxidant activity, increased (0.60, 2.55, and 3.01 times, respectively) during the
SSF process compared with unfermented material. Also, the extracts showed antimicrobial activity
against E. coli and α-amylase inhibition. These inhibitory results could be attributed to bioactive
compounds identified via HPLC, such as gardenin B, trachelogenin, ferulic acid, and resveratrol
3-O-glucoside. Therefore, the application of L. mesenteroides under SSF on oregano by-products
comprises an eco-friendly strategy for their valorization as raw materials for the recovery of phenolic
compounds that could be natural alternatives against synthetic antioxidant and antimicrobial agents,
promoting a more circular and sustainable supply system within the oregano industry.

Keywords: circular economy; valorization; bioactive properties; Mexican oregano; sustainable
production; antimicrobial; α-amylase inhibition

1. Introduction

Nowadays, conventional production lines must change for sustainable modernization
according to the new trends through the implementation of a “circular economy” and
“sustainable intensification” concepts accompanied by principles such as “elimination of
residues”, “zero-waste”, “regeneration of natural environments”, and pollution preven-
tion [1,2]. Under this new perspective, the rural activities developed in the north of Mexico
comprise a potential target for modernization, especially the exploitation of native oregano
plants (Lippia graveolens kunth), the cultivation of which entails cooperative production
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(5 or more communities) and has been reported to reach up to 6500 tons oregano/year [3];
mainly, its economic income is due to the sale of dry biomass.

However, the growing interest in essential oils (EOs) has promoted the cultivation
of oregano as a source of EOs; in the last decade, it has been reported that there are
50 cultivated hectares for EO extraction (Chihuahua state) with a potential production
of 104.5 tons, which could produce a range of spent oregano biomass between 104.51
and 101.88 tons according to the extraction efficiency (0.36–2.5%) of the equipment [4–6].
Additionally, the economic analysis made by the Mexican Secretariat of Economy showed
in March 2024 that the financial sector in Mexico related to EO, perfumery, and cosmetics,
among others, has reached USD 3.18 billion (Exports) [7]; a growing value for the EO
sector. Unfortunately, the EO extraction techniques include mainly conventional methods
(e.g., hydro-distillation) with lower extraction yields with vast quantities of unexplored
residual production (50 and 90 kg of solid wastes per essential oil litter), principally aromatic
water and spent oregano leaves that remain without any potential application and end up
in landfills, causing environmental and economic issue [8–11].

However, the spent biomass encompasses a potential valuable bioactive source due to
previous research projects that have reported the rich chemical composition of oregano by-
products: flavonoid (14.3–54.7 mg/dry g), anthocyanins (0.38–10.2 mg/100 g), or tannins
(12.4–510.3 mg/g) content [12–14]. Also, Cid-Peréz et al. [15] reported antioxidant and
antimicrobial compounds as bioactive non-volatile compounds (caffeic and rosmarinic acid)
in polar subfractions, and thymoquinone, thymol, and carvacrol, among others (non-polar
solvents), highlighting that it is possible to extract valuable molecules from oregano by-
products. Thus, the potential recovery of bioactive compounds from oregano by-products
comprises an attractive alternative for revalorizing these residual materials.

A novel technology for recovering bioactive compounds is SSF, which is defined as the
growth of microorganisms on solid lignocellulosic substrates that act as a nutrient source
in the near absence of water (with little or no added water) [16]. This technology has
advantages such as low energy and water requirements, agro-industrial residues as a carbon
source, and simple equipment in comparison with emerging technologies [17–21]. These
characteristics are fascinating for a potential future integration by the local communities in
the north of Mexico.

Regarding SSF, the main applied microorganisms involve fungal strains (e.g., Aspergillus
spp.) due to their efficient enzymatic system and low moisture requirements [22–24]. How-
ever, its application could be limited by the potential production of mycotoxins, which
could have a negative impact on human health. Thus, the search for novel GRAS (Generally
Recognized As Safe) strains has been a novel topic to implement safer bioprocessing tech-
nologies. Recently, lactic acid bacteria (LAB) have gained attention as an attractive group
for SSF with advantages such as being GRAS microorganisms, the production of secondary
metabolites (bacteriocins, organic acids, volatile compounds, etc.), sensorial property boost-
ing, and functioning as a means of potential integral valorization of soluble extracts and
residual biomass (fermented after SSF) [25]. Previously, their application has been explored
in soybean and vegetable sources for the recovery of bioactive compounds (polyphenols)
via hydrolytic machinery (feruloyl esterase, β-glucosidase, and tannase) [26–28] that release
the bond phenolics linked to the cell wall [29].

Among LAB strains, Leuconostoc comprises a novel genus with the ability to produce
aromatic compounds, exopolysaccharides, and bacteriocins [30], with a reported applica-
tion for plant-fermented products (Kimchi and sauerkraut) and a successful application
to increase the phenolic content in ginseng [31,32]. Thus, Leuconostoc spp. could be an
excellent microorganism to develop an SSF valorization technique for the extraction and
production of bioactive compounds (extracts) and produce fermented biomass similar to
current food products (e.g., kimchi and sauerkraut).

To our knowledge, this article illustrates the first approach to applying SSF technology
with a LAB strain to extract bioactive components from oregano by-products. Additionally,
this study aimed to investigate the influence on phenolic content and profile as well as
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potential bioactivities (antioxidant capacity and enzymatic and microbial inhibitions) of
extracts from L. graveolens by-products after SSF by L. mesenteroides.

2. Materials and Methods
2.1. Chemicals and Reagents

The present study applied chemical reagents (analytical grade) such as Ethanol (abso-
lute), distilled water, gallic acid (>98.5%), quercetin (≥95%), 2,2-Diphenyl-1-picrylhydrazyl
(DPPH•), 2,4,6-Tripyridyl-s-triazine (TPTZ, ≥98%), Tween 80, Folin–Ciocalteu reagent,
sodium carbonate anhydrous (Na2CO3, ≥99.5%), sodium hydroxide (NaOH, ≥99.7%),
sodium nitrite (NaNO2, ≥97.0%), aluminum chloride (AlCl3, 98%), hydrochloric acid (HCl,
37%), and ammonia ferric sulfate dodecahydrate ([FeNH4(SO4)2 · 12 H2O], ≥99%) and
biological reagents as dextrose (>97.5%), α-amylase (A3306), and MRS agar. All the reagents
were purchased from Sigma Aldrich (Toluca, México). The L. mesenteroides (18C6) strain was
provided by the Food Research Department collection from the Autonomous University
of Coahuila.

2.2. Plant Material

The mature leaves from oregano plants were harvested (August–October 2020) from
“Ejido 4 de Marzo” (Latitude, 25◦33′49.5380′′ N, Longitude, 102◦33′59.0388′′ O in Parras de
la Fuente, Coahuila, Mexico). A cleaning step (distilled water) was applied to remove dirt,
followed by a drying step in the oven (50 ◦C, 24 h).

2.3. EOs Extraction Process

The hydro-distillation system involves putting 100 g of cleaned oregano leaves and
1000 mL of water into a flat-bottom ball flask of 1 L (Extraction time = 1 h); the spent leaves
(by-product) are dried in the oven (50 ◦C, 24 h) for stabilization and stored in dark bags
until the SSF process.

2.4. Solid-State Fermentation Process

The bioprocessing was carried out in a glass flask functioning as a bioreactor (250 mL),
the fermentation substrate was the spent leaves of L. graveolens using a unique inoculum
size (1 × 107 cells g−1 of the substrate), with a 90% moisture level, and a temperature of
37 ◦C. The fermentation was carried out for 120 h (sampling time: 24 h); the recovery of
fermented extracts was accomplished via mechanical extraction (10 mL distilled water)
using a press system (syringe 20 mL, BD Plastipak™, Becton Dickinson, CDMX, Mexico),
the recovered extracts were filtered (0.22 µm, Millex®-GS, Merck, Darmstadt, Germany)
and stored in the dark at −20 ◦C temperature until use.

2.5. Polyphenolic Compounds Evaluation in the Solid-State Fermentation Process (SSF)
2.5.1. Phenolic Compounds Determination
Total Polyphenolic Compounds (TPC)

The total polyphenolic compounds in the fermented extracts from SSF were deter-
mined using the methodology proposed by Georgé et al. [33] for hydrolyzed tannins and
the condensed tannins methodology, according to Amaya-Chantaca et al. [34]. The results
were reported as total polyphenolic compounds in milligrams per oregano by-product
gram (mg TPC/g oregano).

Hydrolyzed Tannins (Folin–Ciocalteu)

The Folin–Ciocalteu assay determined the total polyphenol concentration (electron
transfer method). In a 96-well microplate, 25 µL of the sample, 25 µL of the Folin–Ciocalteu
reagent, and 25 µL of sodium carbonate (0.7 M) were added, followed by a homogenization
and incubation step (40 ◦C, 30 min). After that, 200 µL of distilled H2O was added, and the
absorbance was measured at 750 nm (UV-visible Epoch™ Microplate Spectrophotometer).
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The results were expressed as gallic acid milligram equivalent per oregano gram (mg
GAE/g) according to linear regression (calibration curve).

Condensed Tannins (HCl–Butanol)

The HCl–butanol method was applied to the quantification of condensed tannins, it
was carried out according to Swain and Hillis [35] with slight modifications. A sample
volume of 500 µL was mixed with 3 mL of HCl:butanol (1:9) and 1 mL of ferric reagent.
The reaction mix was incubated at 100 ◦C (1 h), and the final absorbance was measured at
460 nm (UV-visible Epoch™ Microplate Spectrophotometer). The results were expressed as
the catechin milligram equivalent per gram (mg CE/g) according to the calibration curve.

Total Flavonoid Compounds (TFC)

The quantification was determined according to De la Rosa et al. [36]. An initial
volume of 31 µL (sample) was mixed with 9.3 µL of sodium nitrite (5%, w/v) and 9.3 µL
of distilled water. The solution was mixed and incubated at 40 ◦C (3 min). Then, 9.3 µL
of 10% (w/v) aluminum chloride was added and incubated (3 min). Finally, 125 µL of
sodium hydroxide (0.5 M) was added and incubated at 40 ◦C (30 min) in the dark. The final
absorbance was measured at 510 nm (UV-visible Epoch™ Microplate Spectrophotometer).
The results were reported as the milligram equivalent of catechin per oregano gram (mg
CE/g) according to a calibration curve prepared with the same standard.

2.6. Antioxidant Activity in the Solid-State Fermentation Process (SSF)
2.6.1. DPPH• Radical Scavenging Assay

The methodology was carried out according to Brand-Williams et al. [37]; a working
solution of DPPH• radical (60 mM) was diluted in methanol. A working volume of 295 µL
(DPPH• radical) was added to each 5 µL of the sample, followed by incubation (30 min) at
room temperature. The final absorbance was determined at 517 nm (UV-visible Epoch™
Microplate Spectrophotometer), and the results were expressed as the milligram equivalent
of gallic acid per gram of sample (mg GAE/g oregano).

2.6.2. Ferric Reducing Capacity (FRAP)

The FRAP assay was conducted according to Delgado-Andrade et al. [38] with some
modifications. The FRAP reagent was prepared by mixing 2 mL of TPTZ (10 mM) diluted
in HCl (40 mM) + 2 mL (FeCl3‚20 mM) + 20 mL of acetate buffer (0.3 M, pH 3.6).

The FRAP reagent was mixed with 10 µL of the sample or standard (Trolox). The
reaction mix was incubated (15 min) at room temperature in darkness. The absorbance
was read at 593 nm (UV-visible Epoch™ Microplate Spectrophotometer); the results were
expressed as the milligram equivalent of Trolox per gram of oregano (mg Trolox/g oregano).

2.7. Inhibitory Activity of Extracts against α-Amylase

The α-amylase inhibition was tested according to Chen et al. [39] with slight modifica-
tions, using acarbose (1 mg/mL) (control +) and buffer (control −).

A volume of 20 µL of the extracts was mixed and incubated with 20 µL α-amylase
(10 U/mL in 0.02M pH 6.9, phosphate buffer), and the mix was incubated for 45 min
(37 ◦C). Then, 40 µL of starch (2%, w/v) was added and incubated for 5 min. Finally, 200 µL
of DNS reagent was added to stop the reaction and boiling (10 min). The absorbance was
determined at 540 nm (UV-visible Epoch™ Microplate Spectrophotometer).

The inhibition of α-amylase was calculated according to the following Equation (1):

Inhibition α-amylase (%) = [((ACa − Ac) − (ASa − As))/(ACa − Ac)] × 100 (1)

where Aca and Asa were the absorbances of buffer and samples mixed with α-amylase, and
AC and AS were the absorbances without α-amylase.
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2.8. Antimicrobial Activity via Agar Diffusion Assay (ADA)

The antimicrobial activity was determined against a relevant bacterial strain in the
food industry (Escherichia coli, Food Research Department, Chemistry School, Autonomous
University of Coahuila) via the Agar Diffusion Assay (ADA), following the methodology
proposed by Avaiyarasi et al. [40], with some modifications. A TSAYE agar (Tryptone
Soy Yeast Extract Agar) was seeded with 1 × 108 cells/mL. Once the agar was solidified,
8 mm holes were punched; 50 µL of each fermented extract was added to each well. The
experiments were incubated (37 ◦C, 24 h), and clear zones around the wells were measured
to calculate the antimicrobial activity, which was expressed as inhibition diameter (mm).

2.9. RP-HPLC-ESI-MS Analysis of Extracts

The analysis using high-performance liquid chromatography was carried out using a
Varian HPLC system, which includes an autosampler (Varian ProStar 410, Varian Inc., Palo
Alto, CA, USA), a ternary pump (Varian ProStar 230I, Varian Inc., Palo Alto, CA, USA), and
a PDA detector (Varian ProStar 330, Varian Inc., Palo Alto, CA, USA), as well as a liquid
chromatograph ion trap mass spectrometer (Varian 500-MS IT Mass Spectrometer, Varian
Inc., Palo Alto, CA, USA) equipped with an electrospray ion source.

The analytical method was applied according to Ascacio-Valdés et al. [41]. A 5 µL sample
was injected into a Denali C18 column (150 mm × 2.1 mm, 3 µm, Grace, Columbia, MD,
USA) at 30 ◦C. The mobile pashes were formic acid (0.2%, v/v; solvent A) and acetonitrile
(solvent B). All MS experiments were carried out in the negative mode [M − H]−1 in a full
scan mode acquired in the m/z range 50–2000.

The data were collected (MS Workstation software, V 6.9), and phenolic compounds
were identified by comparing the retention time of the HPLC analysis with MS with the
literature and the database of the Food Research Department from Autonomous University
of Coahuila (DIA-UAdeC).

2.10. Statistical Analysis

The experiments were conducted in triplicate, and results were reported as
mean ± standard deviation (SD). SPPS Software (IBM® SPSS Statistics) was used as the sta-
tistical program to develop a one-way analysis of variance (ANOVA) followed by Tukey’s
HSD Test with α = 0.05. Figure 1 provides a general diagram of the analytical process.
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3. Results and Discussion
3.1. Phenolic Compounds

The results showed a statistical difference in the total polyphenolic content through
the SSF process, the greater release of polyphenolic compounds after the application of
L. mesenteroides was shown at 72 h with an increase of 0.60 times compared to time zero
(Figure 2A). The increment is within the ranges of polyphenol increases reported using (0.25
to 2 times) LAB strains in other matrices (e.g., cereals) [42,43]. Similarly, the increase in total
flavonoids was quantified at 2.55-times greater than at the initial time (Figure 2B) at 96 h
of the SSF process; our result is higher than the values reported by Hwang et al. [31] with
a strain of L. mesenteroides in ginseng (2.17 times). The increment in phenolic compounds
concentration by L. mesenteroides strains has been previously observed in a garlic–Cirsium
setidens Nakai blend with remarkable findings with an increase in total phenolic compounds
(27.81 ± 0.34 gGAE/g) and flavonoids (33.80 ± 0.44 gQE/g) related mainly with the LAB
enzymes [38]. It has been reported that LAB produces enzymes capable of releasing
bioactive compounds such as tannase, β-glucosidase, and feruloyl esterase [32,44]. A study
carried out by Lee et al. [45] reported that L. mesenteroides was capable of producing β-
glucosidase that changes the flavonoid composition and the liberation of aglycones forms
with major bioactive activity.
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Figure 2. Polyphenolic compounds concentration in fermentative extracts obtained from SSF process
using L. mesenteroides. (A) Total polyphenolic content (TPC) and (B) total flavonoid content (TFC).
Different letters show significant differences (α = 0.05).

Also, the enzymes may be capable of hydrolyzing the β-glucosidic linkages and
liberating the biomolecules from cell wax with the combination of other enzymes with the
capacity to hydrolyze other plant cell wall components (esterase). Otherwise, there are



Agriculture 2024, 14, 1342 7 of 14

changes in flavonoid structures from the metabolism of L. mesenteroides; it has been reported
that L. mesenteroides has the potential to express glucan sucrase enzymes involved in the
glycosylation of flavonoids in the fermentation process (ex., glucosides from quercetin,
luteolin, myricetin, and fisetin, among others) [46–48]. Thus, glycosylation may promote
the solubility of aglycone forms of flavonoids and benefit the extraction of higher quantities
of bioactive molecules in water.

However, higher concentrations of phenolic compounds could have a negative im-
pact on microorganisms (LAB). As a response, some mechanism for detoxification of the
environment could be promoted [49]. This behavior has been previously reported in
LAB-fermented Chinese chives (Allium tuberosum) [50] and, recently, in avocado leaves
fermented by L. mesenteroides 21, where the concentration of Folin–Ciocalteu reacting sub-
stances (e.g., polyphenols) suffered a reduction after 72 h that could be explained by a
possible degradation of biotransformation (phenolic acid decarboxylase and reductase,
among others) into reduced forms [51].

3.2. Antioxidant Activity

The antioxidant activity (Figure 3) is related to the content of polyphenolic compounds;
the data showed an increment through fermentation; the DPPH• radical assay showed
the potential of the extract to inhibit an oxidative radical, and the highest activity against
the radical was recorded at 96 h up to 2.51-times higher than at the initial time point.
The iron-reducing power assay (FRAP) showed a similar behavior where, in the first
hours of fermentation, the antioxidant activity was lower than after the SSF process. The
highest value was obtained at 120 h (3.01-times higher), but it is statistically similar to
the extract recovered at 96 h. The increment in antioxidant activity can be related to the
extraction of polyphenolic compounds via the SSF process and the enzymes involved in it.
Also, in literature, L. mesenteroides has been associated with the production of secondary
metabolites with antioxidant properties; Lee et al. [52] reported the production of four
amino acid derivatives with the level of antioxidant activity that could be produced in our
study. Similarly, Zhang et al. [53] reported the production of an exopolysaccharide with
antioxidant activity that could be produced in the SSF process.

3.3. Antimicrobial Activity

The fermentation extracts showed antimicrobial activity (Table 1) against E. coli; the
greatest level of inhibition belonged to the 96 h sample of the SSF process with an inhibition
diameter of 12.06 ± 2.66 mm, which may correspond to the time point with a high quantity
of polyphenolic compounds. In addition, not only the polyphenol release may explain the
activity, but because the production of antimicrobial peptides in LAB has been reported, the
bacteriocins could interact negatively with the membrane of pathogenic bacteria, generating
disruption, hindering protein transit, and leading the cell to death [54]. Specifically, in
the literature, the expression of genes of two antimicrobial peptides (hymenoptaecin and
apidaecin) has been reported for L. mesenteroides (TBE-8) that could provide antimicrobial
activity [55]. Otherwise, the fermented extract obtained at 120 h of fermentation showed a
strong reduction in the antimicrobial activity, a possible explanation could be related to the
absence of a chemical antimicrobial component (see Section 3.5, Ferulic acid), and, also, the
enzymatic process applied in the SSF may produce an extract with higher sugar content that
could reduce the antimicrobial potential of the extract. In the literature, there is a precedent
reported by Molet-Rodríguez et al. [56] that the integration of bioactive molecules (e.g.,
essential oils) into food products (complex matrix) involves a complex balance, due to the
presence of nutrients (fructose, sucrose, and glucose) that could help bacteria to reduce the
negative impacts of natural antimicrobial components.
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Figure 3. Antioxidant activity of fermentative extracts via the SSF process using L. mesenteroides;
(A) FRAP assay and (B) DPPH• assay. The different letters show significant differences (α = 0.05).

Table 1. Antimicrobial activity against E. coli and α-amylase inhibition of fermented extracts under
SSF process using L. mesenteroides.

Fermentation Time (h)
Bioactivities

Antimicrobial Activity (E. coli) Inhibition mm α-Amylase Inhibition (%)

0 3.3 ± 0.56 C 3.24 ± 1.28 C

24 4.73 ± 1.3 C 2.17 ± 1.28 C

48 2.96 ± 1.72 C 4.22 ± 1.03 C

72 4.03 ± 0.45 C 4.61 ± 1.27 C

96 12.06 ± 2.66 B 11.32 ± 3.7 B

120 2.8 ± 0.1 C 14.10 ± 0.45 B

Tetracycline (1 mg/mL) 22.36 ± 0.55 A ___
Acarbose (1 mg/mL) ____ 94.07 ± 2.6 A

The letters show significant differences according to the comparison of means of all experiments (α = 0.05).

It is important to note that none of the extracts showed activity greater than the positive
control with tetracycline at a standard concentration of 1 mg/mL (22.36 ± 0.55 mM). On
the other hand, it could be possible to increase the antimicrobial activity by concentrating
the crude extract of the fermentation.
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3.4. Potential α-Amylase Inhibition

The findings reported that the extract from fermentation has a light inhibition of
α-amylase (Table 1). The highest valuer was reported for the 120 h (14.10 ± 0.45%) sample
and correlated with the time at which there was the highest concentration of flavonoids.
Flavonoids have been reported as molecules with potential as inhibitors of α-amylase by
binding to proteins via hydrogen bonds [57–59].

The inhibition values were lower than the positive control (acarbose) with a value of
94.07 ± 2.6%; but it is reported that higher inhibition of α-amylase might cause diarrhea,
flatulence, and abdominal pain due to bacterial fermentation by intestinal bacteria [60,61].
Our data suggest that oregano by-products could be a source of compounds with the
capacity for α-amylase inhibition.

3.5. RP-HPLC-ESI-MS Analysis

The HPLC-MS analysis of extracts before the solid-state fermentation process (0 h)
revealed six compounds (Table 2); a total of two identified compounds have been pre-
viously reported in other works for oregano varieties. For example, caffeic acid and
medioresinol have been reported in oregano varieties [62,63]. Caffeic acid has been
reported as an antioxidant component with antimicrobial activity against pathogens
(Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, among others) [64].
Also, medioresinol was associated with the capacity to act synergistically with antibiotics
in bacterial infection and the capacity to act as an auxiliary to prevent pyroptosis of en-
dothelial cells in ischemic stroke [65,66]. Four compounds have not been related to oregano
species but contain metabolites with potential bioactivities present in plants that could be
synthesizes by oregano plants (5-nonadecylresorcinol, sinensetin, phlorin, and petunidin
3-O-(6′′-acetyl-glucoside)): for example, sinensetin is a novel compound with numerous
bioactivities (anticancer, anti-inflammatory, antioxidant, antimicrobial, anti-obesity, anti-
dementia, vasorelaxant, and antitrypanosomal activities) that could be exploited by the
food and pharmaceutical industry [67].

Table 2. Identified compounds via RP-HPLC-ESI-MS from the SSF of Mexican oregano by-products
using L. mesenteroides.

ID Tentative Assignment [M − H]−
(m/z)

Class
Fermentation Time (h)

0 24 48 72 96 120

1 Caffeic acid 4-O-glucoside 341.1 Hydroxycinnamic acids X X X X
2 5-nonadecylresorcino 375.1 Alkylphenols X X X
3 Medioresinol 387.2 Lignans X X X X X X
4 Sinensetin 371.1 Methoxyflavones X X X X X X
5 Phlorin 287.1 Other polyphenols X

6 Petunidin
3-O-(6′′-acetyl-glucoside) 520.4 Anthocyanins X

7
Kaempferol

3-O-(2′′-rhamnosyl-6′′-acetyl-
galactoside) 7-O-rhamnoside

783.2 Flavonols X

8 Resveratrol 3-O-glucoside 389.1 Stilbenes X X X X X
9 Gardenin B 357.3 Methoxyflavones X

10 3,4-DHPEA-EA 377.1 Tyrosols X
11 Trachelogenin 387.2 Lignans X
12 Quercetin 3-O-glucuronide 447.1 Flavonols X
13 Phloretin 273 Dihydrochalcones X X
14 5-O-galloylquinic acid 343.1 Hydroxybenzoic acids X
15 p-coumaroyl tyrosine 327.2 Hydroxycinnamic acids X
16 Ferulic acid 193.1 Methoxycinnamic acids X
17 Hydroxycaffeic acid 195.1 Hydroxycinnamic acids X
18 Feruloyl glucose 355.1 Methoxycinnamic acids X
19 Tangeretin 1075 Methoxyflavones X

The X represents the presence of the identified compounds at that time of fermentation. Blanks indicate the
absence of the compounds at that time of fermentation.
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The SSF process enriched the fermentation extracts with the release of 13 compounds
(7–19) shown in Table 2; the liberation of different polyphenols through fermentation may
be the result of LAB enzymes capable of degrading the cell wall (tannase, β-glucosidase
and feruloyl esterase) [32,44,52]. Among the released bioactive compounds, the enriched
extracts highlight their interesting bioactivities with potential in industry; for example, the
SSF releases gardenin B (24 h), a methoxylated flavonoid with novel health benefits, that
showed a cytotoxic effect as an apoptotic inducer against human leukemia cell lines (HL-60
and U-937) [68]. Recently, gardenin B was reported as a promising antiviral auxiliary with
the capacity to attach with the SARS-CoV-2 main protease (Mpro) [69]. Another novel
compound is trachelogenin (48 h), a lignan with relevant health activities; for example,
Moura et al. [70] associated it with in vitro antitumor capacity via induction of cell death,
with the formation of autophagosomes and cytoplasmic vacuolization. Also, an inhibited
interaction between trachelogenin and hepatitis C virus glycoprotein and the host entry
factor (CD81) [71] has been demonstrated. The other compounds (kaempferol, quercetin,
ferulic acid, and tangeretin, among others) have been associated with beneficial activities
such as antioxidant, antimicrobial, antiviral, etc. [72–74]. Thus, the bioactive compounds
released in the extracts comprise bioactive molecules with highlighted bioactivities for the
food and pharmaceutical industries.

The data shown in Table 2 could be used for relating the bioactivities obtained with
the compounds found in the extracts; the ability to inhibit α-amylase could rest in the
presence of sinensetin and medioresinol, the potential of which was determined in pre-
vious works [75,76]. Furthermore, the antimicrobial potential against E. coli could be
related to the presence of chemical molecules like caffeic acid 4-O-glucoside, resveratrol
3-O-glucoside, sinensetin, and ferulic acid, which have been related with this activity
in the literature [77–79]. Also, the potential synergetic effect between the chemical com-
pounds could be responsible for the higher antimicrobial activity reported at 96 h; for
example, Skroza et al. [80] demonstrated positive interactions between resveratrol and
ferulic acid, showing a decrease in the MIC (Minimum inhibitory concentration) value from
2500 micromolar to 1250 micromolar (molar ratio 1:1); both compounds could be found in
the SSF extracts.

4. Conclusions

This research article highlights important insights concerning evidence of the hidden
bioactive compounds and potential bioactivity of oregano by-products subjected to SSF
technology. Our findings from bioprocessing using L. mesenteroides increase the current
efforts looking for novel sustainable processing lines under circular economy trends. Also,
the application of SSF with L. mesenteroides increases the extraction of total polyphenolic
compounds (0.60 times) and flavonoids (2.55) as compared to the initial time point. The
extracts showed a potential inhibitory capacity against a-amylase (14.10 ± 0.45%) that
could be explored as a possible auxiliary in glucose control. Also, the extracts showed
antibacterial capacity against E. coli (12.06 ± 2.66, 96 h) that could be explored for product
development. The HPLC-MS analysis determined that SSF releases compounds of interest
not found before fermentation (0 h) such as gardenin B, trachelogenin, ferulic acid, and
resveratrol 3-O-glucoside.

Finally, applying LAB in an SSF process comprises a potential alternative for recovering
bioactive extracts from Mexican oregano residues, which may trigger their use as raw
materials to develop industrial bioproducts. Additionally, the following studies will be
guided in evaluating residual fermented biomass, which could be a novel fermented
vegetable food product.

Also, exploiting Mexican resources will bring value to the region while minimizing
environmental impact by applying bioprocessing tools. However, more studies are needed
to understand the bacterial mechanism involved in the liberation of polyphenols and the
possible biotransformation that biomolecules may suffer via LAB metabolism.
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