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Abstract: Pear trees must be artificially pollinated to ensure yield, and the efficiency of pollination
and the quality of pollen germination affect the size, shape, taste, and nutritional value of the fruit.
Detecting the pollen germination vigor of pear trees is important to improve the efficiency of artificial
pollination and consequently the fruiting rate of pear trees. To overcome the limitations of traditional
manual detection methods, such as low efficiency and accuracy and high cost, and to meet the
requirements of screening high-quality pollen to promote the yield and production of fruit trees,
we proposed a detection method for pear pollen germination vigor named YOLOv8-Pearpollen, an
improved version of YOLOv8-n. A pear pollen germination dataset was constructed, and the image
was enhanced using Blend Alpha to improve the robustness of the data. A combination of knowledge
distillation and model pruning was used to reduce the complexity of the model and the difficulty
of deployment in hardware facilities while ensuring that the model achieved or approached the
detection effect of a large-volume model that can adapt to the actual requirements of agricultural
production. Various ablation tests on knowledge distillation and model pruning were conducted to
obtain a high-quality lightweighting method suitable for this model. Test results showed that the
mAP of YOLOv8-Pearpollen reached 96.7%. The Params, FLOPs, and weights were only 1.5 M, 4.0 G,
and 3.1 MB, respectively, and the detection speed was 147.1 FPS. A high degree of lightweighting and
superior detection accuracy were simultaneously achieved.

Keywords: pear pollen; sprouting vigor; lightweight; object detection; YOLOv8

1. Introduction

Pollen is the male reproductive cell of seed plants and is an important agent of
sexual reproduction, which is closely related to the improvement of plant varieties and
the selection of high-quality genotypes. Good-quality male pollen can greatly improve
pollination success, and pollen germination vigor is one of the indicators of male pollen
quality [1]. Therefore, measuring pollen germination vigor is crucial for plant science and
agricultural production to achieve a high and excellent yield of plants and facilitate low-cost
and efficient pollination. Most existing pollen viability assays employ staining and in vitro
culture methods [2]. However, staining cannot accurately indicate pollen viability and is
not suitable for studying the effect of a treatment on pollen viability. Meanwhile, in vitro
culture methods require cumbersome experimental manipulations and high economic and
labor costs. Therefore, developing an efficient and simple method for the determination of
pollen viability is important [3].

Pear is a native fruit tree of China. Its original species can be traced back to the tertiary
period (66 million years ago to 2.6 million years ago) or earlier in the mountainous areas
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of western or southwestern China, and it has a long history of more than 3000 years of
cultivation in China. Pears are popular because of their sweet flavor and high nutritional
value. China’s pear production reaches up to 19 million tons (2023), accounting for 3/4 of
the world’s total pear production [4]. Given that pear is a typical self-fertilizing nonaffinity
fruit tree, only the same variety of pear trees can blossom and they cannot pollinate each
other. Therefore, the production must be reasonably configured using pollinating trees
or artificial pollination to obtain a normal yield. In addition, the pear flowering period is
only a short 4–5 days. Inappropriate pollination tree configuration, such as poor flowering,
could easily cause yield reduction. Therefore, pears need efficient pollination methods and
male pollen with excellent germination vigor. In different varieties of pear pollen there
are small differences in the rate of germination potential, but the consistent trend shows
that while in pollen tube germination length in the early stage of germination there are
individual differences, the germination characteristics are obvious; both pollen grains and
pollen tubes are consistent in shape, and easy to observe during study.

Machine learning has been increasingly utilized in the field of palynology to classify
and predict pollen concentrations. Punyasena et al., developed a layered machine learning
classification system that discriminates variations in pollen shape, size, and texture, demon-
strating the capability of machine learning systems to solve challenging palynological
classification problems [5]. By combining pollen observations with meteorological and land
surface variables, Liu et al., used machine learning to estimate atmospheric ambrosia pollen
concentrations in Tulsa, OK [6]. Sobol et al., investigated the use of supervised machine
learning for biome classification using pollen datasets, assigning modern pollen samples to
biome classes [7]. In addition, Sobol et al., applied machine learning to reconstruct past
biome states using modern pollen assemblages in Southern Africa [8]. Huete et al., utilized
machine learning approaches to forecast grass pollen evolution by analyzing satellite-based
landscape information and phenology [1]. Zewdie et al., presented a method for estimating
airborne pollen concentrations using deep neural networks and ensemble machine learning
methods, testing the performance of machine learning models on a dataset from 2012 to
2017 [9]. Furthermore, Zewdie et al., applied machine learning methods to NEXRAD (Next
Generation Weather Radar) weather radar data to estimate daily Ambrosia pollen concen-
trations over a region [9]. Cordero et al., used supervised machine learning algorithms
to predict daily Olea pollen concentrations in central Spain, showcasing the potential of
machine learning in sunderstanding and forecasting pollen risk levels [10]. Yamazaki et al.,
introduced a simple method for measuring pollen germination rates using machine learn-
ing; specifically, the Yolov5 package for transfer learning [11]. This method could detect
germinated and non-germinated pollen, allowing for the estimation of pollen germination
rates across different plant species.

The above research results show that machine learning and target detection have
a wide range of applications and play a good role in the field of sporology, meeting
the needs of life and production and conforming to the trend of combining practical
agricultural production with machine learning target detection [12]. In practice, a large
amount of image data must be provided to enrich the model and cope with the effects of
different lighting conditions and changes in pollen size, shape, and attitude on the model
performance; however, this process requires substantial time and effort. Data augmentation
is particularly important and helps the model to generalize unseen data by introducing
additional variations in the data [13]. Therefore, the model can perform well on the training
set and maintain high accuracy on new and different data, reducing the risk of overfitting,
improving the robustness of the model to small perturbations or noise in the input data,
and enriching the application scenarios of the model [14]. To further adapt to the needs
of agricultural production fields in environments with limited computational resources
(e.g., mobile devices and embedded systems) and to reduce the cost of applications, we
constructed a model named YOLOv8-Pearpollen based on the YOLOv8 target detection
model for the pollen emergence viability detection of pear pollen. With this model, we
designed two deep lightweight improvements, namely, model pruning and knowledge
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distillation, to reduce unnecessary parameters and connections in the neural network,
minimize the Params and FLOPs, optimize the efficiency and performance of the model,
maximize the use of limited data resources, and improve the model’s pervasiveness in the
deployment of real hardware.

2. Materials and Methods
2.1. Microphenotypic Trait Observation System

The microphenotypic trait observation system was equipped with a model NSZ818M
stereoscopic microscope (NOVEL, Nanjing, China) with a total magnification range of
7.5–135×. A magnification of 100 was chosen in this experiment to help improve the
accuracy of the pollen grain classification and identification tasks. Installed on the stereo-
scopic microscope was a Sony industrial microscope digital camera E3ISPM20000KPA
(Hangzhou, China), which was connected to the stereoscopic microscope through the
C-mount interface and had an image acquisition resolution of 5440 × 3648 pixels. Clear
and detailed images are helpful for machine learning model training and data analysis,
and the model comprehensively learned and understood the sample’s features [12]. The
system was equipped with a four-type light source (coaxial light, ring light, adjustable
angled light, and bottom fill light) that enhanced the contrast of the samples and made
the fine structure visible by changing the angle and intensity of the illumination. The use
of different illumination modes such as transmitted light and reflected light resulted in a
special imaging effect, which was conducive to the observation of special microstructures or
microscopic phenotypes [15]. Specialized data acquisition software was used to adjust the
parameters, such as the exposure and contrast of the captured image data, and to capture
and store the images. Finally, the processed dataset was labeled to train the detection model
of pollen germination status. Figure 1 illustrates the structure of the microphenotypic trait
observation system used in this experiment.

Figure 1. Structure of the microphenotypic trait observation system.
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2.2. Germination Image Acquisition and Dataset Construction

The pear pollen used in this experiment was the variety “yellow flower” obtained from
the Baima Teaching and Research Base of Nanjing Agricultural University, Nanjing, Jiangsu
Province, China. During the macrobud stage, a large number of flower buds were collected,
placed inside a room to dry, and rubbed and sieved to obtain a number of pear anthers.
The anthers were then packaged in sulfuric acid paper bags, placed in dry containers with
color-changing silica gel desiccant, and then frozen and sealed at a low temperature for
preservation. Prior to use, the anthers were first placed in a 4 ◦C environment to wake up
for 8–12 h and resealed after each use as shown in Figure 2a,b. After the pollen culture
solution was configured (10% sucrose + 0.01% boric acid + 0.03% calcium gluconate +
0.04% xanthan gum), a pipette gun was used to transfer 1.5 mL of the culture solution to
a 2 mL centrifuge tube. A trace amount of pear pollen (approximately 0.2 mL) was then
dispersed and suspended in the culture solution [16]. After the centrifuge tube was fixed,
it was placed in a ZD-85 (Changzhou, China) thermostatic gas-bath vibrator (light-proof
environment, 25 ◦C, 120 rpm speed, reciprocating mode amplitude of 25 mm) for 2 h so that
the pollen was uniformly suspended and distributed in the culture medium and sprouted
pollen tubes. The cultured pollen suspension was evenly spread on a glass slide, which
was then placed under a microscope to observe and take images of the pollen germination
condition. Seven trials were repeated. After screening, 1500 images saved in the JPEG
format were collected throughout the experimental period; the experimental process is
shown in Figure 2c.

Figure 2. Data acquisition: (a) Pollen storage conditions. (b) “Yellow flower” pear pollen material.
(c) Experimental procedure.

Labellmg was used to annotate the images of pollen germination status [17]. Whether
the length of pollen tube was greater than or equal to the length of pollen grain diameter
was used as the criterion to judge if the pear pollen germinated or not, and the results were
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stored as an .xml file. The labeled xml file was batch converted to a txt coordinate label file
to obtain the normalized length, width, and coordinates of the center point of the labeled
box and the target categories of “sprout” and “not sprout” [18]. “Sprout” represents pear
pollen that meets the conditions for sprouting, and “not sprout” represents pear pollen that
has not sprouted or does not meet the conditions for sprouting. The collected images of
pear pollen sprouting conditions are shown in Figure 3a–c.

Figure 3. Dataset construction: (a) Schematic of germinated pollen. (b) Schematic of ungerminated
pollen. (c) Schematic of ungerminated pollen that does not satisfy the judgment conditions for
germination. (d) Data enhancement and dataset construction.

The main factors affecting the accuracy of pollen germination viability detection in
pear trees are pollen color, detection background color, and pollen growth attitude. To
avoid unnecessary labor and time costs, increase the robustness of the detection method,
and effectively expand the dataset [19], we chose the Blend Alpha method to enhance the
obtained image data. The graph contains three color channels, red, green, and blue (RGB),
and an Alpha channel for recording the transparency of each pixel in the image, with values
ranging from 0 (completely transparent) to 1 (completely opaque). Blend Alpha processes
the image through transparency mixing and achieves the synthesis and enhancement of
the image by adjusting the image Alpha value. The formula for calculating the synthesized
pixel value is shown in Equation (1), where Cresult is the synthesized pixel color value;
Cforeground and Cbackground are the pixel color values of the foreground and background,
respectively; and α is the transparency value of the foreground pixel. The result from Alpha
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was blended with 50% of the original image, resulting in the removal of 50% of all colors to
create a certain grayscale effect. The image result formula is shown in Equation (2), which
is linearly interpolated between the foreground branch (FG) and background branch (BG)
according to the overlay factor (0.5 in this experiment). The obtained final dataset had
3000 images, including 1500 original images and 1500 images enhanced by data, which
were randomly divided into training, validation, and test sets according to the ratio of 8:1:1,
as shown in Figure 3d.

Cresult = Cforeground ∗ α + Cbackground ∗ (1 − α) (1)

FinalPic = f actor ∗ FG + (1 − f actor) ∗ BG (2)

2.3. YOLOv8-Pearpollen Design

To improve the detection accuracy of the model and reduce its computation, complex-
ity, and cost for hardware deployment [11], we designed YOLOv8-Pearpollen based on
YOLOv8n. Its detailed structure is shown in Figure 4. Relative to YOLOv8, the following
optimizations were made for YOLOv8-Pearpollen: (1) The lightweight design of knowl-
edge distillation was added, offline distillation was chosen for migrating the knowledge
of the pretrained teacher model to the student network [20], and the distillation method
that combines feature and logical distillation was adopted to distill the feature layer in the
model and the probability distribution of the model output so that the model’s performance
would be close to or reach the performance of a model with small volume, improving its
performance with small volumes. The performance of a large-volume model was used
as the basis to improve the efficiency of the proposed model. (2) The lightweight design
of model pruning was incorporated, and the method of sparse group Lasso was used
through the efficient coordinate descent method algorithm to achieve rapid convergence
even when dealing with large datasets [21]. The iterative optimization of the coefficients
within each cluster ensured model accuracy while maintaining computational efficiency.
The features of the model were automatically selected to effectively cut out unimportant
feature coefficients, thus pruning the model to improve its generalization performance and
enhance its interpretability, which is invaluable for practical applications.

Figure 4. Structure of YOLOv8-Pearpollen.
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2.3.1. Knowledge Distillation

A complex detection structure is usually required for the accurate and precise detection
of small targets such as pear tree pollen. This structure must be specially designed to capture
the fine features of small targets, leading to an increase in the complexity and volume of
the model. To address these difficulties, this study introduced knowledge distillation for
improving the small target detection performance of YOLOv8-Pearpollen. Knowledge
distillation is a deep learning technique that migrates the knowledge from a large and
complex model (“teacher” model) to a simple and small model (“student” model) [22].
We trained the dataset for 400 rounds using the YOLOv8l large-volume model to obtain
a voluminous but accurate teacher model. YOLOv8n was then used as the basis for the
student model and trained it by knowledge distillation to learn the detection effect of the
teacher model. In terms of distillation methods, knowledge distillation is divided into logic
or feature distillation. The soft labels of the teacher model and the manually labeled real
labels were used to cotrain the student model. The soft labels contain information about the
relationships between the different categories, not just the hard labels (the final classification
results). Meanwhile, the soft output of the teacher model served as a regularization to help
generalize the student model to unseen data and allow it to learn the subtle patterns that
the teacher model learned on the training data.

Logic distillation utilizes the outputs prior to the last fully connected layer of the
model network as a carrier of knowledge, allowing the student model to learn the nuances
of the teacher model’s recognition of categories [23]. Rather than just the final probabilistic
outputs or categorical labels, the output distributions of both models are also matched.
The complexity of the model is controlled, and overfitting is prevented by introducing L1
regularization. The total training loss of the logic distillation process (Losslogical) is shown
in Equation (3), where Lossdistill is the base loss function of the distilled model, and λ is
a nonnegative regularization hyperparameter. As the value of λ increases, the impact of
the regularization term on the total loss also increases, thus making the model sparser.
Conversely, the smaller the value of λ, the smaller the regularization term’s contribution to
the total loss, and the complexity of the model increases accordingly. The weight vector
is w. Meanwhile, L1 regularization limits the size of the model parameters by adding the
absolute values of the weight vectors to the loss function, thus inducing sparse feature
learning in the model [24].

Losslogical = Lossdistill + λ ∑n
i=1 |wi| (3)

Different from logic distillation that focuses on knowledge transfer in the output layer
of the model, feature distillation concentrates on the transfer of feature representations
in the internal layers (e.g., convolutional layers). By minimizing the differences between
the feature representations of the student and teacher models on these internal layers, the
student model can learn the rich representations and the high-level abstraction capabilities
of the teacher model. The principle of feature distillation is illustrated in Figure 5. Channel-
wise distillation [25] focuses on the channel level of the model’s internal features. For the
feature maps of the student and teacher models, we used the softmax function to obtain
the normalized probability distributions. Equation (4) calculates the distillation loss in the
channel direction, where T and S are the teacher and student models, respectively, and
yT and yS are their corresponding activation maps. Converting the activation values to
probability distributions aims to make the feature maps of the student model as close as
possible to those of the teacher model in the channel dimension and to realize a fine-grained
and efficient knowledge distillation process as shown in Equation (5), where c = 1, 2, . . . C
is the channel, and i is the spatial location of the channel. The temperature parameter T is
introduced to regulate the smoothness of the softmax function and control the “softness”
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of the output distribution. A high T leads to a flat distribution, and a low value leads to a
sharp distribution [26].

LCWD = φ
(

ϕ
(

yT
)

, ϕ
(

yS
))

= φ
(

ϕ
(

yT
c

)
, ϕ

(
yS

c

))
(4)

ϕ(yc) =
exp

(
yc,i
T

)
∑W·H

i=1 exp
(

yc,i
T

) (5)

Figure 5. (a) Structural map of feature distillation. (b) Aligning each channel of the student feature
map with the channels of the teacher network by minimizing KL divergence.

Knowledge distillation can be applied by determining the Kullback–Leibler (KL)
divergence between the feature maps of the teacher and student models [27]. The difference
between the outputs of the student and teacher networks was quantified using the KL
scatter, which guides the student network to adjust its parameters to mimic the behavior of
the teacher network, and was calculated as shown in Equation (6), where C denotes the
total number of channels, and W and H denote the width and height of the feature map,
respectively. Scatter calculation was performed for each channel and the scatter values
from all spatial locations in each channel were summed to ensure that every spatial location
within each channel is taken into account. This process helps accurately align the feature
responses of the teacher and student networks at the spatial locations and ensures that
the student network learns as comprehensively as possible from the teacher network’s
knowledge [28].

φ
(

yT , yS
)
=

T 2

C ∑C
c=1 ∑W·H

i=1 ϕ
(

yT
c,i

)
· log

ϕ
(

yT
c,i

)
ϕ
(

yS
c,i

)
 (6)

The total training loss of the student model of the knowledge distillation process
(LossDistillation) is shown in Equation (7) and consists of two components, Loss f eature and
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LCWD. Loss f eature represents the loss of the student model when performing the instance
segmentation task and α is an adjustable hyperparameter.

LossDistillation = Loss f eature + αLCWD (7)

In this experiment, we used a combination of feature and logical distillation to enable
the student model to simultaneously acquire knowledge from the internal representation
of the teacher’s model and the output decision-making level, realizing a comprehensive
knowledge transfer. The student model not only learns the final predictions of the teacher
model but also understands the abstract feature processing behind arriving at those predic-
tions. Hence, it can further understand the essential features of the input data, improve
generalization ability, and achieve or approach the performance of the teacher model while
maintaining a small model size. For model deployment under limited resources, such as in
mobile devices and embedded systems, the model size and computational requirements
can be drastically reduced while maintaining predictive performance, providing great
flexibility for a wide range of tasks and model architectures.

2.3.2. Model Pruning

The distilled YOLOv8-Pearpollen model was structurally pruned to eliminate the
nonessential parts of the model and reduce its complexity while keeping it as accurate
as possible.

The sparse group-lasso [29] achieves sparsity at the group and individual feature
levels by combining the penalty terms of lasso (L1 regularization) [30] and group-lasso (L2
regularization) [31]. This approach selects important feature clusters and performs feature
selection within each selected cluster, further reducing model complexity and improving
model interpretability [32]. As shown in Equation (8), X
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level, i.e., only a fraction of the important predictor variables are included in the model. 𝜆ଵ and 𝜆ଶ are the regularization parameters that control the strength of the group-lasso 
and lasso penalties. A balance between model complexity and sparsity can be achieved 
by tuning these parameters. The generation of sparsity was changed to the group and 
individual feature levels by group-lasso to accurately select predictors between and 
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The sparse group-lasso can be calculated from the coordinate descent by choosing 
an initial coefficient vector 𝛽, which is usually a zero vector or any estimate based on a 
priori knowledge. For each group l , the residuals are shown in Equation (12), i.e., the 
target value minus the current predicted values for all other clusters excluding group l . 
The predictors were denoted as 𝑋ℓ = Z = (Z1, Z2, ..., Zk), and the coefficients were de-
noted as 𝛽ℓ = θ = ( 1θ , 2θ , ..., kθ ). For each feature j within the group, 𝑤 =(𝑤ଵ,𝑤ଶ, … ,𝑤ே) = 𝑟 −  ∑ஷ 𝑍𝜃 is the updated residual, excluding the contribution of 
the current feature j. If ห𝑍் 𝑤ห is less than 𝜆ଶ, then it will be directly set to 0, otherwise, 𝜃 will be set to the minimized value of Equation (13). If the whole coefficient vector is 
zero is not satisfied, then each coefficient must be optimized and the steps must be re-
peated until the coefficients of all groups reach the convergence condition [34]. Only one 
coefficient or one group of coefficients must be updated at a time, and the global optimal 
solution can be obtained through stepwise approximation. The key advantage of the co-
ordinate descent method is its high efficiency, especially when dealing with 
high-dimensional data with a group structure. It enables fast and accurate feature selec-
tion, thus enhancing the explanatory and predictive performance of the model. 𝑟ℓ = 𝑦 −  ∑ஷℓ 𝑋�̂� (12)12∑ୀଵே  ൫𝑤  −  ∑ୀଵ  𝑍𝜃൯ଶ  +  𝜆ଵ ∥ 𝜃 ∥ଶ + 𝜆ଶ∑ୀଵ  ห𝜃ห (13)

3. Results and Discussion 
3.1. Training Environment and Hyperparameter Settings 

The hardware configuration for this experiment comprised an Intel(R) Xeon(R) Gold 
6248R @ 3.00 GHz processor, an NVIDIA GeForce RTX3090 graphics card, and an oper-
ating system of Windows 11. The environment configuration for deep learning consisted 
of Python 3.11, Pytorch 2.1.0, CUDA 12.2, and Torchvision 0.16.0. The important hy-
perparameter settings during the training are shown in Table 1. No pretraining weights 
were used in any part of this experiment to ensure the fairness and effectiveness of the 
detection model for pear pollen germination vigor. 

=θ= (θ1,
θ2, . . ., θk). For each feature j within the group, wj = (w1, w2, . . . , wN) = r − ∑k ̸=j Zkθk is
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the updated residual, excluding the contribution of the current feature j. If
∣∣∣ZT

j wj

∣∣∣ is less
than λ2, then it will be directly set to 0, otherwise, θj will be set to the minimized value of
Equation (13). If the whole coefficient vector is zero is not satisfied, then each coefficient
must be optimized and the steps must be repeated until the coefficients of all groups reach
the convergence condition [34]. Only one coefficient or one group of coefficients must
be updated at a time, and the global optimal solution can be obtained through stepwise
approximation. The key advantage of the coordinate descent method is its high efficiency,
especially when dealing with high-dimensional data with a group structure. It enables fast
and accurate feature selection, thus enhancing the explanatory and predictive performance
of the model.
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ating system of Windows 11. The environment configuration for deep learning consisted 
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3. Results and Discussion
3.1. Training Environment and Hyperparameter Settings

The hardware configuration for this experiment comprised an Intel(R) Xeon(R) Gold
6248R @ 3.00 GHz processor, an NVIDIA GeForce RTX3090 graphics card, and an operating
system of Windows 11. The environment configuration for deep learning consisted of
Python 3.11, Pytorch 2.1.0, CUDA 12.2, and Torchvision 0.16.0. The important hyperparam-
eter settings during the training are shown in Table 1. No pretraining weights were used in
any part of this experiment to ensure the fairness and effectiveness of the detection model
for pear pollen germination vigor.

Table 1. Model hyperparameter setting.

Parameters Setup

Epoch 150
Batch size 32
Optimizer SGD

Close_mosaic 20
Cache True

Image size 640 × 640
Initial learning rate 1 × 10−2

Final learning rate 1 × 10−4

Momentum 0.937
Weight-decay 5 × 10−4

Warmup-epochs 3

3.2. Ablation Tests

To test the feasibility and effectiveness of the detection model for pear pollen germi-
nation vigor, we designed several sets of ablation experiments, evaluated the degree of
contribution of each module to the model performance, and excluded and removed the
modules that had a small or negative effect on the final results to make the model concise
and efficient.

First, in the design of knowledge distillation, three types of distillation (feature, logi-
cal, and hybrid) were set. For feature distillation, the following three types were chosen:
channel-wise distillation (CWD), masked generative distillation (MDG), and mimic. For
logical distillation, the following three types were selected: L1, L2, and BCKD. The corre-
sponding loss rates λ and α were set. The loss rate quantified the difference between the
predictions of the student and teacher models. It must be changed to adjust the weight
between the lost items. Adjustments must be made to the similarity between the outputs
of the intermediate layers of the student and teacher models in terms of shape, direction,
or distribution and the difference between the probability distribution of the outputs of
the student and teacher models to ensure that the student model can mimic the teacher
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model to deal with internal mechanism data and thus learn an efficient and sophisticated
representation of the data. After the above parameters were changed and the accuracy
and efficiency of the model were adjusted, the results of the ablation test for knowledge
distillation were compared as shown in Table 2. In terms of feature distillation, CWD and
MDG were generally better than the other types. Meanwhile, the results of the mimic
method for several data were different from those of the above two methods. Even if
the loss rate was adjusted, the results were still not satisfactory. In terms of logical dis-
tillation, a general improvement was observed over feature distillation. The APnot sprout,
mAP@0.5, precision, and recall were comparable with those of feature distillation, but
the APsprout was relatively lower. When feature and logical distillation were combined,
the data became stable and improved compared with using feature or logical distillation
alone. Logical distillation l1 type (loss rate 0.8) and characteristic distillation CWD (loss rate
0.8) stood out among the 17 compared methods, showing the highest values for mAP@0.5,
APsprout, and APnot sprout at 97.6%, 97.6%, and 97.7%, respectively, relative to the baseline
models. YOLOv8-n (without distillation) showed improvement in all data, verifying the
excellent effect of knowledge distillation on the small-volume model’s performance and
accuracy improvement.

Table 2. Comparison of test results for knowledge distillation ablation.

Models mAP@0.5
(%)

APsprout
(%)

APnot sprout
(%)

Precision
(%)

Recall
(%) FPS

YOLOv8-n 97.0 97.0 97.1 91.4 94.2 149.3
feature cwd loss1.0 97.2 97.6 96.8 94.0 92.6 142.9
feature cwd loss0.8 97.3 97.1 97.4 93.9 93.6 138.9
feature mdg loss1.0 97.2 97.0 97.4 93.4 94.5 147.1

feature mimic loss1.0 96.8 96.7 96.9 92.7 92.7 117.6
feature mimic loss0.8 96.6 96.2 97.1 93.6 92.6 128.2

logical l1 loss1.0 97.1 97.1 97.2 93.7 94.5 140.8
logical l1 loss0.8 96.8 96.3 97.2 93.1 93.5 151.1
logical l2 loss1.0 97.1 96.8 97.5 93.5 93.8 151.1
logical l2 loss0.8 97.6 97.5 97.6 93.9 94.2 144.9

logical BCKD loss1.0 97.1 96.6 97.5 92.6 94.5 142.9
logical BCKD loss0.8 97.5 97.5 97.5 92.4 95.3 153.8

all l2 loss1.0 cwd loss1.0 97.2 97.3 97.1 93.9 94.4 137.0
all l2 loss0.8 cwd loss0.8 97.4 97.5 97.4 94.3 94.5 153.8
all l1 loss1.0 cwd loss1.0 97.2 96.9 97.5 93.7 94.3 151.5
all l1 loss0.9 cwd loss0.9 97.3 97.4 97.2 94.2 94.2 125.0
all l1 loss0.8 cwd loss0.8 97.6 97.6 97.7 94.0 94.7 151.5

To intuitively reflect the superiority of our choice of knowledge distillation method,
we drew a hexagonal radar chart using the normalization method to compare the results
of the six parameters as shown in Figure 6 below. Through min–max normalization, the
original data were linearly transformed so that the results of the processed data were
between [0, 1]. The closer the value to 1, the more effective the model; the closer the value
to 0, the worse the effect. The transformation formula is shown in Equation (14), where
Xmax is the maximum value of the data, Xmin is the minimum value of the data, and RA is
the converted ratio of the difference between the maximum and minimum values of the
current indicator. The larger the true value, the higher the normalized score on this item.

RA =
X − Xmin

Xmax − Xmin
(14)
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Figure 6. Normalized analysis of multiple indicators of knowledge distillation.
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To further explore the effect of feature layer selection in feature distillation, we took
the model with the best results and designed an ablation test using this model to determine
the effect of knowledge distillation by changing the number of distillation layers under
the same parameters. The results are shown in Table 3. When using the feature vectors
of the 15th, 18th, and 21st layers as pseudo labels for distillation, the mAP@0.5, APsprout,
and APnot sprout were improved to 97.6%, 97.6%, and 97.7%, respectively, and the precision
and recall were improved to 94.0% and 94.7%, respectively, relative to those in the baseline
model, YOLOv8-n (which does not use distillation). When the number of distillation layers
was increased to six (layers 6, 8, 12, 15, 18, and 21), the APnot sprout of the model improved
to 97.7% compared with the use of three layers (layers 15, 18, and 21). Meanwhile, the
mAP@0.5 and APsprout decreased to 97.3% and 96.9%, respectively. Although the recall
slightly improved to 95.2%, the precision decreased by one percentage point to 92.9%.
When the number of distillation layers was further raised to eight, the APnot sprout of the
model did not change, and the mAP@0.5 and APsprout continued to drop to 97.0% and
96.3%, respectively. These findings demonstrate that choosing the appropriate number of
feature layers is the key to optimizing feature distillation.

Table 3. Comparison of ablation test results with the same parameters and changing the number of
distillation layers.

Number of
Distillation Layers mAP@0.5 (%) APsprout (%) APnot Sprout (%) Precision (%) Recall (%)

none 97.0 97.0 97.1 91.4 94.2
15, 18, 21 97.6 97.6 97.7 94.0 94.7

6, 8, 12, 15, 18, 21 97.3 96.9 97.7 92.9 95.2
2, 4, 6, 8, 12, 15, 18, 21 97.0 96.3 97.7 94.1 93.9

Second, in terms of model pruning design, different pruning methods were adopted.
The effect of global pruning and local pruning on precision, Params, and FLOPs was
examined, and the results of the ablation test for model pruning were compared as shown
in Tables 4 and 5. Four model pruning methods were selected for comparison; namely,
lamp [35], groupnorm [36], grouptaylor [37], and groupsilm [38]. Although the lamp
method greatly reduced the Params and weights, its mAP@0.5, APsprout, and APnot sprout
were slightly inferior to those grouptaylor and groupsilm. The mAP@0.5, APsprout, and
APnot sprout of groupnorm were lower than those of the other methods. Especially in the
detection of sprouting pollen, its effect was poor. Grouptaylor had a clear advantage in
detection accuracy, showing the highest mAP@0.5, APsprout, and APnot sprout. However,
its frame per second (FPS) was significantly reduced, and the model inference speed was
slow. Meanwhile, the Params, FLOPs, and weights of groupsilm showed decreases of 50%,
50%, and 48%, respectively, and its accuracy exhibited minimal reduction. Groupsilm was
effective in the detection of sprouted pollen, but its accuracy for detecting unsprouted
pollen was low. For global pruning, which calculates the proportion of the model’s pruning
according to all the parameters, we found that the model’s pruning was more effective than
that of groupsilm. Global pruning, which uses all parameters to calculate the proportion
of model clippings, showed a slight improvement in accuracy over local pruning by
calculating clippings according to the parameters of each layer. However, its lightweighting
effect was significantly inferior to that of local pruning. With the increase in the pruning rate,
the Params and FLOPs of the model decreased and its detection performance decreased
significantly. Model pruning can effectively and simultaneously reduce the model size and
computational cost, ensure the detection accuracy of the model and effectively optimize its
detection efficiency, fully utilize the computational resources, reduce the model complexity
in the hardware deployment of the threshold, and enrich the application of the model scene.
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Table 4. Analysis of ablation test results of model pruning methods.

Pruning
Method

mAP@0.5
(%)

APsprout
(%)

APnot Sprout
(%)

Params
(M)

FLOPs
(G)

Weights
(MB) FPS

none 97.6 97.5 97.6 3.0 8.1 6.0 151.5
lamp 96.3 95.8 96.8 0.8 4.0 1.7 147.1

groupnorm 92.4 89.2 95.6 1.2 4.0 2.6 156.3
grouptaylor 97.3 97.7 96.8 1.6 4.0 3.2 122.0
groupsilm 96.7 96.4 97.1 1.5 4.0 3.1 147.1

Table 5. Analysis of the ablation test results of different model pruning rates with the same methodology.

Pruning Rate mAP@0.5
(%)

APsprout
(%)

APnot Sprout
(%)

Params
(M)

FLOPs
(G)

Weights
(MB) FPS

1.5 (global) 97.6 97.3 97.8 2.7 5.4 5.3 144.9
2.0 (global) 96.9 96.7 97.2 2.4 4.0 4.8 142.9

2.0 (nonglobal) 96.7 96.4 97.1 1.5 4.0 3.1 147.1
2.5 (global) 95.1 94.5 95.7 2.1 3.2 4.3 144.9
3.0 (global) 93.7 91.7 95.6 1.7 2.7 3.4 128.2

The designed detection model for pear pollen germination vigor was compared with
the YOLOv8-n benchmark detection model, and the experimental results are demonstrated
in Table 6. After the model was subjected to knowledge distillation, its mAP@0.5, APsprout,
and APnot sprout improved to 97.6%, 97.5%, and 97.6%, respectively. After the model was
pruned, its Params, FLOPs, and weights were further reduced by 50%, 50.6%, and 48.3%
respectively, relative to their original values. Meanwhile, its FPS reached 147.1, which
was a reduction of 4.4 compared with that of the unpruned one. In terms of accuracy,
the APnot sprout only decreased by 0.6%, and the mAP@0.5 and APsprout decreased by
only 0.9% and 1.2%, respectively. The ablation test demonstrated the effectiveness of the
detection model for pear pollen germination viability in terms of lightweighting and the
superiority of its accuracy, further proving the feasibility of this experimental design for
pear pollen detection.

Table 6. Feature distillation and structured pruning validity analysis.

Models mAP@0.5 (%) APsprout
(%)

APnot Sprout
(%)

Params
(M)

FLOPs
(G)

Weights
(MB) FPS

YOLOv8-n 97.0 97.0 97.1 3.0 8.1 6.0 149.3
+distill 97.6 97.6 97.7 3.0 8.1 6.0 151.5

+distill +prune 96.7 96.4 97.1 1.5 4.0 3.1 147.1

3.3. Comparative Tests

YOLOv8-Pearpollen was compared with multigeneration models from YOLOv3 to
YOLOv8 to further prove its superiority for the detection of pear pollen germination vigor.
The following outcome indicators were evaluated: mAP50 (which includes the accuracy of
the single identification of pollen germination and pollen nongermination results), Params,
FLOPs, and weights. The results are shown in Table 7. Compared with those of the other
models, the Params, FLOPs, and weights of YOLOv8-Pearpollen were significantly lower at
1.5 M, 4.0 G, and 3.1 MB, respectively. For YOLOv3, which has a high accuracy, its Params,
FLOPs, and weights decreased by 98.6%, 98.6%, and 98.4%, respectively, relative to those
of the model in agriculture and by 75.0%, 69.2%, and 73.5%, respectively, compared with
those of YOLOv7-tiny, a commonly used target detection model in agriculture. In terms of
detection accuracy, except for the large-volume YOLOv3, YOLOv8-Pearpollen had the best
APnot sprout, which was 0.3%, 1.0%, and 0.3% higher than that of YOLOv5-n, YOLOV6-n,
and YOLOv7-tiny, respectively, and its mAP@0.5 and APsprout were also higher than those



Agriculture 2024, 14, 1348 15 of 19

of YOLOv5-n and YOLOv7-tiny. The comparison test proved that the YOLOv8-Pearpollen
model designed in this experiment has outstanding performance and can maintain superior
detection accuracy while reducing the computational complexity. It has advantages over
other models, is suitable and easy to deploy in hardware devices (such as embedded
devices and mobile devices) to satisfy the actual needs of agricultural production, and can
accurately detect the pollen germination vigor of pear trees on devices in real time.

Table 7. Comparison of detection results of multiple models.

Models mAP@0.5
(%)

APsprout
(%)

APnot Sprout
(%)

Params
(M)

FLOPs
(G)

Weights
(MB) FPS

YOLOv3 98.3 98.0 98.6 103.7 282.2 198.1 102.0
YOLOv5-n 96.2 95.6 96.8 2.5 7.1 5.0 142.9
YOLOv6-n 94.2 92.2 96.1 4.2 11.8 8.3 158.7

YOLOv7-tiny 95.2 93.7 96.8 6.0 13.0 11.7 90.0
YOLOv8-n 97.0 97.0 97.1 3.0 8.1 6.0 149.3

YOLOv8-Pearpollen 96.7 96.4 97.1 1.5 4.0 3.1 147.1

To further demonstrate the superiority of YOLOv8-Pearpollen’s detection effect over
that of the other models, we plotted its multimetric normalized histogram as shown
in Figure 7. The conversion formulas for the three metrics of model parameter count,
computation, and weight file size are shown in Equation (15). Different from Equation (13),
RB is the ratio of the maximum value of the current indicator minus the value of the
indicator that needs to be converted to the difference between the maximum and minimum
values of the current indicator. The smaller the true value, the higher the normalized score
on this item, fitting the correct comparison of the model parametric quantity, computational
quantity, and weight file size indicators. YOLOv8-Pearpollen reaches the highest level in
four data items, namely, the number of model parameters, amount of computation, size
of the weight file, and APnot sprout. It is also in the forefront in terms of mAP and APsprout,
and its overall performance reaches the optimal level, far ahead of the other models.

RB =
Xmax − X

Xmax − Xmin
(15)

Figure 7. Normalized analysis of multiple model detection results.
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3.4. Evaluation of Model Prediction Performance

We analyzed the recognition effect of YOLOv8-Pearpollen compared with three
lightweight models, YOLOv5-n, YOLOv6-n, and YOLOv7-tiny, for pear tree pollen germi-
nation. Six images were randomly selected from 1800 images for the comparison test. The
detection comparison results are shown in Figure 8 and Table 8. The pink box area in the
figure indicates the identified sprouted pear pollen, the red box area indicates the identified
not sprouted pear pollen, and the green circle, yellow circle, and blue circle indicate the
missed detection, repeated detection, and wrong detection, respectively.

The results show that YOLOv5-n and YOLOv6-n often had repeated detection con-
ditions, especially in pollen-dense or superimposed scenarios. Meanwhile, YOLOv7-tiny
showed a certain degree of missed detection, which was rare in the detection results of
the other models. Overall, YOLOv8-Pearpollen had almost no repeat detection, which is
a huge improvement over the other four models, and accurately recognized pear pollen
germination in complex recognition scenarios.

Figure 8. Comparison of the detection results of YOLOv8-Pearpollen, YOLOv5-n, and YOLOv6-n,
YOLOv7-tiny, and YOLOv8-n.
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Table 8. Statistical table comparing the detection results of different models.

Models Wrong
Detection

Repeated
Detection

Missed
Detection

YOLOv5-n 4 7 0
YOLOv6-n 3 6 1

YOLOv7-tiny 6 3 2
YOLOv8-n 2 5 0

YOLOv8-Pearpollen 4 0 0

4. Conclusions

Traditional manual pear tree pollen detection methods are cumbersome and have low
efficiency, insufficient accuracy, and high labor costs. Screening high-quality male plant
pollen is necessary to improve the success rate of artificial pollination for pear tree pollen.
In addition, the cost of deploying the model on hardware must be minimized to further
adapt to the requirements of actual agricultural production. To address the above problems,
this study proposed a lightweight detection model for pear pollen germination named
YOLOv8-Pearpollen. The following are the accomplishments of this work:

(1) A pear tree pollen dataset was collected from several trials, and the original image
data were enhanced using Blend Alpha to improve the robustness of the detection
method, optimize its detection effect against a complex environmental background,
and reduce the labor and time costs required for image collection.

(2) Two designs of knowledge distillation and model pruning were used for the model to
improve its lightness of weight, reduce its deployment cost on hardware equipment,
and adapt to the actual needs of agricultural production. In terms of knowledge
distillation, we chose to use a combination of logical and feature distillation so that the
student model could learn from the teacher model and the internal layer and output
decision-making to achieve or approach the detection effect of the large-volume
teacher model. A number of ablation tests were carried out on different knowledge
distillation methods to select the best method, and the detection results were compared
under different numbers of distillation layers but the same method to determine effect
of the number of distillation layers on the distillation effect. The structured pruning
method of sparse-group lasso was used for model pruning to reduce the number of
model calculations and maintain the detection performance of the model as much as
possible. A variety of model pruning methods were also tested. The detection effects
of different pruning rates of the same method were analyzed to obtain the best model
pruning effect and ensure that the model has a high degree of lightweighting while
showing good detection accuracy.

(3) YOLOv8-Pearpollen was compared with YOLOv3, YOLOv5-n, YOLOV6-n, YOLOv7-
tiny, and YOLOv8-n detection models in terms of detection accuracy and model
complexity. The results were statistically analyzed using the normalization method so
that the strengths and weaknesses of the different models in various indicators are intu-
itively derived and to prove the effectiveness and superiority of the proposed method.

(4) The test results showed that YOLOv8-Pearpollen achieved a mAP of 96.7%. However,
its number of model parameters, amount of computation, and size of the weight
file were only 1.5 M, 4.0 G, and 3.1 MB, respectively, which were 50.0%, 50.6%, and
48.3% lower than those of YOLOv8, respectively. It realized a detection speed of
147.1 FPS. Compared with other models, YOLOv8-Pearpollen achieved a high degree
of lightweighting while possessing superior detection accuracy, which is suitable for
deployment on hardware models and meets the actual needs of agricultural production.

The proposed method still has some limitations. The detection of overlapping or
stacked pear pollen is prone to erroneous detection caused by overlapping images that
make the model unable to determine which pollen tube belongs to which pollen. Semantic
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segmentation can be considered to annotate the image data, helping the model to detect
the pollen of sprouting pear trees.

We hope that our research on the lightweight identification and detection of pollen
germination vigor in pear trees can provide effective methods and valuable references for
the screening of high-quality male pollen. The findings will help improve the success rate
of artificial pollination and thus increase the fruiting rate of pear trees. The lightweighting
degree of the model must be further enhanced so it can be deployed on hardware facilities
to promote the practical agriculture production of fruit trees.
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