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Abstract: Global fertilizer production and mismanagement significantly contribute to many harmful
environmental impacts, revealing the need for a greater understanding of crop growth and nutrient
uptake, which can be used to optimize fertilizer management. This study experimentally adapts
first-principles microbial modeling techniques to the hydroponic cultivation of Bibb lettuce (Lactuca
sativa) under nitrogen-limited conditions. Monod and Michaelis–Menten’s approaches are applied
to predict biomass productivity and nutrient uptake and to evaluate the feasibility of reclaimed
wastewater as a nutrient source of nitrogen. Experimental and modeling results reveal significantly
different kinetic saturation constants (Ks = 1.331 and Km = 17.887 mg L−1) and a corresponding
cell yield strongly dependent on nutrient concentration, producing visually and compositionally
distinct tissue between treatments receiving ≤26.2 and ≥41.7 mgN L−1. The resulting Monod
model overestimates dry mass predictions during low nutrient conditions, and the collective results
support the development of a dynamic Monod curve that is temporally dependent during the plants’
lifecycle. Despite this shortcoming, these results support the feasibility of reclaiming nitrogen from
wastewater in hydroponic agriculture, expecting to produce lesser biomass lettuce exhibiting healthy
tissue. Furthermore, this study provides a mathematical foundation for agricultural simulations and
nutrient management.

Keywords: hydroponics; vertical farming; controlled environment agriculture; biokinetics; sustainability;
cell yield

1. Introduction
1.1. Fertilizer Shortcomings

During the first quarter of the 21st century, a growing challenge for society is supplying
food to an exponentially growing population while preserving agricultural productivity
for future generations [1–3]. Already, highly urbanized regions have become dependent on
tenuous, volatile global food markets to meet their nutritional needs [4]. Meanwhile, the
rising price of natural gas, a key input for industrial Haber–Bosch nitrogen processing, has
contributed to the rising cost of nitrogen fertilizers. With fertilizer prices up nearly 40% in
2022, nitrogen use efficiency is likely to be a growing concern for commercial growers [5].

Aside from susceptibility to economic perturbation, conventional fertilizer production
uses finite resources, chemical components, and energy, making production environmen-
tally unsustainable [6–12]. Nitrogen-based fertilizers consume 5% of global natural gas
demand and are responsible for half of the fossil fuels used in primary food production [13].
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Furthermore, farmers often overapply fertilizers to meet production demands and accom-
modate inefficiencies such as nutrient runoff, which contribute to eutrophication, ground-
water contamination, habitat modification, and the production of nitrous oxide (N2O) with
a global warming potential 200–300 times greater than CO2 [14–25]. On the other hand,
insufficient fertilization can reduce crop productivity, leading to small, bitter crops with
poor nutrient density, resulting in lower profit margins. This dilemma drives the need for
research to improve agricultural production and reduce harmful environmental impacts.

1.2. Controlled Environment Agriculture and Wastewater

These concerns have prompted interest in hydroponics and controlled environment
agriculture (CEA) to improve the efficiency of conventional field agriculture. While many
hydroponic operations use an open-loop flow-through configuration, in which nutrient
solution makes a single pass through the crop system before discharge, closed-loop or recir-
culating hydroponic configurations retain nutrient solution, thereby improving nutrient
and water use efficiency [26]. Such systems can potentially utilize nutrient-poor reclaimed
wastewater, containing an estimated 40–60 mg L−1 nitrogen, 5–20 mg L−1 phosphorus,
and 5–40 mg L−1 potassium [27,28], as either a primary nutrient source or a supplement
to offset synthetic fertilizer demand. This could reduce the costs associated with both
wastewater treatment and fertilizer production while reducing the negative environmental
impacts of discharged wastewater or nutrient-rich hydroponic solutions.

It is also important to understand the presence and role of different forms of these
elements (e.g., nitrogen) in wastewater and agriculture. Traditionally-reclaimed wastewater
(i.e., aerobic activated sludge) effluent is expected to have nitrogen primarily in the form
of nitrate (NO3

−), with significantly lesser contributions as nitrite (NO2
−) and organic

N [29–31]. Meanwhile, anaerobically-reclaimed wastewater (i.e., anaerobic membrane biore-
actor) effluent can be expected to output nitrogen in the form of ammonium (NH4

+) [31].
As expected, studies using this effluent as a nutrient source have determined nitrification is
a necessary pre-treatment step for use in hydroponic agriculture [32].

Among these various forms of nitrogen, organic nitrogen covers a diverse range
of compounds, from microbial amino acids and proteins to emerging contaminants
(e.g., pharmaceuticals, personal care products, caffeine). Some of these emerging contam-
inants, even in trace concentrations, can accumulate and potentially contribute adverse
effects on both crops and consumers [33–35] and collectively represent a massive field of
current environmental and agronomic research.

Regarding forms of inorganic nitrogen, NH4
+ is energetically highly favorable for

biomass synthesis due to its reduced oxidation state and is readily assimilated by plant
tissues. Agricultural studies show many limited positive and negative effects on lettuce
growth, including comparable-to-increased fresh and dry mass, healthy tissue without
nutritional disorders, increased root growth, reduced NO3

−, P, Mn, Zn, and Cu content
in leaves, decreased root zone pH, and decreased maximum NO3

− uptake rates [36–39].
Conversely, excessive NO2

− concentrations are shown to produce mostly adverse effects
on plant color, height, and fresh and dry mass [36]. However, in aerobic environments such
as hydroponics, both NH4

+ and NO2
− are susceptible to rapid nitrification to NO3

−, the
primary form of nitrogen in fertilizer for plant uptake. For this reason, this study will focus
almost entirely on NO3

−.
To create a more sustainable food system for future generations, careful study of plant

growth and nutrient uptake is needed to develop mathematical models to support the
simulation of plant and nutrient dynamics for various crops. Successful simulation and
optimization could allow hydroponic farms to tailor nutritional supply, enabling smart
management of productivity, nutrients, water, and waste.

1.3. Modeling in Hydroponics

Through the development of such mathematical models, prior agronomic research has
revealed that nutrient uptake and biomass growth are interrelated processes influenced



Agriculture 2024, 14, 1358 3 of 22

by an organism’s genetics, developmental stages, and environmental conditions, such as
nutrients and light exposure [40]. This relationship between an organism and its environ-
ment can be modeled by applying ordinary differential equations and metabolic properties
encoded as a unique combination of kinetic parameters derived from Michaelis–Menten
(MM) enzyme kinetics, which describe nonlinear enzyme-substrate dynamics [41–44]. Such
models have demonstrated that nutrient concentrations, whether in soil or hydroponic
solution, positively correlate with nutrient uptake rates up to a saturation point, beyond
which additional nutrient supply does not increase uptake [44–46].

In the fundamental MM model (Equation (1)), the net uptake rate U of limiting nutrient
i is determined by nutrient concentration S, maximum uptake rate Umax, and Michaelis
constant Km which corresponds to nutrient concentration at a half-maximum uptake rate.

Ui = Ui
max

Si

Ki
m + Si (1)

The Monod kinetic model is a modification of the MM model traditionally used to
describe biomass growth, rather than nutrient uptake, with substrate nutrient concentration
(Equation (2)) [47]. These Monod-type kinetic expressions fundamentally assume that
biomass growth is implicit in nutrient uptake. The specific growth rate µ is a function of
nutrient concentration S, the maximum specific growth rate µmax, and the substrate affinity
constant Ks [47,48]. This fundamental model does not account for a lag or death phase and
focuses only on the growth phase of an organism’s life cycle.

µi = µi
max

Si

Ki
s + Si (2)

While Monod-type kinetics is currently one of the most widely used biokinetic models
characterizing microscopic biological phenomena [49], few applications exist for higher-
order macroscopic organisms such as plants.

One of the first and most widely referenced examples is the Nitrate Control in Lettuce
(NiCoLet) model, which models the growth of lettuce tissue based on the supply of carbon
and nitrogen [50,51]. The NiCoLet model pioneered nitrogen kinetics in lettuce; however,
experimental research has demonstrated limited accuracy and recurrent issues, including
crowding (canopy closure) and significant overestimation of nutrient uptake at high nitrate
concentrations [52–54]. Meanwhile, in a small series of studies, Silberbush developed a
model for the nutrient influx of multiple essential nutrients in hydroponic culture, including
NO−

3 , NH+
4 , K+, PO−2

4 , SO−2
4 , Ca+2, Mg+2, and Cl− [55,56] as a function of the root surface

area. And in another study, Wheeler et al. (1998) modeled uptake in lettuce influenced
by nitrate and light intensity over several brief 15–20 min periods during the growth of
matured lettuce [46].

1.4. Objectives

This study aims to conduct nitrogen-limited crop cultivation experiments with syn-
thetic nutrient solutions adapted from established literature to generate predictive models
for Lactuca sativa (Bibb Lettuce) grown in a vertical hydroponic system. These models pair
Michaelis-Menten and Monod kinetics and determine the impact of nitrogen substrate
concentration on growth rate, nutrient uptake, and elemental tissue composition. The
results are then used to evaluate the feasibility of reclaimed wastewater as a nitrogen source
in hydroponic agriculture. Furthermore, it will provide a platform for future nutrient
recovery research, cleaner agricultural production and wastewater treatment techniques,
and improve agricultural sustainability by reducing harmful environmental impacts.
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2. Materials and Methods
2.1. Experimental Configuration
2.1.1. Controlled Environment Chambers

Experiments were conducted in controlled environment chambers, each maintained
at 21.5 ◦C with relative humidity (RH) controlled between 50–70%, with fluctuations
due to increasing crop transpiration. Fans circulated airflow within the chamber, and
CO2 concentrations were not controlled. Each chamber was illuminated by twenty 65 W
light-emitting diodes (LED) bars (Infinity 2.0 LED; Thrive Agritech, Claymont, DE, USA)
positioned 40 cm from the seeding surface and spaced 35 cm apart at the centerline on
a 12 h photoperiod. LEDs overhung the edges of the growth area to reduce edge effects
(i.e., decreased light intensity on the perimeter). This provided a relatively uniform daily
light integral (DLI) blanket of 14.69 ± 0.06 mol m−2 d−1 (LI-COR LI-1500; Li-Cor., Lincoln,
NE, USA), within the optimal range of 14–17 mol m−2 d−1 for Bibb lettuce [57,58].

2.1.2. Vertical Nutrient Film Technique (NFT) Hydroponic Systems

Environmental chambers were each equipped with six vertical hydroponic systems
(2-Tower Farm Wall; ZipGrow, Cornwall, ON, Canada). Each system held two towers
containing porous, 3-dimensional fiber webs as support medium (e.g., Matala-type filter), a
center strip of felt to wick water and nutrients to the roots, and a drip emitter (Figure 1).
Nutrient solution dripped vertically through each tower before being collected in a 5.1 L
substrate reservoir and recirculated to the drip emitter manifold via a submerged pump.
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Figure 1. Diagram of Zipgrow vertical hydroponic system. Two 2-tower systems are pictured with a
shared auto top-off reservoir.

Additionally, water withdrawals by evaporation and transpiration were offset by
external Auto Top Off (ATO) systems designed in-house. In these ATO systems, deionized
water was stored in a reservoir and delivered to hydroponic systems by gravity and
regulated by a float valve. This maintained system volume, prevented dehydration, and
dampened nutrient concentration fluctuations created by evaporation and transpiration.
In future hydroponic operations, not looking to measure and control nutrients precisely,
users may benefit more from filling the ATO with dilute nutrient solution rather than
purified water.
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2.1.3. Seedling Germination and Transplantation

Seeds were planted on the surface divot of 2.5 cm rockwool cubes in a seeding tray,
filled halfway with deionized water, covered with a humidity dome, and placed under
LEDs for 13 days before transplantation. Seedlings were screened for size by disposing of
unsprouted or poorly sprouted seedlings. This mitigated irregular growth during seeding,
providing a standardized starting point prior to the introduction of nutrients and the
initiation of the exponential growth phase.

Hydroponic towers were manually transplanted with 8 germinated seedlings, spaced
evenly, and oriented horizontally as if growing off the wall. Data were recorded throughout
the experiments, initializing day 14 after seeding as 0 days after transplantation (DAT) and
culminating on 32 DAT.

2.1.4. Treatment Preparation

To determine the effects of soluble nitrogen concentration on specific growth rates,
nutrient solution recipes for each treatment were developed with reagent-grade chemicals
as determined per Modified Sonneveld’s Solution (MSS) [59] (Table 1).

Table 1. Nutrient concentrations across treatments.

Nitrogen Treatment %

200% 100% 50% 25% 19% 8%

Macronutrient Concentrations (mg/L)

N 264.47 132.24 66.12 33.06 25.30 10.58
P * 30.97 * 109.86 93.94 154.05
K 218.42 210.01 * * * *
Ca * 82.49 * * * *
S * 32.22 * * * *

Mg * 24.25 * * * *
Fe * 1.26 * * * *

Micronutrient Concentrations (µg/L)

B * 162.50 * * * *
Mn * 249.04 * * * *
Zn * 130.39 * * * *
Cu * 23.54 * * * *
Mo * 24.09 * * * *

* Indicates match with MSS baseline concentrations.

Each recipe contained different inorganic nitrogen concentrations while aiming to
maintain all other nutrients consistent with MSS concentrations. These treatments were
determined based on their percentage of inorganic nitrogen relative to the MSS baseline.
Upon testing 100% MSS treatment, a range-finding pair of treatments at 50% and 20%
are conducted, followed by at least one final round of nitrogen testing at concentrations
to approximate the half-velocity constants. These treatments will be referenced by their
nitrogen concentration (e.g., 100% MSS baseline as 132 mg L−1).

2.1.5. Controlling pH in Solution

Maintaining pH between 5.5 and 6.5 is ideal for the growth of lettuce in hydroponic
systems and poses a challenge when modifying a nutrient solution for experimentation [60].
In regards to pH control, KOH, KHCO3, and H3PO4 are the primary ingredients in hydro-
ponic pH control solutions [61,62]. From this, it may be reasonable to assume that these
possess a minimal detrimental impact on crop growth within their utilized concentrations.
Additionally, we must consider using paired anions or cations in salts when adjusting for
pH. Regardless, nutrients will be measured frequently through experimentation.

Finding suitable cations or anions to match a target pH of 6.0 ± 0.5 posed a challenge
with recipe development. Researchers must control the pH within this range while main-
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taining sufficient concentrations of all 17 macro and micronutrients without overstepping
into toxic concentrations and avoiding forming calcium precipitates. Additionally, both
sodium and chlorine were avoided to prevent inhibitory effects [63,64]. To overcome this
challenge, phosphorus and potassium were utilized in excess as needed. Prior studies
demonstrated that a rapid influx of phosphorus can lead to toxicity in lettuce due to its slow
response to down-regulate phosphorus uptake [65–67]. However, by maintaining elevated
concentrations through the entire life cycle, these effects were assumed to be mitigated.

2.1.6. Stabilizing Water Composition during Nutrient Uptake

During the growth period, crops are expected to take up nutrients at increasing rates.
In a batch system, this would cause nutrient concentrations to decrease substantially and
potentially deplete during the crop’s life cycle. To maintain sufficient nutrients, substrate
reservoirs were regularly drained and refilled with freshly prepared nutrient solution,
a process referred to as a “water change”. These water changes were performed with
increasing frequency (7, 14, 18, 21, 23, 25, 28, and 30 DAT) to support growing nutrient
demand throughout the crop life cycle, functionally modifying this batch reactor into a semi-
continuous reactor without the additional expenses of a continuous flow-through system.

2.2. Sample Preparation and Storage

Researchers frequently sampled the nutrient solution via water samples. However,
due to the nature of destructive sampling, biomass cannot be accurately measured for a
given tissue sample without sacrificing the plant. For this reason, tissue was harvested less
frequently than water samples. Table 2 indicates the schedule and relation between dates
measured as Days after Transplantation (DAT), water samples n, tissue harvests h, and * to
indicate water change dates which contain both “pre” and “post” water samples n.

Table 2. Schedule of DAT, water samples (n), harvests (h), and water changes (*).

DAT 0 2 4 7 9 11 14 16 18 21 23 25 28 30 32
n 0 1 2 3 * 4 5 6 * 7 8 * 9 * 10 * 11 * 12 * 13 * 14
h 0 - - - - - 1 - 2 3 - 4 5 - 6

Nutrient solutions were regularly sampled from each hydroponic system, including
before and after each water change. Samples of 25 mL were forced through a 0.2 µm nylon
filter into polypropylene tubes and stored at 7.2 ◦C until analysis.

Crops for tissue harvest were chosen by pre-determined selective thinning on 14, 18,
21, 25, 28, and 32 DAT. Harvests were conducted by shearing off the lettuce shoot with
scissors. Once harvested, fresh lettuce shoot mass was recorded immediately to reduce
inaccuracy caused by transpiration losses. Lettuce was then dried at 110 ◦C for 24–48 h to
boil off water content, desiccated for 20 min as they returned to room temperature and dry
mass was recorded. Roots were not analyzed.

Edge seedlings were harvested first (e.g., 14 DAT) to reduce variability attributed
to minor differences in light exposure compounded over prolonged periods. To ensure
sufficient dry mass for analysis, composites of multiple young plants were homogenized
when the dry mass of individual shoots measured less than 1 g. On the first harvest,
10 plants per composite were required to obtain sufficient biomass, decreasing incremen-
tally in subsequent composites. Finally, dried tissue samples were stored in polypropylene
centrifuge tubes at −18 ◦C prior to analysis.

2.3. Sample Analyses

Tissue samples were analyzed for elemental nutrient composition by the University of
Georgia’s Soil, Plant, and Water Laboratory. To measure total nitrogen, 0.1 g of dry tissue
was loaded into a steel crucible and combusted in an oxygen-rich atmosphere at 1200 ◦C
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in a total combustion analyzer (Vario MAX cube; Elementar Americas, Ronkonkoma, NY,
USA). The resulting gases were passed through infrared cells to determine the total N [68].

Other nutrients in tissue samples were measured following US EPA methods for
microwave digestion followed by Inductively Coupled Plasma Optical Emission Spectrom-
etry (ICP-OES) analysis (Spectro Arcos FHS16, SPECTRO Analytical Instruments GmbH,
Wilmington, MA, USA). Dried tissue samples were ground in a Wiley mill and passed
through a 20-mesh screen. The samples were digested following EPA Method 3052 [69].
Fluorocarbon polymer microwave vessels were loaded with 10 mL HNO3 and 0.5 g of
tissue and heated in a microwave digester (CEM Mars 6 Microwave; CEM Corporation,
Matthews, NC, USA) at 200 ◦C for 30 min. Deionized water was then added to the resulting
solution, bringing the volume up to 100 mL. This solution was then analyzed by ICP-OES
following EPA Method 200.8 [70].

Meanwhile, nutrient solution samples were tested for total nitrogen using Hach TNT-
plus persulfate digestion test kits, heated by a Hach DRB200 digester, and measured using
a Hach DR3900 spectrophotometer (Hach, Loveland, CO, USA). For determining other
macronutrients (i.e., K, P, Mg, Ca, S, Fe), 1 mL samples were diluted with 9 mL of 5% trace-
metal-grade HNO3 and then analyzed by ICP-OES (Optima 8000, PerkinElmer, Waltham,
MA, USA). However, this dilution ratio was modified for extremely low concentrations to
3.7 mL of sample with 0.3 mL of 70% trace-metal-grade HNO3.

2.4. Modeling Approach
2.4.1. Initiating Models

To initiate models, one batch of seedlings was harvested immediately on 0 DAT for
analysis. This batch yielded 195 seedlings with an average fresh mass of 19.908 ± 0.79 mg
and a total dry mass of 11%, averaging 2.198 mg per seedling, later referred to as DM0.

2.4.2. Average Nitrogen Concentration

Lifetime average nitrogen concentration [SN ] was calculated for each hydroponic
system by averaging all prior sample concentrations [Sn] for each n (Equation (3)). This
value measures the effectiveness of researchers in maintaining constant water parameters
despite large quantities of lettuce absorbing nutrients from a small volume of water, as well
as losses to environmental and biological processes (e.g., evaporation, microbial growth,
denitrification to N2O), which were not measured.

[SN ] =
∑n

j=1
([

Sj
])

n
(3)

Individual nitrogen concentrations [Sn] are expected to decrease between subsequent
samples due to uptake. However, ongoing biological processes, analysis precision limita-
tions, mechanical and physical faults in the hydroponic systems, and human error may
result in occasional unexpected increases in concentrations. This is especially true when
plants are young, and uptake is low.

2.4.3. Monod Growth Model

Dry and fresh masses were first screened to within two standard deviations of the
mean for each harvest. Harvest dry mass DMh was estimated as the mean of all samples
within each hydroponic system of the same age. For systems without harvests on a given
date, DMh was estimated as the mean of samples harvested from all systems receiving the
same treatment and of the same age. By averaging dry masses for each harvest date and
hydroponic system, researchers can mitigate influences of larger harvest sizes and temporal
differences in specific growth rates during a plant’s lifecycle.

To develop a Monod growth model, a specific growth rate µ is first defined in Equation
(4). This can then be integrated to estimate the dry mass DMh as a function of initial dry
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mass DM0, specific biomass growth rate µ, and the difference in time between th and t0
(Equation (5)).

µ =
dDM

dt DM
(4)

DMh = DM0 eµ(th−t0) (5)

It is both interesting and expected to note that Equation (5) mirrors the exponential
growth function y = Aebt, which likewise estimates biomass growth based on initial
biomass A and growth rate coefficient b. This can then be algebraically manipulated to
determine µ based on the same variables (Equation (6)).

µ =
ln
(

DMh
DM0

)
th − t0

(6)

This specific growth rate µ (as well as the uptake rate UN) were observed to be variable
and decreased as the plants matured. To resolve potential issues with reducing these pa-
rameters to a constant value over the plant’s lifecycle, µ was screened to within 2 standard
deviations of the mean and then averaged across all samples for each treatment, as µ. This
will apply to agricultural operations that grow lettuce of varying ages concurrently within
the same system. Likewise, [SN ] was also averaged across all samples, forming

[
SN

]
. This

approach not only removes temporal bias attributed to the larger quantity of samples
of young plants but also provides equal weight across treatments composed of unequal
quantities of hydroponic systems, plant tissue, and water samples.

In creating the Monod model, researchers employed the “curve_fit” function from
the Python SciPy module, designed for scientific computing and regression [71,72]. By
inputting µ values from all treatments paired with their respective limiting nutrient concen-
trations, Python predicts Monod parameter values for the maximum specific growth rate
µmax and substrate affinity constant KS to best match the data within the given range. Due
to the high specific growth rate of young plants, researchers exclude data from ≤14 DAT
during this early stage.

To ensure proper fitting and avoid local minima, researchers utilized a Monte Carlo
simulation. Bounds were selected based on the experimentally observed range of kinetic
parameters. A relative error minimization strategy determined the quality of the initial
values. Relative errors were then converted into absolute uncertainties for each estimated
data value and passed to the “curve_fit” function. The curve-fitting process generated
kinetic parameters for each set of initial conditions supplied. Parameter fit was then evalu-
ated utilizing the root mean square error (RMSE) between expected and observed values.
This process of generating initial conditions, performing curve fitting, and evaluating the
resulting parameters was repeated until the set of parameters with the lowest RMSE was
identified as the best fit for the data. From this model, researchers can predict µ based on
available inorganic nitrogen concentrations as the limiting nutrient. This Monod growth
model can then be compared against the “optimal µ” model.

To develop the Optimal µ model, researchers utilized Equation (5) to quantify the
Optimal µ to best match measured dry mass independently within each treatment. This
was accomplished by setting the initial biomass to DM0 = 2.198 mg as measured at t = 0,
and curve fitting to reduce relative error to determine the optimal treatment-dependent µ
value that predicts average dry mass DMh for each harvest date during the entire lifecycle.
This Optimal µ can further estimate DMn in place of DMh in Equation (5), which would
otherwise be impossible to measure without destructive sampling. This modification allows
researchers to predict nutrient uptake rate via Michaelis–Menten kinetics.

2.4.4. Nitrogen Uptake

Uptake kinetics were estimated through nutrient ion depletion between 0 DAT and
each harvest. Using Equation (7), nutrient uptake dSn describes the change in mass of nitro-
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gen between subsequent water samples n within each hydroponic system by multiplying
the change in concentration [S n] by substrate reservoir volume VR. Samples taken both
before and after each water change were represented as

[
Sn,pre

]
and

[
Sn, post

]
, respectively.

These were used where applicable to determine uptake between water samples and were
repeated and accumulated for each sampling date, determining the lifetime ion depletion
dSN for each hydroponic system (Equation (8)).

dSn =
([

Sn−1,post
]
−

[
Sn,pre

])
× VR (7)

dSN = ∑n
j=1 dSj (8)

Note that “post” water change samples are expected to approximate treatment tar-
get concentrations, and “pre” water change samples are expected to be deficient due to
nutrient uptake.

2.4.5. Michaelis–Menten Uptake Model

To express depletion as a comparable rate, researchers standardized it by time interval
and estimated initial biomass. To accomplish this, DMn, from the Optimal µ model, as
calculated by Equation (5), was first multiplied by the number of plants Zn in each system
on sampling day n to estimate the total dry mass at the beginning of the period (e.g.,
“n − 1”) as DMsys,n−1 (Equation (9)). This estimated system dry mass was then multiplied
by the length of the time interval to produce a standardization factor, Fn (Equation (10)).

DMsys,n = Zn × DMn (9)

Fn = (tn − tn−1)DMsys,n−1 (10)

Finally, uptake rate Un (Equation (11)), representing the mass uptake rate per to-
tal dry mass in each period ending on sampling day n is calculated by dividing dSn
(Equation (7)) by the corresponding standardization factor. Once standardized for time
and biomass, these values were then averaged over crop lifetime to produce UN for each
system (Equation (12)).

Un =
dSn

Fn
(11)

UN =
∑n

j=1
(
Uj

)
n

(12)

Unlike µ, in which the first measurement came from tissue samples on 14 DAT,
researchers began water samples on 2 DAT. However, as with µ, the nutrient uptake rate
Un was highly unstable with young plants. This could be attributed to the influence of
small errors on exceptionally low uptake measurements, high uptake rates relative to their
exceptional biomass, as well as said exceptionally low biomass. For this reason, average
lifetime uptake rates UN with <6 measurements (e.g., ≥14 DAT plants) were screened
prior to producing the Michaelis Menten Uptake Model. This excludes small sample sizes,
reduces the impact of human and process errors, and increases confidence in measurements
due to larger biomass and nutrient uptake. Lastly, similar as with µ, this UN was screened
within 2 standard deviations of the mean and then averaged across all samples within each
treatment as UN , and paired with the associated [SN ].

The development of the Michaelis-Menten model followed a similar approach to
the Monod model, utilizing the same Python modules, dependencies, and initial value
selection strategy for error reduction. Paired UN and [SN ] were evaluated, conducting
a single curve fit on all treatments. Through this approach, Python predicted Michaelis–
Menten parameters for the maximum specific uptake rate Umax and Michaelis constant Km
to best match the data within the given range.
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2.4.6. Shoot-Specific Cell Yield

Shoot-specific cell yield Yshoot, defined as the growth of lettuce shoots dry mass per
uptake of a specified nutrient (e.g., nitrogen) was determined for each hydroponic system
on each harvest date h. Researchers should note this yield differs from the definition of dry
mass growth per provided nutrients, which also appears in the literature.

First, DMh is multiplied by the number of plants Zh in each hydroponic system during
each observed period to estimate the total dry mass in that system prior to harvest (Equation
(13)). Likewise, to estimate the total dry mass in a system after harvest, this average dry
mass per plant could be multiplied by this quantity of plants minus the number of plants
harvested at that time zh (Equation (14)). For each harvest date, the total system dry mass
is compared to that of the prior date’s post-harvest total dry mass, calculating the change
in total dry mass between harvests dDMsys,h (Equation (15)).

DMsys,h,pre = DMh × Zh (13)

DMsys,h,post = DMh × (Z h − zh

)
(14)

dDMsys,h = DMsys,h,pre − DMsys,h−1,post (15)

These could then be accumulated to determine the lifetime change in dry mass
dDMsys,H in each hydroponic system (Equation (16)).

dDMsys,H = ∑h
j=1

(
dDMsys,j

)
(16)

To estimate Yshoot, researchers isolated the nitrogen uptake of the lettuce shoot by first
multiplying the average dry mass DMh by the average nitrogen tissue concentration Nith%
from that harvest (Equation (17)).

DMNit
h = DMh × Nith% (17)

After which, Equation (13) through Equation (16) were repeated for nitrogen-specific
dry mass DMNit

h in the place of total dry average dry mass, to calculate the total lifetime
change in nitrogenous dry mass within each system dDMNit

sys, H .

Yshoot =
dDMsys,H

dDMNit
sys, H

(18)

Shoot-specific cell yield Yshoot (Equation (18)) was calculated for each hydroponic
system by dividing the total accumulated dry mass by the total accumulated nitrogenous
mass for all harvest dates and their associated water sample data (i.e., when th = tn).

3. Results and Discussion
3.1. Biomass Growth and Nitrogen Depletion

Table 3 illustrates the biomass growth profiles and 95% confidence intervals for each
harvest. These measurements confirm that inorganic nitrogen concentrations of the baseline
MSS yielded the greatest fresh (250.73 ± 25.41 g) and dry mass (12.10 ± 1.44 g) on 32 DAT.
While lesser concentrations produced lower fresh and dry mass, these trends are not
entirely consistent, with the 25 mg L−1 treatment on average outperforming the 33 mg L−1

treatment, albeit within the margin of error. This may be explained by limited samples and
hydroponic systems when conducting the 25 mg L−1 treatment, combined with biological
and environmental differences.
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Table 3. Fresh mass (top), dry mass (bottom), and dry mass %.

DAT 11 mg L−1 25 mg L−1 33 mg L−1 66 mg L−1 132 mg L−1 264 mg L−1

14
0.96 ± 0.33 3.20 ± 0.46 1.13 ± 0.16 2.00 ± 0.51 2.61 ± 0.48 1.53 ± 0.33
0.08 ± 0.03
(8.3%)

0.24 ± 0.03
(7.5%)

0.09 ± 0.01
(8.0%)

0.13 ± 0.02
(6.5%)

0.21 ± 0.04
(8.0%)

0.12 ± 0.02
(7.8%)

18
1.85 ± 0.77 7.04 ± 3.80 4.13 ± 0.67 9.94 ± 1.56 13.07 ± 1.24 4.00 ± 0.73
0.14 ± 0.06
(7.6%)

0.48 ± 0.22
(6.8%)

0.23 ± 0.03
(5.6%)

0.57 ± 0.07
(5.7%)

0.88 ± 0.09
(6.7%)

0.29 ± 0.05
(7.3%)

21
4.29 ± 1.05 7.37 ± 2.32 5.61 ± 1.28 11.20 ± 1.81 27.63 ± 5.67 7.84 ± 1.70
0.31 ± 0.07
(7.2%)

0.46 ± 0.11
(6.2%)

0.35 ± 0.08
(6.2%)

0.62 ± 0.14
(5.5%)

1.74 ± 0.30
(6.3%)

0.58 ± 0.11
(7.4%)

25
9.68 ± 2.39 18.46 ± 11.40 18.79 ± 3.18 28.74 ± 12.30 86.81 ± 9.44 20.23 ± 4.68
0.63 ± 0.14
(6.5%)

0.98 ± 0.47
(5.3%)

0.94 ± 0.16
(5.0%)

1.45 ± 0.51
(5.0%)

4.55 ± 0.61
(5.2%)

1.44 ± 0.28
(7.1%)

28
15.1 ± 8.48 43.07 ± 15.09 33.51 ± 6.40 71.63 ± 22.52 128.71 ± 15.45 39.64 ± 9.82
1.05 ± 0.45
(7.0%)

2.31 ± 0.73
(5.4%)

1.87 ± 0.36
(5.6%)

3.46 ± 0.92
(4.8%)

6.38 ± 0.56
(5.0%)

3.07 ± 0.73
(7.7%)

32
32.57 ± 9.22 56.62 ± 21.95 47.73 ± 7.35 92.53 ± 17.97 250.73 ± 25.41 74.11 ± 10.90
1.96 ± 0.47
(6.0%)

3.00 ± 0.99
(5.3%)

2.50 ± 0.39
(5.2%)

4.42 ± 0.54
(4.8%)

12.10 ± 1.44
(4.8%)

5.10 ± 0.64
(6.9%)

Sample sizes for each cell vary, ranging from n = 3 to n = 40, with an average of n = 13.

While both fresh and dry mass increased throughout the growth cycle of each treat-
ment, these returns began to diminish after 28 DAT for most under-fertilized treatments
(Figure 2). This minor change suggests that under-fertilized plants may be entering the ma-
ture growth phase. Regardless, amongst nutrient-rich treatments, researchers noticed that
lettuce was still growing strongly upon final harvest on 32 DAT. This suggests extending
the growth period in future testing.
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Figure 2. Biomass growth profiles presented as a time series for each treatment, with (a) representing
Fresh Mass and (b) representing Dry Mass measurements. Error bars correspond to 95% confidence
intervals for each sampling period.

As nutrient concentrations increased, fresh and dry biomass increased consistently
up to the 132 mg L−1 (baseline MSS) treatment. However, the 264 mg L−1 treatment
demonstrated a decrease in fresh and dry mass from the 132 mg L−1 treatment. This
decrease, as well as an increase in dry mass % between the two treatments, indicates these
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tissue samples held less water, producing smaller and more nutrient-dense lettuce shoots.
However, the mechanism responsible for this change in composition requires further
study. Overall, the results of the 264 mg L−1 treatment support the MSS baseline nitrogen
concentration, and support that increased fertilizer concentrations do not necessarily yield
higher productivity, especially when exceeding a crop’s nutrient requirements.

Similar to biomass growth, nitrogen depletion per plant (Figure 3) also increased
with respect to crop age and total nitrogen concentration up to the 132 mg L−1 treatment.
Interestingly, unlike other treatments, the 264 mg L−1 showed significant nitrogen depletion
beginning on 7 DAT. However, the absence of corresponding plant tissue growth during
this period indicates a nitrogen loss disparity. This may be explained by increased root
or microbial growth in a high-nutrient environment. While roots were unmeasurable in
the current system, researchers observed biofilms growing inside the darkened tubing
as well as photosynthetic biofilms growing on all wet internal surfaces throughout the
study, especially during nutrient-rich treatments. Another potential factor could be the
denitrification of N2 or N2O gas [73,74]. While this may be less likely to occur in an
aerobic environment, it is of significant interest to many environmental engineers and more
research is needed. However, these measurements were beyond the scope and toolset of
this study.
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Most of the direct measurements of this study focus on biomass quantity and not
quality. However, nutrient-limited crops not only have the potential to be smaller but also
exhibit signs of malnutrition, such as yellow leaves, brown spots, flimsy texture, and bitter
taste, which may make them unpalatable [67,75]. Figure 4 provides visual examples of
model lettuce from four of these treatments.

Cataloging visual differences was not a primary objective in this study. Regardless,
throughout experimentation, researchers noted plant characteristics from all ≥66 mg L−1

treatments appeared healthy throughout growth, exhibiting less noticeable malnourishment
(e.g., yellow leaves, spotting) than that observed in the ≤33 mg L−1 treatments. These
observations support previously mentioned findings in established literature.
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Figure 4. Images of model plants of the same age (32 DAT) in four distinct treatments: 11, 33, 66, and
baseline 132 mg L−1 (100%) nitrogen treatments, illustrating the size discrepancy while also visually
identifying leaf discoloration.

3.2. Monod and Michaelis–Menten Modeling

Figure 5a,b illustrate Monod and Michaelis–Menten curves, respectively. Coefficient
of Variance (CoV) values were also determined to evaluate predictive performance and
were achieved by dividing the standard deviation of the model prediction by the mean of
the dependent variable.

The Monod curve identified a maximum specific growth rate of 0.274 mgDM mg−1
DM d−1

and Ks = 1.331 mg L−1. The peak in growth rate at the 132 mg L−1 treatment supports
the MSS baseline as the optimal nitrogen substrate concentration. Furthermore, the slight
decrease in growth rate at elevated concentrations may be attributed to inhibitory effects
via Haldane kinetics.

The low Ks value indicates an exceptionally low nitrogen concentration at 1.331 mg L−1

is required to produce half of the maximum growth rate. Of course, farmers are not neces-
sarily interested in growing produce at half-speed. Still, this is a promising indicator that
low-nutrient sources, such as reclaimed wastewater at 40–60 mg L−1 nitrogen, may approx-
imate a maximum growth rate of around ~0.27 mgDM mg−1

DM d−1, fulfilling quantitative
biomass demands of agriculture.

As a hypothetical example, a similar hydroponic environment may be chosen to
provide a constant 60 mgN L−1 to their Bibb lettuce. This concentration represents the
upper range of the expected nitrogen concentrations in wastewater and 45% of the optimal
MSS baseline nitrogen concentration. By plugging µmax, Ks, and [N] into Equation (2), we
can estimate µ as 0.268 mgDM mg−1

DM d−1. By entering this along with DM0, t0, and th into
Equation (5), we can estimate plant dry mass on a given day. In the example of th = 32 DAT,
the resulting Bibb lettuce can be expected to approximate 11.68 gDM. If we compare this
result to the 66 mg L−1 treatment in Table 3 and the corresponding images in Figure 4,
we can see that this estimate far exceeds that treatment’s measured 4.42 ± 0.54 gDM, yet
closely approximates the MSS baseline 132 mg L−1 treatment of 12.10 ± 1.44 gDM and
corresponding fresh mass of 250.73 ± 25.41 g (approximately 8.8 oz). While these are the
best-fit parameters based on available data, including all treatments and time points, they
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can be a poor predictor for lower nitrogen substrate concentrations. This represents one of
the greatest shortcomings of this model and highlights the potential need for additional
data points and an improved model for predicting total biomass.
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This shortcoming with low nutrient treatments can be attributed to the low Ks which
is visually discerned by a relatively flat curve. To increase confidence in this parameter,
researchers may first wish to conduct additional experiments with ultra-low concentrations.
However, these low concentrations pose a challenge for practical experimentation, as
producing a nutrient solution that is significantly deficient in dissolved inorganic nitrogen
often sacrifices either other vital nutrients or pH.

Meanwhile, the Michaelis-Menten model identifies a maximum specific uptake rate
of 72.074 mgN mg−1

DM d−1 and Km = 17.887 mg L−1. This fails to demonstrate similar
substrate affinity Ks and Michaelis Km constants (e.g., Ks ̸= Km), which may be explained
by a shift in the production of non-nitrogenous tissues during low concentrations. Such an
occurrence would result in still-elevated total biomass growth when nitrogen uptake is low,
potentially suggesting a measurable qualitative difference in tissue dependent on substrate
concentration. And while biomass production quantity may be a primary goal of farmers
when profits are driven by weight, it is crucial to maintain product quality, as sickly or
bitter lettuce is unappealing to consumers. This will be further explored in shoot-specific
cell yield Yshoot.

It is important to note that the Michaelis-Menten model depends upon accurate
estimation of biomass in the system, and alternative methods to estimate biomass, whether
destructive or non-destructive, will significantly affect the estimated value of the maximum
uptake rate.

Additionally, it should be acknowledged that the original baseline recipe from the
literature composed 5% of total nitrogen as ammonium, with the rest as nitrate, during
synthesis. The 66 mg L−1 recipe reduced this to 1.8%, and the remaining low-nitrogen
recipes to zero ammonium. Meanwhile, the 264 mg L−1 treatment composed of a large
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27.5% ammonium, which may be a contributing factor to the observed decreased growth.
However, this treatment’s inclusion or exclusion from the modeling software had little
impact on the value of kinetic parameters that best fit the remaining data.

3.3. Dynamic Growth Rates

As previously mentioned, specific growth rates were observed to be temporally vari-
able, decreasing during each treatment as the plants matured (Figure 6).
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Figure 6. Specific growth rate (µ) showing decreasing trends across all treatments. Bars represent
95% confidence intervals.

This may indicate that a specific growth rate may be best represented as a function
rather than a constant. While similar behavior may be present within microbial systems on
an individual level, such observations would likely be hidden by rapid reproduction and
multiple concurrent generations, resulting in a lifetime average specific growth rate across
the population.

How could this potentially affect our previous hydroponic example at 60 mg L−1? It
would be conceivable that an initial (young plant) specific growth rate that is exceptionally
high may accurately reflect in a Monod curve with a much higher µmax that decreases as the
plant matures. If this was attempted to be translated into a temporally independent Monod
curve, as performed here, we would expect the appearance of an exceptionally low Ks that
would overestimate the growth of low-nutrient treatments and either match or underesti-
mate the growth of treatments receiving optimal nutrient concentrations. This supports the
need for future investigation into a dynamic Monod model, which is temporally dependent
on the plant’s lifecycle.

To support such a model, future hydroponic research should include measurement
of young plants (e.g., <14 DAT) to allow researchers to more strongly identify specific
growth rates across the entire Bibb lettuce lifecycle. The additional data from the first half
of the plant lifecycle can increase confidence in the nature of this relationship and create
a dynamic Monod model, thereby improving biomass estimations across concentration
and plant age as well as nutrient uptake. The observed deviations in the 25 mg L−1 and
66 mg L−1 treatments can be attributed to the same low sample quantity explanation as
discussed regarding dry mass measurements in Table 3.

3.4. Visualizing Growth Models

Figure 7 compares the predictive capability of the Monod model against the Optimal
µ model and dry mass measurements.
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Figure 7. Dry Mass Growth Models, comparing the Optimal µ model (gold), the integrated Monod
model (blue), and dry mass measurements (black dots). Graphs (a–f) illustrate the results for each
treatment, as indicated in each top-left corner. Note that in graph (e), both models follow nearly the
same line, explaining why Optimal µ is nearly indistinguishable.

A comparison of the two biomass models reveals that the Optimal µ model offers
improved predictive capability, with lower RMSE values across all treatments. However,
this is expected as each Optimal µ model functions independently to best fit the dry mass
data within each treatment. Meanwhile, the Monod model ties all treatments together via a
single set of parameters.

This Monod model significantly overestimates the 25, 33, and 66 mg L−1 treatments.
Meanwhile, the overestimation in the 264 mg L−1 treatment may be attributed to inhibition
via Haldane kinetics. However, this inhibition is outside the scope of this study, and
researchers would recommend at least one additional over-fertilized treatment to quantify
this parameter.

Similar to overestimating biomass in under-fertilized treatments, this Monod model
also underestimates biomass in early life but improves or overestimates biomass after
25 DAT. This temporal shift from underestimation to overestimation further supports that
a dynamic µ that begins high and decreases over a plant’s lifecycle may be required for
accurate biomass prediction of lettuce.

3.5. Shoot-Specific Cell Yield

Cell yield can be an important ratio for hydroponic operations, as tracking biomass
growth per nutrient uptake is a primary step in calculating revenue per cost for a given
crop. This ratio can be utilized to determine optimal nutrient concentrations or harvest
times. The shoot-specific cell yield Yshoot utilized nitrogenous shoot tissue as a proxy for
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nitrogen uptake due to the nitrogen loss disparity, as indicated previously, and results are
shown in Figure 8.
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When observing Figure 8a for optimal harvest times, each treatment shows a general
decrease in shoot-specific cell yield between days 14 and 25, followed by a slight increase
until the final harvests on day 32. This elevated cell yield was most significant with low
nitrogen treatments (with average nitrogen ≤26.2 mg L−1). Meanwhile, high nitrogen
treatments (with average nitrogen ≥41.7 mg L−1) experienced a relatively constant yield of
17.77 ± 0.26 gDM g−1

N with increased variation above 150 mg L−1. This distinction between
high and low nitrogen treatments is easily visualized in Figure 8b. Furthermore, because
Yshoot directly measures nitrogenous biomass, the elevated values seen in low nitrogen
conditions indicate that lettuce composition is affected by nitrogen substrate concentration
and demonstrate the threshold at which the negative effects of insufficient nutrients sur-
pass producing smaller crop biomass (quantity) and begin impacting lettuce composition
(quality). These measurements correspond with visual observations of nitrogen deficiency
seen in the photographs in Figure 4.

The increased yield at nitrogen-deficient concentrations may first appear counterin-
tuitive. This observation can be explained by plants’ inability to produce nitrogenous
tissues while maintaining the relative production of non-nitrogenous tissues when nitrogen
substrate is scarce. Unless limiting nutrients inhibit all biomass production, researchers
should expect cell yield to increase during nutrient deprivation.

Following our prior example of the hydroponic farm operating at 60 mgN L−1, we
would expect the Bibb lettuce to have a Yshoot of approximately 18 gDM g−1

N , bearing
similarity to nutrient-rich treatments. And while the model appears to overestimate dry
mass quantity, the estimated shoot-specific cell yield is supported by the images in Figure 4,
which produced smaller lettuce but showed no additional signs of nitrogen deficiency.

While prior studies have established optimal nitrogen for total lettuce biomass growth
and general plant nutrition as 130–220 mg L−1 [59,76–80], the results presented here iden-
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tify and quantify the minimum threshold to produce compositionally healthy Bibb lettuce
as between 26.2 and 41.7 mg L−1. Assuming other growth conditions are satisfied, let-
tuce grown above this minimum threshold but below 130–150 mg L−1 may be expected
to be compositionally healthy, albeit with smaller total biomass. Furthermore, this po-
tential minimum threshold approximates the lower bound of the previously discussed
wastewater nitrogen content of 40–60 mg L−1. While the difference between the minimum
threshold and this expected wastewater nitrogen leaves little room for safety factors when
designing wastewater recovery systems (e.g., due to dilution processes or below-average
nitrogen influent), it nonetheless supports the potential use of reclaimed wastewater as a
source of nitrogen for hydroponic agriculture. However, to maintain maximized biomass
growth, wastewater may require either supplemental nutrients or supplemental processes
to concentrate existing nutrients to optimal levels.

3.6. Final Considerations

As noted by Wheeler et al., the parameters derived from this study are relevant for
this specific environment as they are dependent on environmental control inputs and
growth conditions [46]. One significant factor of these growth conditions is the influence of
vertical farming, which may pressure plants to allocate additional energy and nutrients
for structural support to oppose perpendicular gravitational forces. Therefore, further
experiments will be required both to evaluate root biomass growth and to translate these
parameter values to alternative growth environments such as deep-water culture.

Additionally, the evaluation of other nutrients and higher-order molecular constituents,
the inclusion of root measurements, <14 DAT and >32 DAT harvests, and low nitrogen
concentrations would significantly improve model value, potentially helping to identify
the nitrogen loss disparity between nutrient solution samples and tissue harvests. And
while it currently stands as speculation, it is possible a dynamic µ may be applicable for
biomass prediction at an individual level for other organisms, including within microbial
populations. However, eliminating the reproduction and synchronizing the lifecycles of
microbes may pose a significant challenge and offer little practical benefit for populations
that generally exist in such massive and diverse numbers.

The greatest physical challenge in hydroponic kinetics involves the complex task of
maintaining constant nutrient concentrations in hydroponic systems, which are depleted
quickly in low-nitrogen treatments. Such depletion may invoke plant response in nutrient
uptake once additional nutrients are provided, potentially explaining the high uptake
values in the 11 mg L−1 treatment. These shortcomings in experimental design may be
mitigated with shorter intervals between water changes at the expense of significantly
higher costs and increased labor. Further treatments supplying approximately 1–2 mg L−1

nitrogen would also better confirm Ks and Km values in the same range. While this could
be accomplished utilizing a continuous flow reactor or peristaltic dosing pumps, our
researchers recommend increasing the system volume per plant.

Lastly, it’s important to acknowledge the complexity of wastewater, modeling, and
its use in agriculture. Such substrates comprise more than just a series of inorganic nutri-
ents/elements. Factors for additional consideration include growth inhibitors, electrical
conductivity, heavy metals, surfactants, antibiotics and contaminants of emerging concern,
dissolved oxygen, chemical oxygen demand, carbon content, swings in pH and salinity,
competition from heterotrophs, and pathogen transport and influence. Further research
can begin to combine the factors and document their interactions.

4. Conclusions

This study demonstrates that mechanistic models built on a priori knowledge of first
principles can be functionally applied to hydroponically grown Bibb lettuce. However,
it reveals the need for future models to incorporate dynamic, rather than constant, spe-
cific biomass growth and nutrient uptake rates to make accurate predictions at all life
stages. Furthermore, linking Michaelis-Menten uptake kinetics to Monod growth kinetics
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establishes a foundational set of procedures, analytical methods, and model parameters
for future hydroponic and waste-to-food agronomic research. Finally, in the weighing of
quantity vs. quality, these results support that the nitrogen content of reclaimed wastewater
may be expected to produce smaller but nutritionally healthy lettuce in similar vertical
hydroponic environments.
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