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Abstract: A timely and comprehensive understanding of winter wheat maturity is crucial for deploy-
ing large-scale harvesters within a region, ensuring timely winter wheat harvesting, and maintaining
grain quality. Winter wheat maturity prediction is limited by two key issues: accurate extraction
of wheat planting areas and effective maturity prediction methods. The primary aim of this study
is to propose a method for predicting winter wheat maturity. The method comprises three parts:
(i) winter wheat planting area extraction via phenological characteristics across multiple growth
stages; (ii) extraction of winter wheat maturity features via vegetation indices (VIs, such as NDVI,
NDRE, NDII1, and NDII2) and box plot analysis; and (iii) winter wheat maturity data prediction
via the selected VIs. The key findings of this work are as follows: (i) Combining multispectral
remote sensing data from the winter wheat jointing-filling and maturity-harvest stages can provide
high-precision extraction of winter wheat planting areas (OA = 95.67%, PA = 91.67%, UA = 99.64%,
and Kappa = 0.9133). (ii) The proposed method can offer the highest accuracy in predicting maturity
at the winter wheat flowering stage (R2 = 0.802, RMSE = 1.56 days), aiding in a timely and com-
prehensive understanding of winter wheat maturity and in deploying large-scale harvesters within
the region. (iii) The study’s validation was only conducted for winter wheat maturity prediction in
the North China Plain wheat production area, and the accuracy of harvesting progress information
extraction for other regions’ wheat still requires further testing. The method proposed in this study
can provide accurate predictions of winter wheat maturity, helping agricultural management de-
partments adopt information-based measures to improve the efficiency of monitoring winter wheat
maturation and harvesting, thus promoting the efficiency of precision agricultural operations and
informatization efforts.

Keywords: wheat; maturity; remote sensing; crop growth stage

1. Introduction

Wheat is one of the world’s most important food crops [1,2]. The North China Plain,
which includes Henan, Hebei, Shandong, Jiangsu, and northern Anhui provinces, is China’s
largest winter wheat production area [3]. Henan province contributes approximately one
quarter of China’s total wheat production. The harvest data for winter wheat vary by
region and climate. In the North China Plain, the maturity and harvest of wheat are mainly
between late May and mid-June each year, with specific timings depending on the variety
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and local climate conditions [4,5]. A timely and comprehensive understanding of winter
wheat maturity is crucial for deploying large-scale harvesters within a region, ensuring
timely harvesting of winter wheat, and maintaining grain quality [6–8].

In China, agricultural survey teams from the National Bureau of Statistics or local
agricultural technology stations typically conduct wheat maturity period predictions. How-
ever, different investigators may exhibit biases in their wheat maturity assessments. More
importantly, current methods hinder the rapid completion of regional wheat maturity
surveys, limiting their applicability to large areas [9–11]. Since the 1970s, satellite mul-
tispectral remote sensing technology has been widely used in agricultural monitoring,
including crop classification, growth monitoring, and yield estimation [12–15]. However,
the accuracy of winter wheat maturity prediction based on satellite multispectral imagery
is limited by two key issues: accurate extraction of wheat planting areas and effective
maturity prediction methods [16–18].

The main method for extracting winter wheat planting areas is supervised classifi-
cation via machine learning [19–23]. Supervised classification methods employ machine
learning or deep learning techniques to classify various land cover types in remote sensing
images to extract winter wheat planting areas [24]. For example, Chang et al. [25] pro-
posed an improved DeepLabV3+ model and constructed prediction models using data
from Gaofen-2 to extract crop planting areas. Dong et al. [26] used Landsat 7, Landsat
8, and Sentinel 2 images via a time-weighted dynamic time warping method to improve
the accuracy of winter wheat extraction. Ayhan et al. [27] used the DeepLabV3+ model
to classify vegetation in open remote sensing datasets. Supervised classification methods
can achieve high-precision classification through training on large, annotated datasets
and learning the characteristics of wheat planting areas. However, the effectiveness of
supervised classification relies heavily on the quality and quantity of the training data [28].
Furthermore, distinguishing winter wheat from other green vegetation remains challenging,
and more effective methods are needed to extract winter wheat planting areas.

Maturation is the final phenological stage of crops and is accompanied by phenomena
such as germination, leaf unfolding, flowering, and leaf fall, with changes and transfers
in crop pigments, moisture, nutrients, and nitrogen [29]. These changes lead to periodic
variations in crop canopy spectral reflectance and vegetation indices (VIs). Traditional crop
maturity monitoring techniques based on remote sensing mainly utilize multitemporal VIs
combined with threshold methods [30–33]. Current remote sensing phenology extraction
research relies primarily on time series VI analysis [30–33]. The time series-VI method uses
VIs to extract crop phenological information, such as the NDVI, and then extracts winter
wheat planting areas on the basis of phenological characteristics [9,32,34]. The method
involves three main aspects: (i) acquiring high spatiotemporal resolution multispectral
remote sensing images, (ii) reconstructing time series VIs, and (iii) establishing the relation-
ship between crop phenological stages and characteristic points of the VI curve. However,
during the maturation stage, winter wheat loses its green vegetation characteristics, result-
ing in low NDVI values in images, making it difficult to determine an NDVI threshold
for distinguishing mature wheat from soil [21,34]. Furthermore, many studies suggest
that the maturity period extracted from time series vegetation indices may differ from the
actual crop maturity [35,36]. Finally, time series VIs often overlook the spatial structural
information of the land cover, making it challenging to obtain ideal extraction results in
fragmented and complex winter wheat planting areas [30,37,38].

Agricultural production and management departments need real-time or near-real-
time remote sensing information on crop maturity [21,39]. However, existing methods
for extracting crop maturity information via remote sensing time series VIs often experi-
ence delays. Additionally, crop phenological stages are influenced by uncertain weather
conditions, cultivation practices, and field management, leading to systematic deviations
between the mathematically predicted phenological maturity and the actual agronomic
maturity [29]. Currently, there is limited research on accurately determining wheat ma-
turity, and existing remote sensing methods for extracting wheat maturity information



Agriculture 2024, 14, 1368 3 of 22

suffer from delayed timeliness, low accuracy, and difficulties in supporting agricultural
production decisions [21,32,40–42].

The primary aim of this study is to propose a method for predicting the maturity of
winter wheat on the basis of multitemporal remote sensing data. This study focuses on the
North China Plain wheat production area, utilizing phenological information combined
with threshold methods to extract winter wheat planting areas and develop a winter wheat
maturity data prediction model.

2. Study Area and Dataset
2.1. Study Area
2.1.1. North China Plain

The study area is located in China’s main wheat production region, the North China
Plain (Figure 1a). The ground study area (Figure 1b) extends from the eastern part of Henan
province to the western part of Shandong province. The North China Plain is mainly
formed by the sedimentation of rivers such as the Yellow River, and its terrain is low and
flat. In the western and southern foothills of the North China Plain, elevations are primarily
around 80 m. By contrast, in the central plain, elevations range mostly between 35 to 80 m,
and in the eastern coastal areas, elevations are only 2 to 3 m. The North China Plain features
a semi-humid monsoon climate with distinct seasons. The characteristics of this climate are
cold and dry winters and hot and rainy summers. The North China Plain is suitable for
growing wheat, corn, and soybeans. Local agricultural practices typically involve a winter
wheat–summer corn rotation system, with winter wheat being sown in mid-to-late October
and harvested in early June of the following year.
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2.1.2. Winter Wheat Planting Area Labels

This study labeled 600 wheat sample points and 600 non-winter wheat field points.
These ground truth data were used to analyze the spectral and VI characteristics of green
wheat, mature wheat, and harvested fields and evaluate the accuracy of the extraction of
winter wheat planting areas. The samples were marked in two regions: one in the northern
part (P1, 96.4 km2) and one in the southern part (P2, 83.2 km2) of the study area (Figure 1b).
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This is because the maturity time difference between the southern and northern parts of the
study area can reach up to 10 days, while the difference between the eastern and western
parts is minimal. A total of 1200 samples were selected from both wheat planting areas
(n = 600) and non-wheat planting areas (n = 600). The pixels of non-wheat planting areas are
water bodies, roads, urban areas, and non-wheat green vegetation. Therefore, 150 sample
sizes were assigned to each category. The labeling method is described in Table 1.

Table 1. Standards used for labeling the winter wheat planting area and non-wheat planting areas.

Type Label Number Description

winter wheat planting area winter wheat cropland 600 winter wheat

non-wheat planting area

waterbody 150 rivers and lakes
road 150 cement and dirt roads

urban area 150 cities and towns (non-vegetation)
green vegetation-covered 150 non-wheat vegetation

The specific categories of the labeled points were as follows:

• Six hundred wheat cropland sample points, with 300 points in each P1 and P2 study
area (Figure 1b);

• One hundred and fifty waterbody sample points;
• One hundred and fifty road sample points;
• One hundred and fifty urban area sample points;
• One hundred and fifty green vegetation-covered sample points.

2.2. Remote Sensing Images
2.2.1. Sentinel-2 MSI

The Sentinel-2 satellite, operated by the European Space Agency (ESA), is an Earth
observation project that provides high spatial resolution and multispectral observation data
globally. The Sentinel-2 constellation includes two satellites, Sentinel-2A and Sentinel-2B,
which achieve a five-day revisit cycle for most global regions. The Sentinel-2 MSI is a
multispectral sensor onboard the Sentinel-2 constellation that captures surface reflectance
information in multiple bands, including the visible, infrared, and near-infrared bands,
with spatial resolutions ranging from 10 m to 60 m. Sentinel-2 MSI Level 2A images are
surface reflectance products that have undergone atmospheric and geometric corrections
by the ESA.

This study selected two overlapping Sentinel-2 transit zones (Figure 1), allowing for a
revisit cycle of 2–3 days due to the overlap of the adjacent transit zones (Table 2). Sentinel-2
MSI images were obtained through the Google Earth Engine (GEE) platform [43]; cloud
pixels with a probability greater than 65% were removed via GEE’s cloud detection results.
Due to wheat’s long individual growth periods, satellites revisit the same area multiple
times during a specific growth stage. Additionally, some pixels in Sentinel-2 images were
missing after removing pixels affected by cloud cover. Therefore, the averaged values
of valid pixels (those not affected by cloud cover or other disturbances) within the same
growth stage were used to obtain the spectral values of wheat fields at that stage.

Given the multiple remote sensing images acquired for various wheat growth stages
and the multiple images within the same phenological stage (e.g., overwintering), this
study used the abbreviations (Abbr) S1 (emergence stage) to S11 (filling stage) to represent
each phenological stage. Table 2 presents the correlations between the phenological stages
and collection times of the Sentinel-2 multispectral images. Ten winter wheat growth stages
were selected because wheat organs, canopy structure, and leaf physiological characteristics
undergo significant changes during these critical growth stages (Table 2). In this study,
Sentinel-2 multispectral images were used primarily to calculate VIs and construct a winter
wheat maturity prediction model.
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Table 2. Sentinel 2 images and winter wheat growth stages.

Abbr Transit Time Wheat Growth Stages Abbr Transit Time Wheat Growth Stages

S1 2022-11-15 emergence S7 2023-03-28
2023-03-30 flagging

S2 2022-12-18 overwintering 1 S8 2023-04-09 heading

S3 2023-01-07 overwintering 2 S9

2023-04-16
2023-04-22
2023-04-24
2023-04-27
2023-04-29

flowering

S4 2023-01-29 overwintering 3 S10 2023-05-07
2023-05-14 filling

S5 2023-02-15
2023-02-26 regreening

S11
2023-06-01
2023-06-06
2023-06-08
2023-06-13

harvest

S6 2023-03-10
2023-03-13 jointing

2.2.2. GF-1 WFV and HJ-2 CCD

The Gaofen-1 (GF-1) satellite, developed by China, is a remote sensing satellite that
is primarily tasked with Earth resource surveys, environmental monitoring, and urban
planning [44]. The satellite is equipped with various sensors, including a wide field of
view (WFV) sensor. The WFV sensor, the main imaging device of the GF-1 satellite, stands
out for its wide field of view and rapid acquisition of large-scale ground images. Its high
resolution and fast imaging capability, with a ground resolution of 16 m, make it a valuable
tool for remote sensing applications.

The HJ-2A/B satellites, managed by China’s Ministry of Emergency Management
and Ministry of Ecology and Environment, are used for large-scale, all-weather dynamic
monitoring of ecological environments and disasters [45]. They reflect the development of
ecological environments and the occurrence of disasters in a timely manner, and they can
help to predict changes and provide a scientific basis for emergency rescue, post-disaster
relief, and reconstruction. The HJ-2A/B satellites operate in a network, achieving global
coverage every two days. The HJ-2A/B satellites have four types of optical payloads: CCD
cameras, hyperspectral imagers, infrared cameras, and atmospheric correction instruments.
The CCD camera payload consists of four visible light CCD cameras, providing a 16 m
ground resolution and a swath width of 800 km through field-of-view stitching.

The preprocessing steps for GF-1 WFV and HJ-2A/B CCD multispectral images are
similar and involve two processes: (1) orthorectification, where raw multispectral images
are converted from rational polynomial coefficient (RPC) projection to world geodetic
system 1984 (WGS-84) projection via ENVI (Exelis Visual Information Solutions, Boulder,
CO, USA) orthorectification tools [46]; and (2) image registration, which uses Sentinel-2
MSI multispectral images downloaded from GEE as a reference to register Sentinel-2 MSI,
GF-1 WFV, and HJ-2A/B CCD multispectral images.

This study mainly used GF-1 WFV and HJ-2A/B CCD multispectral images to deter-
mine the maturity and harvest of winter wheat. GF-1 WFV and HJ-2A/B CCD multispectral
images were not used to predict wheat maturity.

2.3. Winter Wheat Maturity Data Collection

Determining the harvest data of winter wheat on a large scale is challenging. Generally,
grain moisture content is the primary indicator of agricultural maturity. During grain
formation, 29–40% of the nitrogen in wheat comes from the leaves, with canopy leaves
aging synchronously with the filling and maturation process [47]. At full maturity, wheat
leaves turn yellow, grains harden, and the moisture content decreases below 20% [47].
After wheat maturation, the moisture and chlorophyll content change minimally. Winter
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wheat should be harvested promptly upon maturation, as photosynthesis ceases while
respiration continues, potentially causing yield losses. Family farms dominate the North
China Plain, and farmers harvest wheat as soon as it matures. Therefore, the day before
a harvest was recorded as maturity in this study. This work determined the maturity of
398 winter wheat fields.

2.3.1. Harvester Work Record

The winter wheat harvest data were obtained via BeiDou global navigation satellite
system (GNSS) receiver work logs from ground-based harvester teams. Harvesting typically
progresses from south to north. Winter wheat harvesting in the study area began on 1 June
and was mostly completed by 13 June. When harvesting begins, operators manually
activate the BeiDou GNSS receiver and deactivate it upon finishing a plot. The GNSS
receiver uploads the harvester’s real-time location data to the owner. Based on these
two locations, we determined the location of the wheat field. Each set of harvest records
includes a comprehensive set of latitude and longitude coordinates and a time stamp. A
total of 115 sets of harvester records were collected, and the maturity for 115 winter wheat
fields was determined.

2.3.2. Manual Labeling of Harvest on the Basis of Remote Sensing Images

In addition to harvester records, this study annotated harvested wheat fields in the
study area via multitemporal satellite remote sensing images, with the day before harvest
recorded as maturity (Table 3). After harvest, wheat stubble covers the soil surface, in-
creasing soil brightness as compared to the soil in the unharvested areas. For example, if
a winter wheat field was identified as unharvested on 12 June 2023 based on the HJ-2A
CCD and GF1-WFV images (Table 3) but was identified as harvested on 13 June 2023 based
on the HJ-2B CCD and Sentinel-2 MSI images (Table 3), then it was recorded as matured
on 12 June 2023. Owing to the distinct characteristics of harvested and unharvested wheat
fields, 283 winter wheat fields and maturity were annotated on the basis of the Sentinel-2
MSI, GF-1 WFV, and HJ-2A/B multispectral images during maturity (Table 3).

Table 3. Sentinel-2 MSI, GF-1 WFV, and HJ 2A/B images.

Group Transit Time Type

Group 1 2023-6-1 Sentinel-2 MSI

Group 2 2023-6-6 Sentinel-2 MSI
2023-6-8 Sentinel-2 MSI

Group 3 2023-6-12 HJ-2A CCD, GF1-WFV
2023-6-13 HJ-2B CCD, Sentinel-2 MSI

3. Methods
3.1. Methodological Framework

The technical route for monitoring the harvest of winter wheat in this study (Figure 2)
mainly included three steps:

(i) Winter wheat planting area classification. In this study, winter wheat planting areas
were extracted via a multigrowth-stage NDVI combined with threshold methods.

(ii) Winter wheat maturity characteristic analysis. We conducted a comprehensive analy-
sis, selecting VIs (such as NDVI, NDRE, NDII1, and NDII2) and thoroughly examine
the winter wheat maturity characteristics and field harvest characteristics via boxplot
analysis methods.

(iii) Winter wheat maturity data prediction. On the basis of the selected valuable harvest
VIs, a threshold method was used to determine maturity, which was combined
with the information extracted from the winter wheat planting area to assess the
harvest progress.
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3.2. Vegetation Indices

This study selected several VIs sensitive to crop chlorophyll content, growth status,
and leaf water content (Table 4) to determine winter wheat planting areas and maturity
characteristics. Choosing the proper vegetative indices involved considering the spectral
bands available from the remote sensing sensors, the studied vegetation types, and the
specific environmental conditions affecting crop growth. Three VIs were selected for
extracting the wheat planting areas and determining harvest timing. Table 4 presents the
selected VIs.

Table 4. Vegetation indices.

VIs Types Calculation Method Refs.

NDVI

multifunctional

(NIR-RED)/(NIR + RED) [48]
GNDVI (NIR-GREEN)/(NIR + GREEN) [49]
NDVI2 NDVI × NDVI -
RDVI (NIR-RED)/((NIR + RED)0.5) [50]
SAVI 1.5 × (NIR-RED)/(NIR + RED + 0.5) [51]

OSAVI 1.16 × (NIR-RED)/(NIR + RED + 0.16) [52]
NIRv NIR × NDVI [53]

EVI 2.5 × (NIR-RED)/(NIR + 6 × NIR − 7.5
× BLUE + 1) [54]

CIRE chlorophyll RE3/RE1 − 1 [55]
NDRE (NIR–RE1)/(NIR + RE1) [56]

NDII1
leaf water

(NIR–SWIR1)/(NIR + SWIR1) [57]
NDII2 (NIR–SWIR2)/(NIR + SWIR2) [57]

Note: NDVI2: NDVI × NDVI.

Multifunctional VIs, such as the normalized difference vegetation index (NDVI),
enhanced vegetation index (EVI), and soil-adjusted vegetation index (SAVI), are designed
to capture multiple aspects of vegetation health and physiology. These indices, which are
versatile and widely used in monitoring vegetation cover, biomass, and stress, provide
a comprehensive understanding of plant health. Chlorophyll VIs, specifically sensitive
to chlorophyll content, and leaf water VIs, which focus on changes in leaf water content,
provide unique insights into vegetation physiology.

The NDVI time series has been widely used to determine crop phenological informa-
tion and extract crop planting area information. In this study, the NDVI was used to extract
wheat planting areas, while multiple chlorophyll indices and canopy water VIs, such as the
NDRE, were used to determine wheat harvest information.
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3.3. Winter Wheat Spectral Feature Analysis and Extraction Techniques
3.3.1. Time Series Vegetation Index Feature Analysis

Currently, most widely used crop planting area extraction techniques are based on
multigrowth-stage assessments. This method focuses on analyzing and extracting the
phenological characteristics of different crops and plants, improving the extraction of
winter wheat planting areas on the basis of these characteristics. Multitemporal remote
sensing allows for capturing vegetation dynamics throughout the growing season of winter
wheat. By acquiring satellite imagery at multigrowth stages (e.g., emergence and heading
stages), researchers can observe variations in the NDVI and other vegetation indices [26].
This helps to distinguish between different growth stages of winter wheat and reduces the
impact of single-stage classification errors caused by high NDVI values.

As shown in Figure 3, the NDVI time series curves of major land cover types in
agricultural areas exhibited the following features:

(i) Roads, water bodies, and urban areas had NDVI values below 0.3, with minimal
interannual variation.

(ii) Cropland pixels were influenced by the natural environment, seasonal changes, and
human cultivation. Wheat emerged at the end of October of the previous year, with
the NDVI peaking at the end of April of the following year and decreasing to its
lowest value by the end of May.

(iii) In non-crop vegetation-covered areas, the NDVI values were influenced by the nat-
ural environment and seasonal changes. The NDVI values began to rise in March,
peaked in June, decreased in November, and reached their lowest values by the end
of December.
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This study used phenological characteristics to improve the accuracy of winter wheat
planting area extractions (Figure 3). Considering the focus on extracting winter wheat
harvest progress rather than planting area information, the study used only four temporal
satellite datasets for classification: 10 March 2023 (S6, jointing stage), 7 May 2023 (S10,
filling stage), and 13 June 2023 (S11, post-harvest). The threshold method was used to
extract planting areas:

Green vegetation : NDVIjointing > 0.5 or NDVIfilling > 0.6 (1)

Non-green vegetation : NDVIpost−harvest1 < 0.3 or NDVIpost−harvest2 < 0.3 (2)

Condition (1) extracted green vegetation areas during the winter wheat jointing
(NDVI > 0.5) and filling (NDVI > 0.5) stages, including green wheat, forestland, shrubs, and
urban lawns. Condition (2) extracted non-vegetation areas (NDVI < 0.3), including water
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bodies, harvested winter wheat fields, concrete ground, roads, and field ridges. Winter
wheat information could be extracted when an area met both conditions simultaneously.
The extraction process for the wheat planting areas was implemented via ENVI band math.

3.3.2. Boxplot

A boxplot is a statistical chart that shows the data variability distribution [58]. It
is widely used to describe the distribution characteristics of raw data and compare the
distribution characteristics of multiple datasets. Boxplots display various key summary
statistics of a dataset, such as the maximum, minimum, median, and quartiles. Therefore,
they can help to analyze the multigrowth-stage changes in pigments and water during
winter wheat maturation.

3.4. Maturity Prediction Model

This work determined the maturity of 398 winter wheat fields. Two hundred and
sixty-five fields were used to construct the maturity prediction models, while the remaining
133 fields were reserved for model validation. For each validation unit used for maturity
prediction, the average spectral values (B2, B3, B4, B5, B6, B7, B8, B11, and B12) for each
growth stage within a 20 m centered unit were extracted using GEE. The corresponding
12 VIs were subsequently calculated, resulting in each validation unit corresponding to
12 VIs per growth stage. The study designed two wheat maturity validation strategies:

• Strategy (1) used VIs from the emergence stage to the flowering stage (S1–S9, nine growth
periods) for maturity prediction. Strategy (1) enabled the prediction of wheat maturity
at the flowering stage (29 April 2023, Table 2). For maturity prediction via Strategy 1,
each validation unit corresponded to 12 × 9 = 108 modeling values.

• Strategy (2) used VIs from the emergence stage to the filling stage (S1–S10, ten growth
periods) for maturity prediction. Strategy (2) enabled the prediction of wheat matu-
rity at the filling stage (14 May 2023, Table 2). For Strategy 2, each validation unit
corresponded to 12 × 10 = 120 modeling values.

The study employed three commonly used statistical regression models for accuracy
comparison: random forest (RF) [59], partial least squares regression (PLSR) [60], and
multiple stepwise regression (MSR) [28]. These methods have been widely applied in
agricultural crop parameter prediction research.

The RF regression technique is based on ensemble learning [59]. Multiple decision
trees are constructed through random sampling and feature selection, and the results are
determined on the basis of the voting results of multiple decision trees. Each decision tree
is constructed using different random samples and features, ensuring diversity among the
trees. By integrating numerous individual decision trees, RF reduces the risk of overfitting
a single model and enhances the model’s generalization ability. When using RF for data
regression, it is necessary to set two parameters specifically for the RF model: mtry and
ntree. Here, mtry represents the number of variables considered for the best split at each
node during tree growth, typically set to the square root of the number of input variables
(mtry =

√
108 = 10). The parameter ntree denotes the number of decision trees in the forest,

commonly set to the default value of 500.
The PLSR is a statistical method that, while related to principal component regression,

stands out for its adaptability [60]. It seeks to find a hyperplane in the new space through
a projection that maximizes the variance between the response and predictor variables.
PLSR models the covariance structure between two matrices (X and Y) by projecting them
into a new space. It is particularly suitable when there are more predictor variables than
observations, and when multicollinearity exists in X values, making it a reassuring choice
in complex scenarios.

The basic idea of MSR is to automatically select the most important variables from
many available options to establish a predictive or explanatory regression model [28]. The
process involves introducing variables individually, with the condition that their partial
regression sum of squares is significant. After introducing a new variable, the existing
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variables are tested, and the nonsignificant variables are removed. This process continues
until no new variables are introduced, or the existing variables are removed, resulting in an
“optimal” multiple linear regression equation.

3.5. Performance Evaluation
3.5.1. Performance Evaluation of Winter Wheat Planting Areas Extraction

A confusion matrix, also known as error matrix, is a specific table layout that allows
for visualization of the performance of an algorithm [61]. The confusion matrix organizes
the acquired sample data in a way that summarizes key results and quantifies accuracy and
area. The main diagonal of the confusion matrix highlights correct classifications, while the
off-diagonal elements show omission and commission errors. The confusion matrix’s cell
entries and marginal values are fundamental to accuracy assessment and area estimation.
Table 5 illustrates the confusion matrix used in this study.

Table 5. Confusion matrix.

Confusion Matrix
Reference

Winter Wheat Non-Winter Wheat Total

Map
Winter wheat p11 p12 p1

Non-winter wheat p21 p22 p2
Total p1 p2 1

The study used four metrics derived from the confusion matrix to measure monitoring
accuracy: overall accuracy (OA), producer accuracy (PA), user accuracy (UA), and Cohen’s
Kappa index.

OA = ∑q
j=1 pjj (3)

PA =
pjj

p·j
(4)

UA =
pjj

pj·
(5)

The Cohen’s Kappa index could be calculated based on the confusion matrix:

Kappa =
po − pe

1 − pe
(6)

where po represents the overall accuracy, and pe is the hypothetical probability of
chance agreement.

pe =
1

N2 ∑
k

nk1nk2 (7)

where k represents the categories, N represents the number of observations, nk1 represents
the number of category k, and nk2 represents the number of predicted category k. This work
calculated the OA, PA, UA, and Kappa index using sklearn in Python.

3.5.2. Performance Evaluation of Winter Wheat Maturity Prediction

For maturity prediction, the coefficient of determination (R2), mean absolute error
(MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) were
used to evaluate the accuracy of the models and methods.

R2 = 1 − ∑n
i=1(yi − xi)

2

∑n
i=1(yi − y)2 (8)

MAE =
∑n

i=1 abs(xi − yi)

n
(9)
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MAPE =
∑n

i=1 abs
(

xi−yi
yi

)
n

× 100 (10)

RMSE =

√
∑n

i=1(xi − yi)
2

n
(11)

where xi and yi represent the estimated and measured sample values, y represents the
estimated average value, and n is the number of samples. In mathematical terms, a model
with a higher coefficient of determination and a lower RMSE for the same sample data is
generally considered more accurate, demonstrating the complementary nature of the two
evaluation metrics.

4. Results
4.1. Analysis of Winter Wheat Maturation Features

We analyzed the spectral reflectance characteristics and VI features of different pheno-
logical stages. Figure 4a shows the spectral differences among green winter wheat, mature
winter wheat, and post-harvest winter wheat fields. Our results indicate that immature
wheat exhibits green vegetation spectral characteristics. However, after wheat enters the
mature stage, these green vegetation spectral characteristics weaken, with a noticeable
decrease in red band spectral reflectance due to reduced chlorophyll, and a significant
increase in shortwave infrared band reflectance due to decreased water content. Our results
show that green wheat has the lowest visible band reflectance, mature wheat has relatively
high visible band reflectance, and post-harvest wheat fields have the highest pixel spectral
reflectance because straw covers the soil surface.
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Figure 4. Spectra and VIs of green wheat, mature wheat, and harvested cropland. Note: the red +
represents outliers.

Figure 4b–h show the differences in VI characteristics among green winter wheat,
mature winter wheat, and post-harvest winter wheat fields. Our results indicate that
different VIs have varying abilities to distinguish crop maturity characteristics. Indices
such as the NDVI, NDRE, NIRv, SAVI, and RDVI rapidly decrease with increasing crop
maturity, indicating significant numerical differences. However, the NDII1 and NDII2
of green winter wheat, mature winter wheat, and post-harvest winter wheat fields have
considerable overlap ranges, implying that using only the NDII1 and NDII2 to distinguish
crop maturity characteristics may not be as effective as the use of the NDVI and NDRE
indices. This is not surprising since the NDII1 and NDII2 indices were initially designed to
distinguish crop canopy moisture but are also sensitive to soil moisture.
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This study further analyzed the changes in VI characteristics over time for mature
winter wheat via the NDVI. Figure 3 shows the NDVI change curve over time. Soil,
urban areas, and water bodies have low NDVI values with slight interannual variations.
Vegetation-covered green spaces are influenced mainly by natural environments, and
seasonal changes increase the amount of green starting in March, reach the maximum NDVI
in June, decrease in November, and reach the lowest value at the end of December. After
winter wheat emerges, the NDVI increases rapidly; during the overwintering period, the
NDVI slightly decreases; after the regreening period, the NDVI increases rapidly, reaching
its maximum value in mid-April; and after mid-May, the wheat NDVI rapidly decreases,
reaching its lowest value post-harvest. The time series changes in VIs represented by the
NDVI suggest that time series characteristics can effectively distinguish winter wheat from
urban green spaces and other ground targets.

4.2. Extraction of Winter Wheat Planting Areas

On the basis of the proposed discrimination rules (NDVIjointing > 0.5 or NDVIfilling > 0.6)
and (NDVIpost-harvest-1 < 0.3 or NDVIpost-harvest-2 < 0.3), this study analyzed the winter wheat
farmland areas in the study area, with the results shown in Figure 5 and the confusion
matrix presented in Table 6. The results (Table 6) indicated that 50 winter wheat pixels were
misidentified as non-farmland, and two non-farmland pixels were misidentified as winter
wheat fields, with OA = 95.67%, PA = 91.67%, UA = 99.64%, and Kappa = 0.9133. Our results
demonstrate that the proposed method has high user accuracy, which is unsurprising since
it relies on the unique phenological characteristics of winter wheat for area extraction,
making it difficult for the other features in the study area to exhibit these characteristics.
However, the producer accuracy was lower than the mapping accuracy, likely because the
NDVI thresholds set in this study may be high (Figure 3), causing poorly growing winter
wheat areas to not reach such high NDVI values. Some wheat fields may have exhibited
lower NDVI than normal due to factors such as water deficiency, nitrogen deficiency, or
pest and disease infestations. This is unsurprising, considering that only about 60% of
farmland in the North China Plain receives irrigation, leaving it vulnerable to drought and
secondary impacts [62].
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Table 6. Confusion matrix for winter wheat extraction.

Confusion Matrix
Predicted Value

Winter Wheat Non-winter Wheat Total

Actual value
Winter wheat 550 50 600
Non-winter

wheat 2 598 600

Total 552 648 1200

Notably, this study’s winter wheat planting area extraction was conducted in the North
China Plain wheat region, where the terrain is flat and field boundaries are often difficult to
distinguish in 10 m resolution remote sensing images. Therefore, more winter wheat field
annotation points are located within the field blocks, leading to insufficient consideration
of the mixed pixels in the validation, resulting in a slightly higher statistical accuracy.
Considering that (1) the study focused on extracting the spectral and VI characteristics of
mature winter wheat and that (2) the study could not visually determine the ownership of
the mixed pixels, the accuracy was not comprehensively compared.

4.3. Winter Wheat Maturity Prediction

Figures 6 and 7 show the accuracy of predicting winter wheat maturity via different
models on the basis of remote sensing observations from the emergence to flowering and
emergence to filling periods. The validation dataset indicated similar accuracies across the
three maturity prediction models. Our results showed that (i) using the RF model combined
with remote sensing observations from emergence to flowering can achieve the highest
R2 (R2 = 0.802, RMSE = 1.56 days, MAE = 1.0 days, MAPE = 42.24%) and that (ii) the MSR
model combined with remote sensing observations from emergence to filling can achieve
the highest R2 (R2 = 0.797, RMSE = 1.61 days, MAE = 1.15 days, MAPE = 45.23%).
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Note: Appendix A Table A1 shows the MSR and PLSR model parameters for strategy (2).

Considering that the MSR model could be implemented on the basis of simple band
math and it helped to analyze which VI contributes to the maturity data, we used the MSR
model to map winter wheat maturity. Figure 8 shows the predicted winter wheat maturity
map in the study area based on Sentinel-2 MSI images from 5 November 2022 (emergence),
to 24 May 2023 (filling). Specifically, winter wheat in the southern part of the study area
matures first, whereas in the northern part, it matures the latest. This difference is expected
due to the lower latitude of approximately 32◦ in the region’s south compared to around 37◦

in the north (Figures 8 and 9). Southern winter wheat accumulates the necessary growing
degree days for maturity sooner, leading to phenological stages occurring one to two weeks
earlier than those in the north.

Using MPAE as the metric, the RF model (41.78%) combined with the emergence-
flowering strategy (1) achieved the highest accuracy in predicting wheat maturity. Using
RMSE as the metric, the RF model (1.56 days) combined with the emergence-filling strategy
(2) also achieved the highest accuracy in predicting wheat maturity. This suggested that
the RF model can provide superior maturity predictions compared to the MSR and PLSR
models. However, the RF model is known for its black box nature, which complicates
understanding why it outperforms MSR and PLSR in prediction accuracy.

The MSR and PLSR models offered explicit mathematical formulas that aid in agricul-
tural decision making (Appendix A Table A1). For instance, the MSR formula excluded
NDVI but included leaf water indices (such as NDII1 and NDII2), the chlorophyll index
(such as NDRE), and enhanced vegetation indices (such as EVI and NDVI2). This under-
scores the sensitivity of wheat leaf pigment and canopy water content to maturity events.
Our findings contribute to a better understanding and prediction of winter wheat maturity.
The study results indicated that the MSR model can accurately extract winter wheat harvest
information. Figure 9 shows the predicted winter wheat maturity in different latitudinal
areas. Winter wheat in the study area starts maturing on 1 June 2023 and is almost fully
mature by 11 June 2023. Areas further south mature earlier, whereas areas further north
mature later. This is not surprising, as areas further south in the North China Plain typically
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have higher temperatures, simultaneously favoring the growth and development of winter
wheat, leading to earlier phenological stages than in the northern areas.
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5. Analysis and Discussion
5.1. Winter Wheat Planting Area Extraction Model

The extraction of winter wheat planting areas on the basis of multitemporal normal-
ized difference vegetation index (NDVI) data involves the use of remote sensing technology
to analyze the phenological characteristics of the ground objects, thereby determining crop
growth regions [30–33]. Since the NDVI values vary significantly at different stages of the
wheat growth cycle, analyzing multitemporal NDVI data can capture the dynamic changes
during the wheat growth process and reflect the corresponding phenological characteris-
tics [50]. By setting combination thresholds on the basis of prior knowledge and the NDVI
characteristics of wheat at different growth stages, one can simply and intuitively identify
wheat planting areas without extensive ground survey samples. Therefore, extracting the
time series characteristics of wheat from multitemporal NDVI index data is crucial for
accurately identifying winter wheat planting areas [30,37,38].

Winter wheat on the North China Plain has a distinct growth cycle; it is typically
sown in the autumn, overwinters in the winter, regreens in the spring, and matures and
is harvested in the summer [4,5]. The NDVI values at different growth stages change
significantly; for example, the NDVI values are relatively high during the jointing to filling
stages and decrease rapidly after harvest. These significant changes make monitoring
the winter wheat growth process through multitemporal NDVI data straightforward and
effective (Figure 3). In the North China Plain, other major crops, such as corn and soybeans,
have different growth cycles than winter wheat; for example, corn and soybeans are usually
sown in the spring and harvested in the autumn (Figure 3). Consequently, during winter
and early spring, the NDVI values for corn and soybean fields are low, whereas winter
wheat is in its peak growth period with high NDVI values. This seasonal difference clearly
distinguishes winter wheat in terms of NDVI time series characteristics.

By integrating prior knowledge, such as the growth stages of winter wheat and
corresponding NDVI characteristics, reasonable thresholds can be set to distinguish differ-
ent crops and ground objects (Figures 3 and 5). This approach does not require complex
classification algorithms but rather simple threshold judgments to achieve high-accuracy ex-
traction results for winter wheat planting areas. The findings of this study (Figures 3 and 5)
suggest that (i) the jointing to filling stages and (ii) post-harvest NDVI combinations are
effective characteristics for distinguishing winter wheat, non-wheat vegetation, and other
non-farmland areas, contributing to highly accurate extraction results for winter wheat
planting areas. Notably, this study differs from traditional remote sensing image classifica-
tion methods, such as supervised classification via machine learning and the time series-VI
methods. Owing to local planting practices, the proposed strategy is specifically suitable
for winter wheat crops in the North China Plain. The results indicate that 50 winter wheat
pixels were misidentified as non-farmland, and two non-farmland pixels were misidentified
as winter wheat fields, with OA = 95.67%, PA = 91.67%, UA = 99.64%, and Kappa = 0.9133.
This implies that the study may still miss detecting winter wheat pixels, and future im-
provements in the model should be pursued in conjunction with other studies. Since the
NDVI thresholds in this study may be high, winter wheat areas with poorer growth may
not reach such high NDVI values. A possible solution is to lower the NDVI threshold for
identifying winter wheat fields.

5.2. Winter Wheat Maturity Prediction Model

This study developed a calculation formula to predict the maturity of winter wheat
by combining multiple periods of different remote sensing indices with the MSR model
(Figures 7 and 8). These indices include leaf water VIs (NDII1, NDII2), multifunctional
VIs (NDVI, EVI, GNDVI, and NIRv), and chlorophyll red-edge indices (CIRE and NDRE).
These combinations provide comprehensive crop growth information via different remote
sensing indices at critical growth stages (Figure 8). For example, these combinations can
effectively reflect the crop’s moisture status, health, and nutrient content at different growth
stages, especially during key periods such as regreening and jointing, thereby providing
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accurate maturity predictions by monitoring rapid growth phases. Our study also revealed
that different VIs contribute differently to predicting winter wheat maturity. For example,
red-edge VIs (S2-NDRE, S4-CIRE, S6-CIRE, S6-NDRE, and S10-CIRE) and moisture indices
(S1-NDII1, S3-NDII2, S5-NDII2, and S6-NDII1) are more critical for maturity prediction. The
NDVI is not in the optimal MSR model. This is not surprising, as the NDVI is very prone to
saturation. The enhancement index of NDVI, NDVI2, is in the optimal MSR model. This
is unsurprising, as pigments and water are essential catalysts and raw materials for crop
photosynthesis, and they are crucial for analyzing various phenological and physiological
phenomena of winter wheat [50,51]. Additionally, the contributions of different growth
periods to crop maturity predictions vary. Specifically, the MSR model uses jointing stage
indices such as the NDVI2, EVI, CIRE, NDRE, and NDII1 to assess winter wheat maturity,
indicating that crop vigor, nutrient status, and the moisture conditions during the jointing
stage are vital for determining winter wheat maturity.

The phenological stages of crops are influenced by uncertain meteorological conditions,
cultivation practices, and field management. A systematic bias typically exists between
the maturity period based on mathematical feature point extraction and the agronomic
maturity period. Therefore, current methods for extracting remote sensing information on
wheat maturity have low accuracy and make supporting agricultural production decisions
challenging. For example, Sakamoto et al. [36] and Zhao et al. [35] reported that the accuracy
of satellite-based extraction of wheat maturity was RMSE = 15.7 days and MAE = 11.2 days,
respectively. The proposed method can offer the highest accuracy in predicting the maturity
at the winter wheat flowering stage (R2 = 0.802, RMSE = 1.56 days), aiding in a timely
and comprehensive understanding of winter wheat maturity and in deploying large-scale
harvesters within the region.

5.3. Limitations and Uncertainty of This Work

This study provides a scientific basis for predicting winter wheat maturity. However,
practical applications have limitations because of insufficient consideration of the remote
sensing data resolution, crop diversity, and regional differences. First, the study did not
account for mixed pixel effects, which present limitations when applied to MODIS imagery.
Agriculture in the North China Plain is primarily family-based, with small field sizes,
making most 1 km scale MODIS imagery mixed pixels [16]. Mixed pixel effects lead to
multiple different ground object reflectances within a single pixel, thereby impacting the
precision of the classification results. Therefore, higher-resolution remote sensing data
(such as Landsat or Sentinel imagery) could yield more accurate results. A potential
solution could be integrating Landsat or Sentinel images using deep learning methods
to obtain higher-resolution remote sensing data and address the issue of mixed pixel
effects. This approach can improve accuracy by reducing the influence of mixed pixels,
especially in regions with smaller fields. Second, the model in this study was tested only
on winter wheat and was not validated for other crops, such as corn and soybeans. This
limits the model’s applicability, as its accuracy and reliability cannot be guaranteed for
other crops. Different crops have varied growth cycles and phenological characteristics,
necessitating independent modeling and validation to ensure the generalizability and
accuracy of the prediction model. Additionally, the study tested the model only in the
principal wheat production area of the North China Plain and requires more validation in
other regions. Thus, the method’s generalizability and applicability require further research
and verification.

Future work should consider integrating other data sources, such as weather data, soil
information, and historical crop management practices. This holistic approach can enhance
the model’s predictive capability by providing a more comprehensive understanding
of crop growth and maturity. We should explore and implement advanced modeling
techniques to adapt to the complexity of agricultural systems and remote sensing data.
This may involve integrated approaches, machine learning methods, or hybrid models
to effectively combine field observations with remote sensing data. Furthermore, more
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meaningful work could involve exploring the translation of the research findings into
specific supporting technologies. For instance, applying maturity prediction approaches to
operational applications in agriculture of varying scales.

6. Conclusions

The primary goal of this study was to propose a method for predicting winter
wheat maturity via multitemporal remote sensing data. Our research reached the
following conclusions:

(i) Integration of the NDVI of the (a) jointing-heading and (b) maturation-harvesting
stages can provide high-precision extraction of winter wheat planting areas.

(ii) Utilizing the MSR model, RF model, and multitemporal multispectral remote sensing
data enables high-performance prediction of winter wheat maturity. The proposed
method offers the highest accuracy in predicting maturity at the winter wheat flower-
ing stage, aiding in a timely and comprehensive understanding of the winter wheat
maturity and in deploying large-scale harvesters within the region.

The method proposed in this study has the potential to significantly improve the
efficiency of monitoring winter wheat maturation and harvesting. It can provide accurate
predictions of winter wheat maturity, helping agricultural management departments adopt
information-based measures, thus promoting the efficiency of precision agricultural op-
erations and informatization efforts. Future work should consider integrating other data
sources, such as weather data, soil information, and historical crop management practices.
In addition, future studies should explore and implement advanced modeling techniques
(such as deep learning methods) to adapt to the complexity of agricultural systems and
remote sensing data. Furthermore, more meaningful work could involve exploring the
translation of the research findings into specific supporting technologies. For instance,
applying maturity prediction approaches to operational applications in agriculture of
varying scales.
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Appendix A

Table A1 shows the MSR and PLSR model parameters for the two strategies.

Table A1. MSR and PLSR model parameters for the two strategies.

Strategies Strategy (1) Strategy (2) Strategies Strategy (1) Strategy (2)

Models MSR PLSR MSR PLSR Models MSR PLSR MSR PLSR

Constants 3.001 6.397 5.967 5.918 - - - - -

S1
GNDVI 0.000 0.280 0.000 0.436

S6
GNDVI 0.000 −0.821 0.000 −1.069

NDVI 0.000 −0.504 5.765 −0.567 NDVI 0.000 −0.634 0.000 −0.859
NDVI2 0.000 −0.037 0.000 −0.017 NDVI2 −13.718 −0.488 −18.668 −0.630
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Table A1. Cont.

Strategies Strategy (1) Strategy (2) Strategies Strategy (1) Strategy (2)

Models MSR PLSR MSR PLSR Models MSR PLSR MSR PLSR

S1

RDVI 0.000 0.288 0.000 0.436

S6

RDVI 0.000 −0.447 0.000 −0.632
SAVI 0.000 0.427 0.000 0.604 SAVI 0.000 −0.396 0.000 −0.565

OSAVI 0.000 −0.110 0.000 −0.071 OSAVI 0.000 −0.524 0.000 −0.724
EVI 0.000 −0.993 0.000 −0.722 EVI 52.601 −0.587 0.000 −1.081
CIRE 0.000 0.244 0.000 0.359 CIRE 0.830 −0.014 0.000 0.001

NDRE 0.000 −0.267 0.000 −0.175 NDRE −25.486 −0.485 0.000 −0.630
NDII1 −4.533 −0.969 0.000 −1.459 NDII1 31.536 −0.156 39.474 −0.166
NDII2 0.000 −1.114 −7.869 −1.454 NDII2 0.000 −0.471 0.000 −0.593
NIRV 0.000 2.172 0.000 2.775 NIRV 0.000 −0.268 0.000 −0.348

S2

GNDVI 0.000 0.691 0.000 0.882

S7

GNDVI 16.028 1.263 15.582 1.554
NDVI 0.000 0.204 0.000 0.226 NDVI 0.000 0.647 28.630 0.701
NDVI2 0.000 0.328 0.000 0.409 NDVI2 0.000 0.976 0.000 1.181
RDVI 0.000 0.375 0.000 0.394 RDVI 0.000 1.143 0.000 1.406
SAVI 0.000 0.341 0.000 0.352 SAVI 0.000 1.077 0.000 1.322

OSAVI 0.000 0.251 0.000 0.260 OSAVI 0.000 0.841 0.000 0.981
EVI 0.000 −0.122 0.000 −0.382 EVI 0.000 −0.500 0.000 −1.103
CIRE 0.000 0.207 0.000 0.269 CIRE 0.000 0.099 0.000 0.152

NDRE 25.320 0.819 23.703 0.967 NDRE 0.000 0.819 −43.237 1.000
NDII1 0.000 0.340 0.000 0.335 NDII1 0.000 0.434 0.000 0.574
NDII2 0.000 −0.026 0.000 −0.076 NDII2 0.000 0.191 0.000 0.199
NIRV 0.000 0.806 0.000 0.934 NIRV 0.000 1.906 0.000 2.507

S3

GNDVI 0.000 −0.579 0.000 −0.639

S8

GNDVI 0.000 0.895 0.000 1.243
NDVI 0.000 −0.512 0.000 −0.606 NDVI 0.000 −0.047 0.000 0.003
NDVI2 0.000 −0.065 0.000 −0.037 NDVI2 0.000 0.548 0.000 0.774
RDVI 0.000 −0.245 0.000 −0.307 RDVI 0.000 0.768 0.000 1.154
SAVI 0.000 −0.207 0.000 −0.266 SAVI 0.000 0.735 0.000 1.099

OSAVI 0.000 −0.358 0.000 −0.437 OSAVI 0.000 0.318 0.000 0.514
EVI −77.441 −1.976 −70.848 −2.540 EVI 0.000 −2.677 0.000 −2.833
CIRE 0.000 0.038 0.000 0.043 CIRE 0.000 0.151 0.000 0.227

NDRE 0.000 −0.075 0.000 −0.169 NDRE 0.000 1.068 22.872 1.459
NDII1 0.000 −0.326 0.000 −0.495 NDII1 0.000 0.242 −17.831 0.405
NDII2 8.013 −0.518 0.000 −0.675 NDII2 0.000 −0.082 0.000 −0.060
NIRV 0.000 0.341 0.000 0.429 NIRV 0.000 1.822 0.000 2.636

S4

GNDVI 0.000 −0.077 0.000 −0.026

S9

GNDVI 0.000 −1.204 −14.801 −1.119
NDVI 0.000 −0.481 0.000 −0.509 NDVI 0.000 −1.458 0.000 −1.480
NDVI2 0.000 −0.264 0.000 −0.262 NDVI2 0.000 −0.931 0.000 −0.838
RDVI 0.000 −0.368 0.000 −0.395 RDVI 0.000 −0.911 0.000 −0.476
SAVI 0.000 −0.341 0.000 −0.368 SAVI 0.000 −0.788 0.000 −0.350

OSAVI 0.000 −0.418 0.000 −0.449 OSAVI 0.000 −1.162 0.000 −0.971
EVI 0.000 −2.165 0.000 −2.393 EVI 0.000 −1.059 0.000 0.699
CIRE −1.000 −0.113 0.000 −0.157 CIRE 0.000 0.129 0.835 0.219

NDRE 0.000 −1.077 0.000 −1.258 NDRE 0.000 0.251 0.000 0.761
NDII1 0.000 −0.848 0.000 −0.949 NDII1 0.000 0.019 0.000 0.634
NDII2 0.000 −0.763 0.000 −0.860 NDII2 0.000 −0.415 0.000 −0.095
NIRV 0.000 −0.056 0.000 −0.040 NIRV −11.468 −0.092 0.000 0.870

S5

GNDVI 0.000 −0.680 0.000 −0.830

S10

GNDVI 0.000 0.180
NDVI 0.000 −0.767 0.000 −0.962 NDVI 0.000 −0.577
NDVI2 0.000 −0.589 −7.182 −0.760 NDVI2 0.000 0.108
RDVI 0.000 −0.608 0.000 −0.761 RDVI 0.000 0.344
SAVI 0.000 −0.544 0.000 −0.684 SAVI 0.000 0.419

OSAVI 0.000 −0.674 0.000 −0.851 OSAVI 0.000 −0.117
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Table A1. Cont.

Strategies Strategy (1) Strategy (2) Strategies Strategy (1) Strategy (2)

Models MSR PLSR MSR PLSR Models MSR PLSR MSR PLSR

S5

EVI 0.000 −2.654 0.000 −3.269

S10

EVI 0.000 −0.467
CIRE 0.000 −0.101 0.000 −0.128 CIRE 0.665 0.311

NDRE 0.000 −0.999 0.000 −1.214 NDRE 0.000 1.600
NDII1 0.000 −0.892 0.000 −1.120 NDII1 0.000 1.868
NDII2 −30.131 −0.884 −23.086 −1.087 NDII2 0.000 0.595
NIRV 23.287 −0.320 32.302 −0.378 NIRV 0.000 1.772

Note: NDVI2: NDVI × NDVI.
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