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Abstract: The health monitoring of vegetable and fruit plants, especially during the critical seedling
growth stage, is essential to protect them from various environmental stresses and prevent yield
loss. Different environmental stresses may cause similar symptoms, making visual inspection
alone unreliable and potentially leading to an incorrect diagnosis and delayed corrective actions.
This study aimed to address these challenges by proposing a segmented regression model and a
Mask R-CNN model for detecting the initiation time and symptoms of nutrient stress in cucumber
seedlings within a controlled environment. Nutrient stress was induced by applying two different
treatments: an indicative nutrient deficiency with an electrical conductivity (EC) of 0 dSm−1, and
excess nutrients with a high-concentration nutrient solution and an EC of 6 dSm−1. Images of the
seedlings were collected using an automatic image acquisition system two weeks after germination.
The early initiation of nutrient stress was detected using a segmented regression analysis, which
analyzed morphological and textural features extracted from the images. For the Mask R-CNN model,
800 seedling images were annotated based on the segmented regression analysis results. Nutrient-
stressed seedlings were identified from the initiation day to 4.2 days after treatment application.
The Mask R-CNN model, implemented using ResNet-101 for feature extraction, leveraged transfer
learning to train the network with a smaller dataset, thereby reducing the processing time. This study
identifies the top projected canopy area (TPCA), energy, entropy, and homogeneity as prospective
indicators of nutritional deficits in cucumber seedlings. The results from the Mask R-CNN model are
promising, with the best-fit image achieving an F1 score of 93.4%, a precision of 93%, and a recall of
94%. These findings demonstrate the effectiveness of the integrated statistical and machine learning
(ML) methods for the early and accurate diagnosis of nutrient stress. The use of segmented regression
for initial detection, followed by the Mask R-CNN for precise identification, emphasizes the potential
of this approach to enhance agricultural practices. By facilitating the early detection and accurate
diagnosis of nutrient stress, this approach allows for quicker and more precise treatments, which
improve crop health and productivity. Future research could expand this methodology to other
crop types and field conditions to enhance image processing techniques, and researchers may also
integrate real-time monitoring systems.

Keywords: precision agriculture; seedling health; nutrient stress symptom; nutrient deficiency;
computer vision; deep learning
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1. Introduction

As the global population continues to grow, new and creative management strategies
are required to maintain the agricultural industry’s sustainability. By 2050, there will be
over 9.7 billion people on the planet [1]. Meeting the challenge of feeding such a large
population will require the application of several concepts and methods from other fields.

Cucumbers (Cucumis sativus L.), an essential horticultural crop, are highly valued for
their nutritional content and economic importance [2]. Cucumbers are the second most
widely cultivated cucurbitaceous crop in the world, following watermelons [3]. However,
like other plants, cucumber seedlings are susceptible to various environmental stresses that
can significantly affect their growth and yield [4]. Nutrient stress, in particular, is a critical
factor that can hamper the development of cucumber seedlings, leading to reduced crop
quality and productivity [5]. Effective and timely detection of nutrient stress is thus crucial
for mitigating its adverse effects and ensuring optimal plant health.

Abiotic stresses such as water scarcity, nutrient deficiency, temperature fluctuation,
and light intensity variation significantly affect crop physiology and morphology, impact-
ing plant health and productivity [6]. Similarly, insufficient irrigation can lead to water
stress, severely threatening plant survival [7]. Nutrient deficiency presents another critical
challenge, manifesting in the form of symptoms like blossom end rot (BER) from calcium
deficiency, mottled maturation due to potassium shortage, and chlorosis from nitrogen in-
adequacy, which collectively compromise the plant’s growth and yield [8]. Compared to the
optimum temperature, higher or lower temperatures can cause harm to the plant’s growth,
pollination, and reproduction [9,10]. When considering the impact of the nutrient composi-
tion on plant growth, imbalanced concentrations of calcium and potassium, which may be
caused by the detrimental effects of salinity, can be identified as impactful. Accordingly,
extensive research has shown that salinity can cause nutritional stress in plants [11–14]. If
these potential causes of yield losses are not properly handled in the very early stages of
plant growth, such as in the seedling stage of plants, then they may have an impact on a
number of aspects of food security, including accessibility and affordability [15].

Traditional methods, such as visual assessment of the plant’s color, size, and shape,
lack the precision needed for an accurate, quantitative analysis [16]. Moreover, lab-based
leaf analysis, another common approach, is not only time-consuming and destructive
but also requires complex processes to yield accurate results [17]. Additionally, using a
chlorophyll meter (SPAD) to gauge nutrient stress may be impractical for many farmers [18].
As a result, much effort has been directed toward the development of new technologies for
detecting and estimating nutritional deficiencies in crops. For instance, the effective early
detection of crop stress through computer vision is popular in agriculture.

Current research into online plant stress sensing techniques focuses on spectroscopy
and image processing approaches. There has been a lot of interest in automatically detecting
and classifying plant disorders [19]. Several technologies, such as electrical impedance
spectroscopy [20], Fourier-transform infrared micro-spectroscopy [21], and chlorophyll
fluorescence spectroscopy [22], have been utilized to collect the information needed for
automatic nutrient detection. Moreover, various types of digital images are being used
for plant nutrient stress monitoring approaches including chlorophyll fluorescence [23],
thermal [24], multispectral [25], and hyperspectral [26]. Among these images, red–green–
blue (RGB) images are commonly used due to their low cost, portability, and the availability
of the necessary cameras.

Deep-learning-based segmentation is an excellent solution for anomalous leaf segmen-
tation [27,28], disease area identification [29,30], color distortion [31], shape detection [32],
and disease quantification [33]. Moreover, early detection and prediction of plant stress
can be achieved using these methods, and compared to traditional methods that are time-
consuming, labor-intensive, and often destructive, they are advantageous [34]. Recently,
advanced methods have been developed to identify crop water stress [35] and nutrient
stress [36], enabling the differentiation between stressed and non-stressed plants. An anal-
ysis of color and textural features is required to distinguish the characteristic differences
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between healthy and symptomatic plants [37]. By employing various regression analy-
sis techniques, researchers can accurately assess and predict the onset of plant stress via
color features, like leaf pigmentation changes, signal nutrient deficiencies or water stress
(e.g., yellowing for nitrogen deficiency). Meanwhile, textural features such as leaf surface
variations, also aid in stress detection, with healthy plants displaying a uniform texture
and stressed ones showing irregularities like wilting [38].

In recent years, the integration of computer vision and deep learning techniques
has emerged as a promising method for automating the detection and analysis of plant
stress. Machine learning (ML) approaches collect relevant features from large datasets,
learn the data using algorithms, and generate predictions and decisions. A non-destructive
nutrient recognition technology for rapeseed has been proposed [39]. The multifractal
detrended fluctuation (MF-DFA) method provides twelve textural parameters, comprising
six generalized Hurst exponents and six relative multifractal parameters. These parameters
were used to identify two nitrogen levels in rapeseed leaf images: N-mezzo and N-wane.
The diagnostic accuracy was calculated using five classifiers: Fisher’s linear discriminant
algorithm (LDA), an extreme learning machine (ELM), the support vector machine and
kernel method (SVMKM), random choice forests (RFs), and KNN. The average discrim-
inant accuracy levels for the SVMKM and RF techniques with 10-fold cross-validation
were 97.12% and 97.56%, respectively. A study to identify nutrient deficiency in maize
leaves through a laboratory test was conducted [40]. The Gray-Level Co-Occurrence Matrix
(GLCM), hu-histogram, and color histogram were employed as parameters for the classifi-
cation method. Random forest classifiers achieved a 78.35% accuracy. Meanwhile, given
the volume and complexity of application data, the method of manually extracting picture
features from the data using ML could not solve the problem quickly and easily. The funda-
mental disadvantage of these classic ML techniques is that the hand-crafted features suit a
particular kind of data, and hence the applications of the algorithms are limited to specific
jobs. This shows that a strategy that works effectively for one task might not be effective
for another. This level of specificity associated with traditional methodologies severely
limits their applicability in situations requiring a certain level of generality, prompting
researchers to seek approaches that are highly generic and thus have a high applicability.

The convolutional neural network (CNN) is a deep learning system that specializes
in image recognition and has been employed to meet a range of computer vision chal-
lenges across many fields [41]. A mask-RCNN model to predict geometric size of soil
was proposed and was compared with the multiple instance segmentation algorithm for
ground-penetrating radar images [42]. A phenotyping approach, involving a 23-layered
deep learning technique, was proposed and compared with the classic ML techniques as
well as a few other deep architectures [36]. The results showed that a simple 23-layered
deep learning architecture could achieve ceiling-level nutritional stress classification from
plant shoot images in the same way as advanced deep learning architectures such as
ResNet18 and NasNet Large (with millions of trainable parameters). Furthermore, the
suggested model outperformed existing ML techniques, with an average accuracy increase
of 8.25%. RGB images of sugar beet were used to recognize nutrient deficiency [43]. Gath-
ered dataset was Deep Nutrient Deficiency for Sugar Beet (DND-SB), which contained
5648 images of sugar beets growing under a long-term fertilizer experiment with nutrient
deficiency plots that included N, P, and K deficiency, as well as an absence of liming Ca,
full fertilization, and no fertilization at all. Then, the dataset was used to compare the
performance levels of five convolutional neural networks in detecting nutritional shortage
symptoms. The nutrient status of aquaponics lettuce was diagnosed using color imagery
and deep convolutional neural networks (DCNNs) [44]. The method comprised several
stages, including the detection of plant objects and the classification of nutritional deficien-
cies. The technique’s robustness and diagnostic capabilities were assessed using a total
of 3000 lettuce photos, divided into four nutritional classes: full nutrition (FN), nitrogen
deficiency (N), phosphorous deficiency (P), and potassium deficiency. The performance of
the DNN was compared to typical ML techniques. The findings showed that the suggested
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deep segmentation model had an accuracy of 99.1%. Nutrient stress symptoms are often
shown in plants through slight and intricate changes in leaf morphology, such as variations
in size, shape, and edge characteristics. Sophisticated detection tools are necessary to
capture and analyses these fine details. Object detectors excel in identifying and localizing
objects within images, making them particularly suitable for examining individual leaf
characteristics. A Mask R-CNN is especially effective because it not only detects objects but
also generates high-quality segmentation masks for each instance. This capability is crucial
for precise morphological analysis, enabling the isolation and examination of specific leaf
regions affected by nutrient stress.

In that context, the present study explored the application of segmented regression
with a Mask Region-based Convolutional Neural Network (Mask R-CNN) model to create
a robust framework for the early detection and monitoring of nutrient stress in cucumber
seedlings. Segmented regression is a statistical method that identifies changes in the trends
in the data, which can be particularly useful in pinpointing the initiation of nutrient stress
symptoms. Meanwhile, the Mask R-CNN is a state-of-the-art deep learning model designed
for image segmentation tasks. The Mask R-CNN can effectively identify stress symptoms
in cucumber seedlings images, providing detailed and accurate visual diagnostics. The
objective of this study was to propose a segmented regression model and a Mask R-CNN
model to detect the stress initiation time and the symptoms of nutrient stress in cucumber
seedlings grown within a controlled environment.

2. Materials and Methods
2.1. Seedling Preparation and Growth Condition

The plant factory used in this experiment is located in the Department of Agricultural
Machinery Engineering, Chungnam National University, Daejeon, Republic of Korea, as
shown in Figure 1a. The plant factory aims to produce high-quality agricultural prod-
ucts with stable, year-round, mass production in a controlled environment, minimizing
resource inputs and environmental impacts [45]. As per the guidelines for growing hor-
ticultural crops in a controlled environment, a wireless sensor and control network were
used for controlling and monitoring the ambient environmental conditions, as shown in
Figure 1b. The plant factory was equipped with evaporative cooling fans and air condi-
tioners. An automatic environment control system, embedded with a relay, temperature
sensor, humidity sensor, carbon dioxide sensor, and Raspberry Pi (model: Raspberry Pi
4B, Raspberry Pi Foundation, Cambridge, UK) microcontroller, was used to maintain the
desired environmental conditions.
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Cucumber seeds, specifically the Cucumis sativus var. ‘Begdadagi’, were sown in a
104-cell hydroponic germination sponge (LxWxH: 508 × 248 × 38 mm) in a controlled
environment (Figure 2a). The seeds were added to the sponge and covered with pa-
per to germinate the seeds (Figure 2b), and after their germination, the seedlings were
grown under a uniformly distributed fluorescent lamp (TLD 32W/865RS, Phillips, Amster-
dam, The Netherlands) (Figure 2b) with a photosynthetic photon flux density (PPFD) of
150 ± 10 µmolm−2s−1, temperature of 24 ± 1 ◦C, photoperiod of 18/6 h (day/night),
relative humidity of 65 ± 5%, and carbon dioxide (CO2) concentration of 600–800 ppm. The
seedling beds were placed in a single tray kept under fluorescent light, maintaining a dis-
tance of 0.345 m, as shown in Figure 2b. Starting from the seventh day after germination, the
cucumber seedling trays were subjected to three distinct EC levels: 0.0 dSm−1 (indicative of
nutrient deficiency), 3.0 dSm−1 (control, representing the optimal nutrient availability), and
6.0 dSm−1 (excessive nutrient level), to span a range of potential nutrient stress conditions
commonly encountered in precision agriculture [46]. These levels were selected based on
preliminary studies indicating their significance in affecting cucumber seedling growth
and health, aligning with the objective of simulating nutrient stress conditions within a
controlled environment [47].
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Figure 2. (a) Seedling germination bed covered with paper, (b) the germination sponge, and
(c) seedlings replaced under fluorescent light, with image acquisition using a Raspberry Pi camera
and microcontroller.

In a plant factory, effective water and nutrient application is important for seedling
growth. Three beds for the three nutrient levels were prepared for cucumber seedling
growth. For each bed, 1 L/tray/day of water with a nutrient solution of 0, 3, and 6 dSm−1

was applied. These variations aimed to understand stress effects while following practices
to ensure proper nutrient delivery and prevent over or under watering. Commercial
Hoagland nutrient solutions A and B (Daeyu Co., Ltd., Seoul, Republic of Korea) were used,
containing essential and trace nutrients as described by Islam et al. [47]. To achieve the
desired nutrient level, 5 mL of nutrient solutions A and B were mixed with 5 L of water, and
1 L of this mixture was provided daily to each bottom irrigation tray, positioned beneath
the seedling growing tray. The targeted nutrient level was maintained by checking the EC
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and pH levels daily during the watering practice. The seedling roots absorbed the water
from the bottom irrigation tray, facilitating water uptake by plants.

2.2. Image Acquisition

Image data collection was performed using a multi-camera system shown in Figure 2c.
The system specifications are detailed in Table 1. A cheap, portable, and high-quality RGB
camera (model: Raspberry Pi Camera, Raspberry Pi Foundation, Cambridge, UK) was used
for the seedling bed to capture seedling images from the top view. To ensure a uniform
image quality, the camera was installed at a vertical height of 0.315 m above the seedlings,
optimized for maximum field of view (FOV) coverage (Figure 2c). Recognizing potential
challenges such as variations in natural light throughout the day, a controlled lighting
system using fluorescent lights, same as the fluorescent light used to provide light to the
seedlings was implemented to maintain consistent illumination during image capture. This
mitigation strategy was critical for minimizing shadows and reflections that could interfere
with the image analysis.

Table 1. Specifications of the microcontroller and RGB camera used in this study.

Raspberry Pi 4B Raspberry Pi Camera

• CPU: Quad core Cortex-A72, 64-bit@ 1.5 GHz
• RAM: 8 GB LPDDR4-3200
• Connection: 802.11ac wireless, Bluetooth 5.0, BLE, Gigabit

Ethernet, 40-pin GPIO header
• OpenGL ES 3.0 graphics
• Micro-SD card slot: 32 GB; operating system and

data storage
• Power: 5V DC; USB-C connector and GPIO
• Operating temp range: 0 to 50 ◦C

• Sensor model: Sony IMX 219 PQ CMOS
• Sensor size: 3.68 × 2.76 mm
• Lens size: 1/4”
• Resolution: 8 MP
• Image resolution: 3280 × 2464 pixels
• Video resolution: 640 × 480 pixels
• Pixel size: 1.12 × 1.12 µm
• Video/Image mode: 1080 p: 30 fps; 720 p: 60 fps
• Image control: Automatic
• Connection: 15-pin MIPI CSI-2

The placement of the camera and the automation of the image capture process were
carefully prepared with the microcontroller and integrated display to achieve a compre-
hensive coverage of each seedling bed, while ensuring minimal disturbance to the natural
growth environment (Figure 2c). Automated image capture through a microcontroller was
conducted consistently during the developmental stages of the seedlings at predetermined
intervals, ensuring a rich dataset for analysis. The automation protocol was developed
to capture images every 30 min, a frequency determined to optimally balance between
capturing significant growth changes and managing the data volume. To reduce the effects
of camera jitter or potential image blurring, three images were taken for each seedling
bed and then averaged for subsequent analysis. The images were saved in the JPG format
with a resolution of 3280 × 2464 pixels on a microSD memory card connected to the mi-
crocontroller. The imaging system was built for efficient remote monitoring, featuring a
Virtual Network Computing (VNC) viewer for remote control via a graphical user interface
(GUI), as elaborated by Islam et al. [48]. VNC offers a remote desktop technology with
open-source code under a General Public License (GPL), with commercial versions.

2.3. Dataset Preparation
2.3.1. Image Feature Extraction

This study investigated the stress symptom initiation time and detected stress symp-
toms in cucumber seedlings. A total of 720 images from each treatment were acquired
for analysis. An image of a cucumber seedling acquired from each treatment is shown in
Figure 3. To perform a piecewise regression analysis to detect the stress induction time, a
feature extraction process using RGB images was performed, as shown in Figure 4. Before
feature extraction, the data were preprocessed to optimize the image quality for analysis,
applying a Gaussian blur filter for noise reduction and improved clarity, and normalizing
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the brightness and contrast to offset lighting variations during image capture. Subsequently,
we precisely extracted the seedlings’ top canopy area using sophisticated image segmen-
tation, effectively separating the plant foreground (Figure 4) for targeted analysis. The
resulting image represented the top projected canopy area (TPCA) of the plant. This area
of a plant was represented by the number of green pixels in the image characterized as
morphological features. Image analysis was performed by extracting textural features
according to the statistical distribution of pixel intensity.
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The selection of textural features for stress detection was based on a comprehensive
review of the plant physiology literature, which indicated that changes in textural properties
could be indicative of nutrient stress. Specifically, GLCM method was used for robustness
in capturing textural variations [49]. When using the GLCM method, an orientation pattern
angle is derived from characteristics of the pixel matrix value [50]. This allows for entropy,
energy, contrast, and homogeneity features to be calculated, which has proven to be useful
in identifying subtle changes in plant health [51]. These features were specifically chosen
for their sensitivity to variations in the leaf surface texture and pattern, which are affected
by nutrient availability, thus providing a reliable basis for detecting nutrient stress. In
addition, the GLCM method analyses the spatial relationship between pixel intensities in
an image, capturing information about texture patterns. Nutrient stress can alter these
textural properties by changing the internal structures of leaves. The use of GLCM textures
indicates that nutrient stress will impact the leaf structural patterns, making these features
particularly useful for stress detection.
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2.3.2. Stress Symptom Initiation and Detection

To detect early environmental stress induced in the seedlings, a separation point
indicating the initiation of stress due to nutrients was determined by calculating the mean
difference between the treatment and control seedlings at each measured time for all
collected data.

To accurately segment the dataset into stressed and non-stressed groups, piecewise-
segmented regression analysis, a robust statistical method capable of identifying change
points in temporal datasets, was used [52]. This approach was instrumental in pinpointing
the exact moment when the physiological parameters of the seedlings began to deviate
significantly due to nutrient stress. By comparing the mean differences in textural features
between the treatment and control groups over time, a clear demarcation point could be
established [53]. This change point, validated through rigorous statistical analysis, en-
abled the precise classification of images into the stressed and non-stressed categories,
forming the basis for our subsequent model training and validation. The separation
point in the graphs showing the mean difference between treatment and control seedlings
at every measured time for all morphological and textural criteria was used to deter-
mine early nutrient-deficit stress [54,55]. The change point can be described as shown in
Equation (1) [54]:

Z(ti) = Td(ti)− Th(ti) (1)

where Td and Th are the average values of stressed and healthy seedling parameters at time
ti of the experiment.

At some specific point, the values of the retrieved parameters for the treatment
seedlings began to diverge from those of the control seedlings. The time was divided
into two intervals, and each interval was fitted with a different regression line by minimiz-
ing the sum of squares of the difference between the observed response and the calculated
dependent variable [54]. The change point, tc, estimating the breakpoint between the two
regression equations, can be determined with Equations (2) and (3):

Zbreak = β0 + β1t, whent < tc (2)

Zbreak = α0 + α1t, whent < tc (3)

Consequently, two regression lines were constructed to closely match the observed
data by minimizing the sum of squared differences between the observed response (Z) and
the predicted dependent variable (Zbreak). Thus, segmented regression analysis was used
to analyze the profile difference and establish when stress symptoms were initiated. The
statistical computations were carried out with SAS software (Ver. 9.4; SAS Institute Inc.,
Cary, NC, USA). Based on the statistical analysis, the dataset before the change point was
considered the non-stressed dataset, and the dataset after the change point was considered
the stressed dataset.

2.3.3. Dataset Description for the Detection Model

The seedling images obtained from the regression analysis were utilized as training
and validation datasets in this experiment. The original image was 3280 × 2464 pixels in
size, and the seedling count per image was around 70, resulting in a low pixel count per
seedling. We chose 800 images at random and adapted them to the Mask R-CNN model
and parameters, with 70% of the images being used for training and 30% being used for
validation. To train the model, the seedling images were randomly selected based on the
seedling age, size, and overlap between seedlings.

Due to the uneven morphology of seedlings at various growth stages, seedling an-
notation was performed manually. The annotation process was carried out in this study
using a web-based application MakeSense.ai (“https://www.makesense.ai (accessed on
23 November 2023)”), which is freely available and distributed under a General Public
License (GPL) version 3. One of the main advantages of this tool is that it can be accessed

https://www.makesense.ai
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and used directly through a standard web browser, without the need for installing any
specialized software. The application of manual annotation of the seedling images, as
shown in Figure 5, served the purpose of clearly delineating and identifying cucumber
seedlings in various stages of their growth.
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2.4. Mask R-CNN Model

The Mask R-CNN (Region-based Convolutional Neural Network) is a sophisticated
deep learning architecture designed for instance segmentation tasks, which involve detect-
ing and delineating individual objects within an image. Developed as an extension of the
Faster R-CNN framework [56,57], the Mask R-CNN introduces an additional branch for
generating segmentation masks alongside the existing components for object detection.
This architecture enables the precise pixel-level identification of object boundaries, allowing
for more accurate and fine-grained segmentation. By incorporating a Region Proposal
Network (RPN) to propose candidate object regions, followed by a refinement process
that includes both bounding box regression and mask prediction, the Mask R-CNN excels
in simultaneously handling object localization and segmentation tasks. Widely adopted
in computer vision applications, particularly in areas such as image segmentation and
object recognition, the Mask R-CNN has proven to be an effective and versatile solution
for complex visual understanding tasks. The image to be processed was first fed into the
pre-trained backbone network ResNet50 and the feature pyramid network model in Mask
R-CNN, which extracted features and generated feature maps. By applying the created
feature maps as inputs into the Regional Proposal Network, a large number of candidate
frames were obtained (regions of interest or ROIs). The SoftMax classifier was used to
perform binary classification of the foreground and background, and frame regression
was used to obtain more accurate candidate frame position information [58]. Afterward,
the ROIs that were clipped from feature maps were passed through the ROI align layer.
As a last step, the flow splits into two: one branch goes to the fully connected layer for
object detection and bounding box regression, and another branch goes to the full convolu-
tional network (FCN) for pixel segmentation as well as mask creation. The Mask R-CNN
architecture is shown in Figure 6.
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2.4.1. Mask R-CNN Backbone Network and Feature Pyramid Network (FPN)

In this study, the ResNet-101 architecture was chosen as the foundational framework
for the model, and the input size was 1024 × 1024. To determine the most effective model
combination, performance evaluations were conducted across various permutations of
backbones and segmentation mask predictors. Given the substantial size of the network in
comparison to the relatively limited dataset, pre-trained weights from backbones trained
on the extensive ImageNet dataset were harnessed for the purpose of transfer learning [59].
Deep learning models tend to exhibit greater robustness when exposed to larger and more
diverse datasets. Previous studies have established that leverage pre-trained backbones,
particularly those trained on vast datasets like ImageNet, can yield significant performance
improvements when fine-tuned for specific tasks. Furthermore, this practice of transfer
learning, where knowledge gained from extensive datasets is adapted for use with smaller
datasets, enhances the model’s ability to generalize learning. The architecture of the
feature extractor is shown in Figure 7, encompassing five primary convolution modules
that collectively made a total of one hundred convolutional layers. Additionally, this
structure incorporates an average pooling layer and a fully connected layer. The features
extracted by this component are subsequently employed for training the classifier, as
implemented with a Softmax configuration. The specific convolutional layers and their
respective configurations within the ResNet-101 backbone are comprehensively detailed
in Table 2.
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Table 2. ResNet-101 backbone configurations and major layers used in this study.

Layer Conv1_x Conv2_x Conv3_x

Output size 112 × 112 × 64 56 × 56 × 56 28 × 28 × 128

Filters 7 × 7, 64
stride 2

[
3 × 3, 64

1 × 1, 64
1 × 1, 256

]
× 3

[
3 × 3, 128

1 × 1, 128
1 × 1, 512

]
× 4

Layer Conv4_x Conv5_x Pooling

Output size 14 × 14 × 256 7 × 7 × 512 1 × 1 × 512

Filters
[

3 × 3, 256
1 × 1, 256
1 × 1, 1028

]
× 23

[
3 × 3, 512

1 × 1, 512
1 × 1, 2048

]
× 3 Average

An FPN employs a horizontally connected top-down hierarchical structure to build
a network feature pyramid from a single-scale input. It can solve multi-scale challenges
when extracting target objects from images and it requires fewer parameters. An FPN is
constructed through a combination of both bottom-up and top-down pathways, along with
lateral connections. An FPN adopts the structure of feature maps found in a single-shot
multibox detector (SSD). It efficiently combines these feature maps, resulting in a significant
boost in accuracy without adding to the detection time. Unlike SSD, the FPN does not solely
rely on deep feature maps; it also leverages shallower feature maps in its architecture [60].
The FPN generates four sets of feature maps through a bottom-up approach, as shown
in Figure 8. These feature maps, labeled C1 to C5, have varying levels of detail, with C2
containing more textural information and C5 containing more semantic content. FPN then
uses a top-down and lateral connection method to merge these feature maps. Since C1 to
C5 have different down-sampling rates, their sizes differ. To enhance the computational
efficiency, the FPN initially reduces dimensionality using 1 × 1 convolutions to create
P5, which is then up-sampled to match the size of C4 using bilinear interpolation. P4
is similarly dimensionally reduced and adjusted to match the size of P5. This process
continues down the network layers, updating features through unit addition, known as the
horizontal connection. After fusion, each result undergoes a 3 × 3 convolution to mitigate
aliasing effects from up-sampling. The aim is to ensure that P2, P3, P4, and P5 all have the
same number of feature maps [61].
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2.4.2. FPN with Regional Proposal Network (RPN)

In seedling image extraction, handling various seedling sizes is a challenge for a single
convolutional neural network (CNN). To address this, an FPN is used to create different-
sized feature maps. The Region Proposal Network (RPN) then takes these feature maps as
input and extracts region of interest (ROI) features based on the specific seedling size. This
modified network significantly improves the detection of small objects with a high speed
and precision.

The RPN operates as a sliding-window-based target detector, employing a convolu-
tional neural network structure, as shown in Figure 9. It uses sliding frames to generate
anchor points with varying sizes and areas, enabling the detection of the target within each
sliding window. The choice of anchor point sizes and the required areas’ overlap (IOU)
directly impact the classification accuracy. The algorithm adjusts anchor point zoom ratios
to {1:2, 1:1, 3:1} and aspect ratios to 2 to adapt to different seedling types. This approach
maximizes coverage for a wide range of seedling images.
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Intersection over Union (IoU) quantifies the overlap between actual and predicted
boxes. It is calculated by dividing the intersection of the two boxes by their union. IoU in
the RPN closely matches the empirical IoU, remaining unchanged in the network model.
In this work, an overlap ratio greater than 0.5 between the anchor frame and the actual
target area designates it as foreground, while an overlap ratio less than 0.5 marks it as the
background. Values in between are disregarded. This reduction in calculations stream-
lines the model, saving computation time, and boosts its effectiveness. To compute IoU,
Equation (4) was used, and the sample IoU scores are shown in Figure 10.

Intersection over Union (IoU) =
Area of Overlap
Area of Union

(4)
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2.4.3. RoIAlign and Loss Function

Mask R-CNN employs a modified region of an interest alignment layer (RoIAlign)
mechanism, introduced by Gui et al. [62], to enhance pixel-level object detection and
segmentation. Unlike the traditional RoI pooling, RoIAlign does not quantize ROI bound-
aries, using bilinear interpolation to accurately position sampling points. The process
concludes with maximum or average pooling to extract key information from the region of
interest. This refinement significantly improves the current network precision and spatial
information preservation.

The loss function of Mask R-CNN consists of three parts: classification error, regression
error, and segmentation error, as shown in Equation (5) [63]:

L = Lclass + Lbox + Lmask (5)

where L represents the total cost loss function of the model, Lclass represents the classifica-
tion loss of the prediction box, Lbox represents the regression loss of the prediction box, and
Lmask represents the average binary cross-entropy loss.

Classification, regression, and the segmentation layer can be described with Equations (6)–(8),
as follows:

Lclass

(
pp, pv

)
= −lb[pp, pv + (1−pp)(1 − pv)] (6)

where pp represents the predicted probability for the target anchor point, pv represents
the predicted value of the corresponding ground truth label, and lb represents the log
loss function.

Lbox
(
tp, tv

)
= R

(
tp − tv

)
(7)

where R stands for the robust loss function, tp represents the coordinate vectors of the
predicted frame, and tv represents the coordinate vector corresponding to the ground
truth label.

Lmask =
1
x∑i[xvlgp(xv)− (1 − xv)lg(1 − p(xv))] (8)

where x represents the number of pixels, xv indicates the category label where the pixel is
located, and p(xv) represents the probability of the predicted category.

2.5. Training Configuration

The model training process for the custom dataset, which focuses on detecting objects
of interest like seedlings, primarily involves a transfer learning approach. This technique
leverages the knowledge learned by a Mask R-CNN model pre-trained on the MS COCO
dataset [7], which is a widely used benchmark for object detection tasks. By utilizing these
pre-trained weights, we may benefit from the model’s prior understanding of various object
classes, allowing us to fine-tune it for our specific task.

The training process was conducted using the cloud platform (Google Colab; “https:
//colab.research.google.com (accessed on 15 December 2023)”), which provides access
to a Tesla T4 GPU. However, training deep learning models with a complex architecture
like Mask R-CNN can be computationally intensive and may require significant memory
resources. Due to the memory constraints of the Google Colab, the number of training
epochs was limited to 100. A learning rate of 0.001 was used during training. Additionally,
a learning momentum of 0.9 was applied to update the model weights after each epoch.
These settings control how much the model adjusts its weights during training, ensuring
convergence to the optimal solution. To prevent overfitting and maintain model generaliza-
tion, a weight decay of 0.0001 was employed. Weight decay imposes a penalty on large
weights, effectively discouraging them and promoting a more balanced model. The train-
ing stability was ensured through hyperparameter tuning. To achieve the optimal model
performance within the constrained 100 epochs, various hyperparameters were fine-tuned.
This included adjusting the batch size, learning rate, choice of optimizer, padding settings,
and selection of filters in the model configuration. Such hyperparameters play a critical role

https://colab.research.google.com
https://colab.research.google.com
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in the convergence and performance of deep learning models and were carefully optimized
to maximize the model’s effectiveness.

2.6. Evaluation Matrices

A test was conducted to evaluate the effectiveness of the seedling identification and
segmentation method using the training and test datasets. Precision, recall, the F1 score,
and accuracy were used to quantify the overall performance of the Mask R-CNN method
in this study. The parameters were calculated with the following Equations (9)–(12) [64]:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F =
2 × Precision × Recall

Precision + Recall
(11)

Accuracy =
TP + TN

TP + FN + FP + TN
(12)

where TP is the true positive detection, FN is the false positive detection, FP is the false
negative detection, and TN is the true negative detection.

The mean average precision (mAP) refers to the mean of the average precision for
different classes, which can be calculated from Equation (13) as follows:

mAP =
∑m

i=1APi

m
(13)

In this study, seedlings were defined with an Intersection of Union (IoU) larger than
0.5 between the predicted and ground truth bounding boxes. The IoU value was set to be
modest to reflect the diminutive size of a seedling in comparison with the image resolution.

3. Results
3.1. Detection of Stress Initiation

After the application of environmental stress on the seventh day of the germination
process, our experiment was carried out for a total of ten consecutive days. The human
visual stress detection event took place on the 6.5th day after the deployment of nutritional
stress. During the course of the experiment, the plants in the treatment group looked to be
a lighter shade of green, almost yellow, as a direct result of the lack of nutrients. In addition
to this moderate deterioration of the leaves, along the margins of the leaves, there were
also small spots that were dark brown in color.

The sequences of the retrieved plant properties (TPCA, entropy, energy, and homo-
geneity) as average values obtained from the control and treatment groups are shown in
Figure 11. This demonstrates that the difference in the TPCA value between the control
group of seedlings, which were developing normally, and the treatment group of seedlings,
whose growth rate was stifled, increased. This occurred because the treated seedlings
lacked the necessary nutrients.

Variations in the surface, texture, and interior leaf structures of plants are also known
to result from the effects of stress [65]. In this study, textural analysis of the canopy of
seedlings was carried out. In the textural analysis, the concept of entropy was understood
to refer to the unpredictability of the gray-level distribution. Greater entropy values were
discovered in the control seedlings in comparison with the treatment seedlings, with the
control seedlings having vibrant and healthy leaves. Grayscale brightness indicates energy,
and so we inferred that the energy value of the healthy control seedlings fell progressively,
whereas the yellowish leaves of the treatment seedlings indicated that they gained energy.
Meanwhile, there was homogeneity in the gray-level pixel distribution in the canopy
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images; here, as the control became greener, the gray-level pixel distribution dropped,
while the treatment seedlings showed greater gray-level pixel values.
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Using piecewise regression analysis, stress was determined statistically. Figures 12 and 13
show the change point and regression line for each collected metric, indicating seedling
stress before it became detectable by the human eyesight, for the 0.0 dSm−1 and 6.0 dSm−1

nutrient stress conditions. Four parameters changed on day 4.2 (97.5% confidence interval
[3.9, 4.9] and R2 = 0.98). Based on this statistical research, four of the indicators (TPCA,
entropy, energy, and homogeneity) show promise as early warnings of stress due to nutri-
tional insufficiency. Incorporating these four metrics into a statistical technique allowed us
to identify nutritional deficit stress on day 4.2. In our study, this happened 1.5 days before
human visual detection. Figure 11 shows that the breakpoint was on day 4 for cucumber
seedlings. This not only shows the effectiveness of the method in identifying early stress
but also highlights the applicability of the findings across a range of plant types. Moreover,
stress and non-stress seedling classification also arises from the deviation point. Therefore,
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nutrient-stressed datasets were prepared containing images of 4- to 10-day-old seedlings
after germination.
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(a) TPCA, (b) entropy, (c) energy, and (d) homogeneity. Black dots represent the change points for
average seedling parameters at time ti.
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3.2. Training and Validation of Data

Model studies have shown that the number of iterations used in models has an impact
on the outcomes of the training results. Training and validation loss are also essential
metrics for understanding the performance and training progress of a Mask R-CNN model,
or any ML model for that matter. Figure 14 shows the training and validation loss curve for
the model. The model was run with 100 epochs and 1000 steps in each epoch. The training
loss value decreased within the range of 1.983 to 0.46 when the epoch increased, and the
same was found for the validation loss, it decreased within the range of 1.5623 to 0.323
when the epoch increased. The training loss decreased from 1.983 to 0.46 over 100 epochs,
which shows that the model improves at fitting the training data, and the model was stable
after 80 epochs. This suggests that the model learns to make more accurate predictions for
the data it is trained on. However, the extremely low training loss values (close to 0) may
indicate overfitting. Similarly, the decrease in the validation loss from 1.5623 to 0.323 with
the increase in the epoch showed that the model performance improves over time. Lower
validation loss values suggest that the model is improving at making accurate predictions
on new, unseen data. This is a crucial indicator of the model’s overall performance.
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mask R-CNN with an epoch number of 100.

The precision–recall (P-R curve) is an effective metric for assessing the prediction
performance when the classes are unbalanced. The P-R curve presented in Figure 15
indicates that our proposed model attained a high seedling detection accuracy. The low
loss values indicate that the model used in our study was capable of effectively learning
the features and achieved better linkage, indicating that it had the potential to accomplish
the intended objectives.

Agriculture 2024, 14, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure 14. Training loss and validation loss of nutrient-stressed cucumber seedling model based on 
mask R-CNN with an epoch number of 100. 

The precision–recall (P-R curve) is an effective metric for assessing the prediction 
performance when the classes are unbalanced. The P-R curve presented in Figure 15 indi-
cates that our proposed model attained a high seedling detection accuracy. The low loss 
values indicate that the model used in our study was capable of effectively learning the 
features and achieved better linkage, indicating that it had the potential to accomplish the 
intended objectives.  

  
Figure 15. Precision and recall curve of the proposed Mask R-CNN model. 

3.3. Performance Detection on Stressed Seedlings 
The proposed nutrient stress detection model using the Mask R-CNN model was 

evaluated for its effectiveness in detecting and segmenting cucumber seedlings and de-
tecting stress conditions in RGB images. The results of this evaluation, which included 
segmentation and stress detection for cucumber seedlings, are illustrated in Figure 16. In 
this figure, the segmented seedlings are displayed with distinct colored masks, and 
bounding boxes are used to indicate the detected stress conditions of the seedlings within 
the test images, along with the associated probability scores. 

Figure 15. Precision and recall curve of the proposed Mask R-CNN model.



Agriculture 2024, 14, 1390 18 of 25

3.3. Performance Detection on Stressed Seedlings

The proposed nutrient stress detection model using the Mask R-CNN model was
evaluated for its effectiveness in detecting and segmenting cucumber seedlings and de-
tecting stress conditions in RGB images. The results of this evaluation, which included
segmentation and stress detection for cucumber seedlings, are illustrated in Figure 16.
In this figure, the segmented seedlings are displayed with distinct colored masks, and
bounding boxes are used to indicate the detected stress conditions of the seedlings within
the test images, along with the associated probability scores.
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Figure 16. Output results of cucumber seedling stress detection and segmentation in the test images
using the proposed Mask R-CNN method: (a) annotated image in the model for the nutrient deficit
(0.0 dSm−1) stress dataset, (b) annotated image in the model for the excess nutrient (6.0 dSm−1) stress
dataset, (c) nutrient stress detection and segmentation on the nutrient deficit (0.0 dSm−1) dataset,
and (d) nutrient stress detection and segmentation on the excess nutrient (6.0 dSm−1) dataset.

In the images, the bounding boxes represent each seedling that was anticipated to
be detected by the method. For the final output of the experiment, only seedlings with a
detection probability of at least 50% were selected and segmented. This threshold ensures
a reliable identification and segmentation of the seedlings, providing a dependable output
for further analysis or application. The segmentation masks and bounding boxes effectively
illustrated both the presence and the stress conditions of the cucumber seedlings, offering a
comprehensive visual summary of the method’s performance in handling various types of
seedlings and detecting their stress states.

Table 3 shows the result of the nutrient stress detection in cucumber seedlings using
the Mask R-CNN model. In our findings, the nutrient stress detection algorithm achieved
an average F1 score of 90%, with an average precision of 91% and an average recall of 89%.
These indicated that it had a high level of accuracy in both correctly identifying seedlings
and capturing all relevant instances, which comprised 90% of the instances for the nutrient
stress condition of 0 dSm−1. Moreover, the best-performing image achieved an F1 score
of 93.4%, with a precision of 93% and a recall of 94%. The mean average precision for
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this analysis was found to be 0.927%. For the nutrient stress condition of 6 dSm−1, the
average F1 score was 87.4%, with an average precision of 88% and an average recall of 87%.
These findings indicate a high level of accuracy in both nutrient conditions, while 6 dSm−1

showed a lower accuracy and mAP for the detection of stressed seedlings. These metrics
emphasize the robust capability of the algorithm in accurately detecting nutrient-stressed
seedlings. The segmentation masks generated by the algorithm were highly effective in
distinguishing all seedlings from the image background. They also successfully identified
the structure of overlapping seedlings, which presents a significant challenge in image
processing. This capability is particularly useful for practical applications such as harvest
planning for robot harvesters or transplanting machines, where the precise identification of
overlapping seedlings is critical.

Table 3. Evaluation of nutrient stress detection of cucumber seedlings using the Mask R-CNN model.

Stress Condition Condition Precision Rate (%) Recall Rate (%) F1 Score Accuracy mAP

0 dSm−1
Average 0.91 0.89 0.90 0.90

0.927
Best Fit 0.93 0.94 0.934 0.92

6 dSm−1
Average 0.88 0.87 0.874 0.87

0.88
Best Fit 0.90 0.89 0.894 0.90

Despite these successes, the algorithm did exhibit some inaccuracies, as shown by the
false positive and false negative errors in Figure 16. These errors indicate instances where
the algorithm either incorrectly identified non-seedlings as seedlings (false positives) or
missed detecting actual seedlings (false negatives). To address these issues, various images
were used to train the algorithm to recognize overlapping and closely situated seedlings, as
well as smaller seedlings that might be more challenging to detect. Although the training
improved the algorithm’s performance, there were still a few instances where seedlings
were either not detected or were incorrectly identified. These occasional inaccuracies
highlight areas for further refinement and optimization of the algorithm to enhance its
overall reliability and accuracy in different scenarios.

4. Discussion

This study has investigated the impact of nutrient stress on cucumber seedlings over
ten days. Human visual detection of stress occurred after 6.5 days, whereas the proposed
regression model showed the symptoms within 4.2 days after stress introduction. During
this time, plants showed visible signs of nutrient deficiency, such as lighter green or yellow
leaves and tiny dark brown spots along the leaf margins, indicating moderate deteriora-
tion. Similar studies showed early detection of nutrient deficiency symptoms. A dual
regression model was used to identify calcium deficiency in lettuce one day before it is
visually detectable by humans [54]. The study found that TPCA, energy, entropy, and
homogeneity are the most promising markers for the early detection of this deficiency.
A similar approach was applied to detect nitrogen deficiency in cucumber, employing
the same features (excluding top projected canopy area) as inputs for a dual-segmented
regression model [55]. A computer vision system was used to extract color and textural fea-
tures from leaves using methods like intensity histograms, Fourier transform, and wavelet
packet, with a Genetic Algorithm for optimal feature selection, showing an 82.5% accuracy,
diagnosing plant diseases 6–10 days before experts [66]. Gabor Wavelets and an artificial
vision system (AVS) were used to detect nitrogen deficiency in maize leaves early [67].
The convolutional neural networks (CNNs) provided better feature representations for
nitrogen-induced stress classification than the traditional ML methods, achieving an 8.25%
higher accuracy with fewer trainable parameters [36].

Image processing and computer vision were used to analyze nutrient availability in
rice leaves through feature extraction [65]. Six feature values were identified and used
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with the Learning Vector Quantization (LVQ) method, effectively detecting deficiencies in
nitrogen, phosphorus, and potassium, with contrast, energy, and entropy as key markers.
Additionally, multiple linear regression models were developed to prevent an underestima-
tion of the nitrogen contents in rice leaves [68]. A non-destructive method was developed
to monitor crop growth and the nitrogen status using digital image analysis [69]. Digital
images of rice canopies, grown under various nitrogen treatments, were captured and
analyzed to calculate the canopy cover and ten color indices.

The GLCM approach characterizes texture by analyzing the intensity value dispersion
and the relationship between the location and orientation of pixels, making it superior to
other methods for textural feature extraction [70]. An automatic identification of nutritional
deficiencies was proposed using coffee tree leaf images which were segmented using Otsu’s
method [71]. Subsequently, they applied the Blurred Shape Model (BSM) and GLCM
descriptors to extract shape and textural characteristics from the resulting images. Using
the color space in analysis studies also offers a promising way to detect nutrient deficiencies.
The HSV color space was used to estimate the green pixel proportion in wheat canopy
images, with a coefficient of determination of 0.19 for the nitrogen content [72]. RGB
color and Sobel edge detection, along with artificial neural networks, was proposed for
nutritional differentiation identification in cucumbers [73].

Figure 17 shows that our model achieved a high detection accuracy for the datasets
under high IOU thresholds. Figure 16 shows the normalized confusion matrix (%) plot for
the model, which may be used to visually evaluate its performance in stress detection. The
x-axis in the matrix reflects the ground truth class for each image, while the y-axis shows
the class predicted by the model. For example, one tray image had 80 seedlings, and, out
of those 80 seedlings, 73 seedlings were correctly detected by the model for the treatment
with EC 0 dSm−1 as there were few overlapping seedlings. In the case of EC 6 dSm−1, the
accuracy declined due to leaves overlapping and there being a more complex condition
with the development of seedlings.
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This study has introduced a first approach to non-destructive nutrient stress detection
in cucumber seedlings grown under different nutrient conditions within a controlled plant
factory, utilizing a Mask R-CNN model. The nutrient detection model was compared to
existing studies that used Mask R-CNN. An improved Faster R-CNN framework with
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focal loss was proposed for automatic detection of hydroponic lettuce seedlings, achieving
86.2% mAP on their dataset [74]. A mask R-CNN model was introduced to identify nutrient
deficiencies in chili plants with an accuracy of 82.61% and the best mAP value of 85.57% [75].
Further research was suggested to develop mobile apps for the real-time identification
of nutrient deficiencies in plants. A Mask R-CNN was applied to detect the optimum
light conditions for lettuce leaves, yielding lower statistical metrics [76], and a Mask R-
CNN model was used to identify cucumbers on a leafy branch, achieving an accuracy
of 88.72% [77]. A strawberry fruit detection algorithm was proposed based on the Mask
R-CNN, achieving an instance segmentation accuracy of 89.85% using ResNet-50 combined
with the FPN architecture [78]. The Mask R-CNN and YOLO models were employed for a
dataset from tomato plants in Sri Lanka for deficiency classification, achieving 92% and
98% accuracies, respectively, with deficiency dispersion levels expressed as a percentage,
when using Mask R-CNN followed by image processing techniques [79].

Detecting nutrient-stressed cucumber seedlings in complex growing environments,
such as those with varying light, occlusion, and overlap, is challenging. This research
focused on visual representations of such environments, comparing images of seedlings
grown without nutrients to those grown with high levels of nutrient stress. The model
was capable of detecting stressed seedlings in more difficult and complex backgrounds
with overlapping seedlings. Moreover, the model demonstrated accurate positioning and
detection of target seedlings, even in challenging conditions, fulfilling the requirement for
precise stress detection. Seedlings can be segmented accurately despite issues like camera
haze. Although the proposed model showed a high detection accuracy, future research can
be expanded to other crop varieties, and transitioning from controlled environments to
open-field conditions will test the model’s robustness under varying natural conditions.
Besides, studies should include direct analysis of the nutrient content at various applied
nutritional levels, alongside EC measurements. Integrating multispectral and hyperspectral
imaging with ML models can improve agricultural crop stress detection. Developing
larger datasets, user-friendly applications and interfaces and IoT integration will streamline
data collection and accessibility. Additionally, economic analyses will evaluate the cost-
effectiveness and feasibility of the technology in agricultural settings.

5. Conclusions

In this study, we successfully applied segmented regression and Mask R-CNN models
to detect the nutrient stress initiation time and stress symptoms in cucumber seedlings
within a controlled environment. Nutrient stress was applied in a form indicative of
nutrient deficiency with EC 0 dSm−1 and excess nutrients as a high concentration of
nutrient solution with EC 6 dSm−1. All the seedling images were collected from the plant
factory using an automatic image acquisition system. After pre-processing and background
removal, morphological and texture features were extracted from the seedling images
using the GLCM method. Segmented regression analysis was used to identify the early
stress initiation time, and then a dataset for the Mask R-CNN model was prepared based
on the stress initiation and stressed seedlings. The annotation of 800 seedling images
was performed by an online annotation tool called MakeSense.ai. The Mask R-CNN was
implemented using ResNet-101, which provides a feature extractor. Transfer learning was
used to train the model network with a small dataset and reduce the processing time. The
bounding box and annotations were set as inputs for the training model. Training and
test datasets were used for the model evaluation. The segmented regression approach
detected the nutrient stress initiation 1.5 days prior to the human eyesight. TPCA, energy,
entropy, and homogeneity are prospective indicators of a nutritional deficit in cucumber
seedlings. Multiple indicators are better than a single marker for stress detection. The
total number of training epochs for Mask R-CNN was 100, and the proposed Mask R-CNN
method showed a training loss of less than 0.46%. Our findings on the identification of
stressed cucumber seedlings from the test images revealed that the best-fit image had a
performance F1 score of 93.4%, a precision of 93%, and a recall of 94%. This study has
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successfully demonstrated the efficacy of the Mask R-CNN model in detecting nutrient
stress in cucumber seedlings. Through rigorous experimentation and validation, we have
established the model’s ability to accurately identify and classify nutrient stress symptoms,
providing a robust tool for early detection and intervention in cucumber cultivation. The
integration of Mask R-CNN not only enhances the precision of nutrient stress detection
but also streamlines the monitoring process, allowing for timely and targeted corrective
measures. This collaborative approach will contribute to the ongoing evolution of precision
agriculture, ensuring the resilience and productivity of crop yields in the face of changing
agricultural landscapes and global food security challenges.
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