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Abstract: Quantifying how climatic change affects wheat production, and accurately predicting
its potential distributions in the face of future climate, are highly important for ensuring food
security in Ethiopia. This study leverages advanced machine learning algorithms including Random
Forest, Maxent, Boosted Regression Tree, and Generalised Linear Model alongside an ensemble
approach to accurately predict shifts in wheat habitat suitability in the Central Ethiopia Region over
the upcoming decades. An extensive dataset consisting of 19 bioclimatic variables (Bio1–Bio19),
elevation, solar radiation, and topographic positioning index was refined by excluding collinear
predictors to increase model accuracy. The analysis revealed that the precipitation of the wettest
month, minimum temperature of the coldest month, temperature seasonality, and precipitation of the
coldest quarter are the most influential factors, which collectively account for a significant proportion
of habitat suitability changes. The future projections revealed that up to 100% of the regions currently
classified as moderately or highly suitable for wheat could become unsuitable by 2050, 2070, and
2090, illustrating a dramatic potential decline in wheat production. Generally, the future of wheat
cultivation will depend heavily on developing varieties that can thrive under altered conditions; thus,
immediate and informed action is needed to safeguard the food security of the region.

Keywords: central Ethiopia region; climate scenarios; habitat suitability; species distribution models;
wheat

1. Introduction

Climate change is one of the major threats that humankind faces with risks to future
global food security [1,2]. With the accelerated increase in atmospheric CO2 to the expected
700 µL L−1 by the end of the 21st century [3], the threat to the agricultural sector is expected
to be much more severe [2,4–8]. Climate change affects agricultural activities through
changes in phenological events, the suitability of land for crops, the increasing invasion risk
of weed species, and fluctuations in grain yield [9,10]. Notably, higher temperatures and
higher concentrations of CO2 caused by climate change affect the existing crop suitability of
regions and agricultural landscapes [11,12] and consequently affect food systems in various
ways [13]. To understand the consequences of these changes for food security, quantitative
analysis of the potential distributions of crop species and the environmental factors affecting
their production under current and future climate scenarios plays a central role.

Species distribution models (SDMs) are powerful tools for identifying the potential
areas of suitable species habitats by exploring the relationships between geographical
species records (e.g., species occurrences) and corresponding environmental variables [14].
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SDMs are widely used for an array of applications in ecology, natural resource conservation,
and climate change impact studies. However, the increasing availability of SDMs and their
varying capacity to establish relationships between species and environmental variables
makes it difficult to choose the best method for conducting the models [12,15]. To account
for uncertainties and increase the predictive power of individual models, the ensemble
modelling technique was suggested to be the best alternative for determining the current
and future distributions of species [16,17]. By combining all the individual models, the
ensemble model produces a single output with a more accurate and robust prediction.

As the most widely grown and third largest crop in the world, wheat plays a significant
role in global food security. Within Africa, Ethiopia stands out as the second-largest wheat
producer [18]. In 2022, the country cultivated wheat across a total cropland area of 2.1 Mha,
yielding approximately 6.23 million tons. Given that almost all food imports in Ethiopia
consist of wheat, the government has prioritised wheat production through initiatives such
as crop area expansion, implementation of irrigation systems, and yield gap closure through
agroclustering of farmers [19]. Despite the significant challenge posed by climate change to
crop productivity and land suitability, documented successes in the wheat sector underscore
the importance of these strategies [20]. Recent reports suggest that the dry-season wheat
irrigation project is showing commending results [20], and Prime Minister Abiy Ahmed
has received the prestigious FAO-Agricola medal in recognition of his dedication to wheat
self-sufficiency and food security. The irrigation initiative has continued to expand in 2023
and 2024. Nevertheless, the looming threat of climate change to land suitability for wheat
cultivation is becoming increasingly apparent, necessitating finer-scale studies beyond
the national level [21,22]. In light of this concern, our study employs the best available
methods to conduct land suitability assessments and identify suitable habitats for wheat
under current and future climate scenarios in the Central Ethiopia Region (CER).

The CER emerged as a significant surplus wheat producer and one of the hotspots
for climate change impacts [23]. Given the region’s pivotal role in wheat initiatives, un-
derstanding wheat land suitability in the region becomes imperative [19]. Despite its
importance, the potential distribution range of wheat and geographic areas vulnerable to
climate change remain unidentified within the region. More importantly, in Ethiopia, the
wheat occurrence points are collected from relatively accessible locations and only limited
geolocations exist. In particular, in the study area very few non-randomly collected sample
points exist. Thus, there is a strong tendency toward sample bias, which considerably influ-
ences the accuracy of wheat distribution prediction in the study area. Consequently, this
study aimed to address this gap by pursuing the following objectives: (1) to survey wheat
occurrence points and examine the current distribution of wheat under current climate
conditions in the CER; (2) to understand the role of environmental variables affecting the ge-
ographical distribution of wheat; and (3) to predict the potential geographical distribution
and spatial alterations of wheat under two climate change scenarios. To meet these objec-
tives, we employed four machine-learning algorithms alongside their ensemble model. We
utilised different sets of emission scenarios driven by different socioeconomic assumptions
(SSP2–4.5 and SSP5–8.5) for the years centered on 2030, 2050, 2070, and 2090, leveraging the
ensemble of five global circulation models (ACCESS-CM2, HadGEM3-GC31-LL, MIROC6,
MPI-ESM1-2-HR, and CMCCESM2). In connection with this, we hypothesised that the
suitable land area for wheat in the CER would decline under the influence of global climate
change, underscoring the necessity for adaptation strategies. The insights derived from
this study offer crucial guidance for policymakers, facilitating their efforts to expand wheat
production both temporally and spatially within the country.

2. Materials and Methods
2.1. Study Area Description

This study was conducted in three major wheat-producing zones (Hadya, Silte, and
Gurage) in CER (Figure 1). The study area has an altitude ranging from 836 to 3435 m.a.s.l.
and is located between 7◦05′78′′ and 8◦45′76′′ N and 37◦34′95′′ and 38◦71′60′′ E. The total
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land area is 12,203 square kilometers. From an agroecological point of view, the study area
comprises lowlands, dry midlands, wet midlands, and highlands. This diverse agroecology
enables the area to diversify its livelihood systems. The major livelihood types include
Meher livelihood type, Belg livelihood type, and agropastoralism. The major crops grown
in the area include wheat, maize, teff, sorghum, barley, enset, and vegetables. In terms of
rainfall occurrence, there are three distinct seasons, locally known as Belg, Kiremt, and Bega.
The Belg (small rain) extends from February to May; the Kiremt season (the main rain) mostly
occurs from June to September and is crucial for Meher livelihood type, and the Bega (dry)
season extends from October to January. The amount of rainfall received during the three
seasons varies significantly. The Belg and Kiremt seasons contribute approximately 90%
of the annual climatological mean rainfall and thus control agricultural production in the
study area. While Kiremt is the main rainy season for the cultivation of most crops in most
parts of the region, Belg season rainfall is equally significant for growing early-maturing
and long-season crops, and it is a source of water for growing animal pastures and is the
source of the dominant livelihood type in the southern part of the study area.
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Figure 1. Map of the study area and wheat occurrence points.

2.2. Species Occurrence Points or Sample Location Data

The wheat occurrence points at Addis Ababa University’s National Herbarium and the
Ethiopian Biodiversity Institute are very limited, and databases such as https://www.cabi.
org/cpc/ (accessed on 7 October 2023), www.gbif.org (accessed on 8 October 2023), and
www.idigBio.org (accessed on 7 October 2023) completely lack wheat occurrence points for
the Central Ethiopia Region. Thus, the species records for the study were generated through
a survey of potential wheat-producing areas. A handheld global positioning system (GPS,
Garmin 72 H) was utilised to record the geographic positions within the sampling area,
where 156 presence-only points were collected. The survey records covered Sankura, Mito,
Dalocha, Hulbareg, Silti, and Lanfuro woreda of the Silte Zone. We also surveyed Sodo,
Mareko, Gumer, and Indegay of the Gurage Zone and Duna, Misha, Soro, Lemo, Alemo,
and Gibe woreda of the Hadiya Zone. To avoid the possibility of potential bias in obtaining
clustered spatial records, the repeatability of geocoordinates was removed by rarefying the
occurrence points to one observation per 1 km2 cell using the SDM toolbox implemented in

https://www.cabi.org/cpc/
https://www.cabi.org/cpc/
www.gbif.org
www.idigBio.org
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Arcmap 10.7. Finally, 117 occurrence points remained for analysis. The coordinate system
was WGS84.

2.3. Environmental Variables

Bioclimatic variables represent important explanatory variables for understanding
the relationships between the geographical distribution of various species and environ-
mental variables. The historical climate dataset (1970–2000) was obtained from Worldclim
version 2.1 and used as a baseline [24]. The environmental variables include 19 grid-
ded Bioclimatic variables, with a spatial resolution of 30 arc-seconds (~1 km2) (http:
//www.worldclim.org/version2.1, accessed on 22 November 2023). The first 11 of the
19 bioclimatic variables (Bio1 to Bio11) were classed into the temperature group, and the
other variables (Bio12 to Bio19) were grouped into the precipitation group (see Table 1 for
details). The other environmental groups included in the modelling were 12 monthly solar
radiation and topographic variables (topographic positioning index and elevation). We
generated individual and ensemble species distribution models (SDMs) and forecasted
for the periods of 2021–2040, 2041–2060, 2061–2080, and 2081–2100. For each period, we
employed an ensemble of five widely used Global Circulation Models (ACCESS-CM2,
HadGEM3-GC31-LL, MIROC6, MPI-ESM1-2-HR, and CMCCESM2) from the two regularly
applied SSPs in climate-change assessments, i.e., the moderate scenario (SSP2–4.5) and the
worst-case scenario (SSP5–8.5) [25].

Table 1. List and description of environmental variables used in the modelling of wheat in the CER.

Code Name Units

Bio1 Annual Mean Temperature ◦C

Bio2 Mean Diurnal Range (Mean of monthly (max temp–min temp)) ◦C

Bio3 Isothermality (Bio2/Bio7) (×100) -

Bio4 Temperature Seasonality (standard deviation ×100) ◦C

Bio5 Max Temperature of Warmest Month ◦C

Bio6 Min Temperature of Coldest Month ◦C

Bio7 Temperature Annual Range (Bio5-Bio6) ◦C

Bio8 Mean Temperature of Wettest Quarter ◦C

Bio9 Mean Temperature of Driest Quarter ◦C

Bio10 Mean Temperature of Warmest Quarter ◦C

Bio11 Mean Temperature of Coldest Quarter ◦C

Bio12 Annual Precipitation Mm

Bio13 Precipitation of Wettest Month Mm

Bio14 Precipitation of Driest Month Mm

Bio15 Precipitation Seasonality (Coefficient of Variation) Fraction

Bio16 Precipitation of Wettest Quarter Mm

Bio17 Precipitation of Driest Quarter Mm

Bio18 Precipitation of Warmest Quarter Mm

Bio19 Precipitation of Coldest Quarter Mm

Elevation Elevation m.a.s.l

TPI Topographic positioning index -

Solar Solar radiation kJ m−2 day−1

Note: Bioclimatic variables in bold are variables selected for modelling of wheat land suitability after checking
for collinearity.

http://www.worldclim.org/version2.1
http://www.worldclim.org/version2.1
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2.4. Variable Importance and Collinearity Test for Variable Selection

The bioclimatic variables were derived from interpolated datasets and they often
show redundancy/multicollinearity, ultimately leading to poor or misleading model per-
formance [16]. The correlations and dependencies of the variables affect the variable
importance and make their interpretation difficult. To avoid overfitting and remove redun-
dant environmental variables that do not provide additional information to the modelling
exercise, we used the stepwise variance inflation factor (VIF) from the “usdm” R package
4.3.1. [26]. Stepwise variable selection based on VIF is the most commonly used method to
address collinearity [14,27]. The VIF value of 10 (as a rule of thumb) was used as a cut-off
point. The stepwise procedure selected 10 variables with a VIF of less than the threshold
(Table 1).

2.5. Modelling Algorithms

The geographical distribution of wheat was predicted using four species distribution
models (algorithms) implemented in the sdm, R package, which include Maximum Entropy
(Maxent) [28], Random Forest (RF) [29], Boosted regression trees (BRT) [30], and the Gen-
eralised Linear Model (GLM) [31]. These SDMs are the most effective and well-approved
techniques for modelling species distributions [32,33].

2.5.1. Maxent Model

The Maxent model uses existing information about a species’ geographic location
range and related environmental factors to create a suitability map [28]. Maxent estimates
species distribution as a probability distribution by maximising a relative-entropy objective
function that compares environmental conditions at species occurrence points to a sample
of background points representing the environmental condition of the study area [34]. It is
one of the best-performing and most widely used SDM algorithms in practical applications
because of its user-friendly interface, reliable prediction, and low computing capacity [9,35].

2.5.2. Random Forest

Random Forest (RF) is a classification or regression ensemble machine learning algo-
rithm that builds multiple trees by using random subsets of the dataset, and subsequently
aggregates the predictions generated by these individual trees [29]. It is a classification or
regression tree-based model that is not sensitive to data distribution. RF stands as one of
the most extensively utilised and most accurate machine learning algorithms for predicting
species distributions [36].

2.5.3. Boosted Regression Trees

Boosted regression trees (BRTs), also known as stochastic gradient boosting or boosted
additive trees, result from the merging of regression trees with the boosting technique [37].
BRT represents a machine-learning approach that commences with a single decision tree
that undergoes multiple simple binary decisions [15,38]. BRT integrates the strengths of
regression trees, which link a response to predictors through recursive binary splits, and
boosting, a strategy that amalgamates numerous simple models to improve modelling
accuracy. The final BRT model is an additive regression model consisting of simple trees. It
performs well with a low to moderate number of presence-only data through the generation
of pseudoabsences.

2.5.4. Generalised Linear Model

A generalised linear model (GLM) is an extension of the classic linear regression
modelling technique that has long been a prominent algorithm in SDM studies [39]. It is a
parametric approach that addresses different families of the statistical distribution of data
and allows nonlinear and nonconstant variance of data. The effects of the independent
variables, which are nonlinear and characterised by exponential and systematic observa-
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tions, as well as rarely following normal distributions, can be rendered linear through the
utilisation of an appropriate transformation method for analysis [15,31].

2.5.5. Ensemble Model

An ensemble modelling approach entails combining predictions from multiple models
to reduce the inaccuracy and biases of individual model predictions. To improve modelling
accuracy, a weighted averaging approach based on Area Under the Curve (AUC) statistics
was employed to determine the contribution of each of the four individual models to the
ensemble model. A weighted averaging approach was determined as follows:

E =
∑n

i=1 AUCi ∗ Mi

∑n
i=1 AUCi

Following this, the evaluates function of R was used to determine the AUC and TSS of
the ensemble, and then the predict function of the sdm was used to project the models onto
current and future environmental conditions. The resulting suitability maps were converted
into unsuitable, low suitability, moderately suitable, and highly suitable categories.

2.6. Evaluation of Model Performance

We used the sdm R package [14] to model and predict species distributions. The
occurrence points were randomly divided into two partitions via a resampling method,
called subsampling and bootstrapping method, through which 70% of the occurrence
points were used for training the models and the remaining 30% of the occurrence points
were used to evaluate the models. To reduce potential bias introduced by resampling, the
procedure was repeated 30 times. The performance of the SDMs was assessed through
the utilisation of the area under the receiver operating characteristic curve (AUC) and
true skill statistics (TSS). The AUC represents the area enclosed by the receiver operating
characteristic (ROC) curves within the model [40]. The ROC curve’s AUC is a commonly
employed metric to evaluate the discriminatory performance of SDMs. The ROC curve
plots sensitivity versus (1—specificity) across all possible thresholds between 0 and 1. The
sensitivity (i.e., true positive rate) is the ratio of the number of predicted observed presences
(omission errors) or true positives divided by the total number of presences (true positive
plus false negatives). The specificity is the ratio of the number of predicted observed
absences (commission errors) or the ratio between true negatives divided by all absences.
A model is deemed to perform better than random chance if the curve is positioned above
the diagonal line of no discrimination (AUC = 0.5), indicating an AUC greater than 0.5. The
ROC curve of a model exhibiting flawless discriminatory ability extends from coordinate
(0,0) to coordinate (0,1) and then to another corner (1,1). Generally, on the basis of the
range of AUC values, a model’s performance can be interpreted as excellent (0.9–1.0), very
good (0.8–0.9), good (0.7–0.8), fair (0.6–0.7), or poor (0.5–0.6) [41]. The TSS is computed
by subtracting 1 from the summation of sensitivity and specificity [42]. The value of the
TSS ranges from −1 to 1, where a value of zero represents a model performing the same as
prediction by chance (total random error), while −1 indicates a model with a total error,
and a TSS equal to 1 is a perfect model. The ensemble model was constructed using the
four individual models to address the uncertainties associated with the performance and
prediction of each model. The raster values were classified into suitability classes [43].
The suitability values range from 0 to 1, indicating the lowest to highest habitat suitability,
respectively. The climate suitability of wheat cultivation was classified into unsuitable areas
(small probability) (p < 0.05), low suitability areas (0.05 ≤ p < 0.33), moderate suitability
areas (0.2 ≤ p < 0.66), and high suitability areas (p ≥ 0.66) [9,44].

3. Results and Discussions
3.1. Model Fitting and Performance

The models selected for assessing the potential distribution of wheat were highly
effective across all modelling tasks. The predictive performance of the models was assessed
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on the basis of the AUC and TSS. The average AUC values for RF, Maxent, BRT, GLM,
and Ensemble were 0.9, 0.86, 0.85, 0.85, and 0.94, respectively, which proved that the
performance of all the SDMs was very good or excellent (Table 2). The True Skill Statistics
(TSS) values were > 0.5 for all the SDMs. In the assessment metrics employed in this
research, the ensemble model demonstrated the highest values, with Random Forest (RF)
and Maxent following closely behind. Shabani et al. [45] proposed that a model with an
AUC value exceeding 0.75 is considered robust and precise. The AUC values for all models
used in this study were greater than 0.8, indicating that the models are reliable for assessing
the ecological suitability and predicting the geographical distributions of wheat. Moreover,
the ensemble technique resulted in a significant gain in prediction accuracy. The high AUC
and TSS values also imply that the models can discriminate suitable and unsuitable wheat
sites accurately [46] in the CER. A study by West et al. [47] that used species distribution
models reported that RF and Maxent were the best SDM models for the prediction of
invasive species. This makes the models most suitable for species distribution modelling.

Table 2. Model test.

Methods AUC TSS

Random Forest (RF) 0.9 0.68
Maxent 0.86 0.62
Boosted regression tree (BRT) 0.85 0.6
Generalised Linear Model (GLM) 0.85 0.61
Ensemble model 0.94 0.76

3.2. Contribution of Environmental Variables Affecting Wheat Cultivation in CER

The performances of the bioclimatic variables were similar among the modelling
algorithms. The relative variable importance of ten variables was normalised to sum
to 100% (Table 3 and Figure 2). The precipitation of the wettest month (Bio13) had the
most important explanatory power in predicting wheat cultivation areas. The respective
significance values of Bio13 were 23.1% for RF, 25.7% for Maxent, 34.3% for BRT, and 31.7%
for GLM. The next most significant factor is Precipitation of the Coldest Quarter (Bio19)
for RF (18.1%) and Boosted Regression Tree (25.6%), and Minimum Temperature of the
Coldest Month for Maxent (23.2%) and GLM (22.2%). Considering the mean values of all
modelling exercises, the Precipitation of the Wettest Month (Bio13) is the most significant
variable governing the distribution of wheat with importance scores (mean score = 28.7%),
followed by the Minimum Temperature of the Coldest Month (Bio6) (mean score = 16.9%),
Temperature Seasonality (Bio4) (mean score = 14.3%), and Precipitation of the Wettest
Quarter (Bio19) (mean score = 12.9%). Whereas, the Topographic Positioning Index (tpi),
Precipitation of the Driest Quarter (Bio17), and Precipitation of the Warmest Quarter (Bio18)
are the three variables with the least importance for the modelling exercises, respectively.

In a previous study, Evangelista et al. [22] reported that climatic variables related to rain-
fall are the most significant factors affecting cereal yield prediction in Ethiopia. Nevertheless,
in this study, variables related to both temperature (Minimum Temperature of the Coldest
Month-Bio6, precipitation seasonality-Bio4), Precipitation of the Wettest month-Bio13, and
Precipitation of the Coldest Quarter-Bio19 significantly influenced wheat production.

Wheat production in Ethiopia primarily occurs during the main rainy season, which
typically spans from June to September. The precipitation of the wettest month (Bio13) and
precipitation of the coldest month (Bio19) occur during the main rainy season indicating
that the environmental conditions during this period strongly influence the distribution
of wheat. Precipitation profoundly influences various stages of the crop growth cycle,
including germination, tillering, anthesis, and grain filling. Similarly, temperature impacts
the flowering time and thermal requirements of wheat. A warmer climate hastens crop
development and alters the anthesis period, thereby affecting the yield produced. Fur-
thermore, elevation significantly influences wheat cultivation by affecting temperature
and rainfall patterns. Although elevation was initially considered to be a very important
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variable that influences wheat distribution in our modelling exercise, it was eventually
excluded because of its strong correlation with precipitation and temperature parameters.
Conversely, the role of the topographic positioning index and solar radiation in determining
habitat suitability for wheat cultivation was found to be negligible. This is contrary to the
finding of Yang et al. (2020) [48] in the Northern part of the country, which suggested a
significant role of solar radiation in cereal production.

Table 3. Relative variable importance of ten variables normalised to the sum of 100% * in the Random
Forest (RF), maximum entropy (Maxent), Boosted Regression Tree (BRT), and Generalised Linear
Model (GLM) models.

Environmental Variables RF Maxent BRT GLM Mean

Mean diurnal range (Bio2) 9.1 13.1 2.8 13.8 9.7
Iso-thermality (Bio2/Bio7) (×100) (Bio3) 5.9 6.7 3.0 9.0 6.2
Temperature Seasonality (standard deviation ×100) (Bio4) 11.8 15.4 15.0 15.0 14.3
Min Temperature of Coldest Month (Bio6) 12.4 23.2 9.7 22.2 16.9
Precipitation of wettest month (Bio13) 23.1 25.7 34.3 31.7 28.7
Precipitation of driest quarter (Bio17) 3.2 2.6 0.8 2.5 2.3
Precipitation of warmest quarter (Bio18) 3.9 4.0 1.5 1.3 2.7
Precipitation of coldest quarter (Bio19) 18.1 6.1 25.6 1.7 12.9
Solar Radiation 8.3 2.4 3.6 2.5 4.2
Topographic positioning index (tpi) 4.3 0.8 3.6 0.4 2.3
Total sum 100 100 100 100 100

* Normalisation was used to make the metrics’ relative assessments comparable.
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Maxent, Random Forest (RF), and General Linear Model (GLM) models.

3.3. Current Climate Suitability of Wheat in the CER

The current suitability of wheat as estimated by the four modelling algorithms and
their ensemble is shown in Figure 3 and Table 4. From a total land area of 12,203 km2, the
ensemble model shows that 30% (3662 km2) of the current land area is highly or moderately
suitable and the remaining 70% (8541 km2) is unsuitable or has low suitability for wheat
production. Among the four single SDMs used in this study, the Maxent model indicated
the highest share of moderately and highly suitable areas (35%, 4244 km2), and the GLM
and Random Forest showed the least range of moderately and highly suitable areas, with
13% each.
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Table 4. Current wheat habitat suitability simulations (areas calculated in km2 and %) by using
Random Forest (RF), Maxent, Boosted Regression tree (BRT), Generalised Linear Model (GLM), and
ensemble modelling approaches.

RF Maxent BRT GLM Ensemble

Area % Area % Area % Area % Area %

Not suitable 6640 54 4491 37 3077 25 6058 50 3594 29
Low suitability 4000 33 3467 28 6411 33 4535 37 4947 41
Moderately suitable 1420 12 2664 22 2578 21 1451 12 3067 25
Highly suitable 143 1 1580 13 137 1 158 1 595 5

The highly suitable and moderately suitable areas are located in Sodo, Meskan, Mareko,
and Indegay woreda of the Gurage Zone; Mito, Wulbareg, Sankura, Lanfuro, and Silte
woreda of the Silte Zone, and Duna, Soro, Mish, and Lemo woredas of the Hadiya Zone.
The areas with unsuitable or low suitability are mainly found in the northwestern parts of
the study area, mainly in the Gurage Zone, which was evidenced in all the models. The
Maxent prediction coincides with the current potential wheat-producing areas or the sites
of occurrence points, which may suggest that the Maxent is more reliable and superior
in species distribution modelling than other modelling algorithms. The argument that
Maxent is a more reliable tool for identifying a geographical range of species and should be
considered a first modelling option becomes valid in this study [35]. Grimmett et al. [39]
also suggested that Maxent is the most consistent SDM tool in terms of performance
metrics and spatial prediction stability under varying sampling strategies, and should be
used for scenario analysis alone or as part of an ensemble model. In fact Kaky et al. [35]
suggested that Maxent will remain the dominant software to be used for the application and
interpretation of results at least in developing countries, owing to its user-friendly interface
and requirement of less advanced statistical modelling techniques. On the other hand,
though Random Forest has the highest prediction accuracy based on AUC and TSS, its
suitability maps show signs of under-prediction when compared with the actual occurrence
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points. The visual inspection shows that Maxent has greater similarity with the ensemble
than does the random forest (Figure 3).

3.4. Wheat Habitat Suitability under Future Climate Scenarios

The impacts of climate change on wheat land suitability under future climate sce-
narios (SSP2–4.5 and SPP5–8.5) for the years 2030, 2050, 2070, and 2090 are illustrated in
Figure 4A–E. The habitat suitability of wheat is expected to decline under future climate
change scenarios. The extent of suitable land decline depends on the SDM model used,
the shared socioeconomic pathways followed and the modelling period taken into con-
sideration, as indicated by individual and ensemble models. All the models indicated a
considerable decline in wheat habitat suitability with GLM showing a rapid and significant
loss of moderately and highly suitable habitats under both scenarios in 2030 and afterwards
(Figure 4). Compared with other models, the Maxent and the ensemble models resulted
in relatively less highly or moderately suitable wheat habitat loss. When Maxent is used,
the moderately and highly suitable area will decrease to 16.6% (SSP2–4.5) in 2030, which
will further derease to 0.1% in 2070. When Maxent is used under SSP5–8.5, the moderately
suitable habitat will be 0.2% in 2030 and it will further reduce to 0.1% in 2070. However,
the ensemble model shows a decrease in moderately and highly suitable habitat to 7% in
2030 under SSP2–45 and to 0.3% in 2050 under SSP5–8.5. The loss of suitable land occured
in all agroecologies in the study area.

Despite the ability of wheat to thrive in a broad range of agroecological settings,
this study revealed its heightened vulnerability to the effects of climate change. This
highlights the fact that climate change will pose challenges not only to plant species
with specific ecological requirements but also to staple food crops such as wheat, which
are cultivated under diverse agroecological conditions. In agreement with this study,
Gebresamuel et al. [49] conducted studies in two highland and two lowland areas in
Tigray and reported that the wheat (Triticum aestivum) area may decrease by up to 86–100%
by the end of the century depending on the climate scenario. They also suggested an
upward migration of wheat along altitudinal gradients in the coming years. In contrary
to Gebresamuel et al. [49], the wheat habitat suitability in our study is likely to have
disappeared from all agroecologies.

The distribution of wheat in the study area is influenced by change in both precipitation
and temperature variables. The trend of climate change in the past decades in Ethiopia may
have also reduced the potential yield and suitability of land for wheat production in the
study area, and the challenge is likely to continue to exacerbate. Yang et al. [48] conducted
an extensive study in the Tana Basin of Ethiopia and concluded that climate change over
the past four decades may have contributed to decreases in the yield and land suitability
of wheat. In Ethiopia, wheat grows at altitudes ranging from 1500 to 3000 m above sea
level [50,51]. The most suitable potential wheat areas have minimum temperatures of
between 6 ◦C and 11 ◦C and rainfall amounts of at least 350 mm [50]. In this context, the
minimum temperature of the coldest month (Bio6) in the study area is likely to increase
by 1 ◦C in 2030 under SSPs 4.5 and by up to 5 ◦C in 2090 under SSP4.5 compared with the
baseline (Figure 5). Bio6 is an indicator of cold temperature anomalies and an increase in
Bio6 reduces the days to anthesis, biomass, and number of grains. Wheat requires optimal
temperature conditions; the increase in temperature of the coldest month significantly
retarded its growth, as shown by the wheat response curve in Figure 6. Temperature
seasonality (Bio4), an indicator of temperature variability (change) over the course of the
year, has a temperature seasonality range of from −15 to 15 degrees.
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Figure 6. Relationships between major environmental variables and T. aestivum occurrence in Central
Ethiopia Region.

The precipitation of the wettest month (Bio13) is the total precipitation that prevails
during the month of the year with the most precipitation, which is an indicator of the
extreme precipitation conditions during the year. It is the most important bioclimatic
variable that influences the potential range of wheat in the study area, and it increases by
more than 50 mm until 2090. An increase in precipitation above the current level decreases
wheat suitability (Figure 4). The precipitation of the coldest quarter (Bio19) is the total
precipitation that prevails during the coldest quarter and is determined by adding up the
average temperatures of each month within the quarter and selecting the quarter with the
lowest value. The precipitation values for the three months in this quarter are subsequently
summed. This index offers insight into the total precipitation during the coldest quarter of
the year, allowing for an examination of how environmental variables like precipitation may
affect the seasonal distributions of species. In the study area, a wide range of precipitation
fluctuations was observed in the coldest quarter of the year, with values varying from a
decrease of up to 400 mm to an increase exceeding 400 mm compared with the current
scenario (Figure 5).

3.5. Limitations of the Study

This study possesses a notable strength in that the collection of wheat occurrence
points was conducted in a manner that avoided any indication of spatial bias. This allows
a comprehensive understanding of wheat habitat suitability and accurate evaluation of
the applicability of existing species distribution models (SDMs) to simulate the species’
wheat habitat suitability, as the actual and predicted points can be compared. However,
it is important to acknowledge that this study did not incorporate certain environmental
variables, such as varietal agroecological preference, the influence of CO2 fertilisation, and
soil pH (soil acidity), all of which have a substantial impact on wheat production. The
assessment of wheat suitability in the study area was conducted to simulate the species’
wheat habitat suitability without consideration of their agroecological preferences for
single varieties. In wet-midland, dry-midland, and low-land agroecologies, farmers select
specific wheat varieties like Kakaba, Kingbird, Simba, Daka and Ogolcho for their high yield
potential and ability to resist disease. In contrast, Danda’a, Shorima and Wane are preferred
in highland areas. Therefore, future studies should consider the agroecological preferences
of varieties when conducting habitat suitability assessments.
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Climate variables had a significant influence on wheat distribution and Figure 6
illustrates the four major climate predictors exerting a much stronger influence on wheat
land suitability. The four top predictors that exert a strong influence on wheat land
suitability are Bio13, Bio19, Bio4, and Bio6. The increase in Bio13 and Bio6 particularly
reduces suitable areas so that wheat might not survive in most of its current range. In fact,
it is difficult to make any conclusions about why such conditions are not suitable: it may be
that wheat is intolerant to high temperatures during the wettest month, or it is the high
precipitation that would eliminate the most suitable habitat for wheat.

Regarding soil acidity, the data points were gathered from all potential wheat-growing
agroecologies including the Gumer and Indegay woreda of the Gurage zone, which is
affected by acidification. These areas are currently undergoing extensive liming activities to
address the issue. As a result, it is assumed that farmers will persist in their endeavours to
remediate the acid-affected soil for wheat cultivation. On the other hand, the SDMs cannot
incorporate the CO2 fertilisation effect into their modelling exercise.

4. Conclusions and Future Directions

The significance of wheat to the Ethiopian economy cannot be overstated, and the
government of Ethiopia is striving to increase domestic production to realise food security
and reduce foreign currency spent on wheat imports. Therefore, an investigation that con-
siders the impact of climate change on wheat land suitability is of paramount importance
to safeguard food security and to devise effective response strategies. In this study, we used
four SDMs along with an ensemble model to understand and identify wheat-suitable areas
under SSP2–4.5 and SSP5–8.5 in the Central Ethiopia Region. The current study showed
significant changes in the environmental variables in wheat agroecologies by 2030, 2050,
2070, and 2090. The changes are marked by an increase in unsuitable and small suitability
areas. The magnitude of climate change impacts depends on the SDM model used, the
socioeconomic pathway, and the time period with the worst outcomes occurring under the
highest emission scenario starting from 2030 to the end of the century. The GLM showed
rapid and early loss of suitable and moderately suitable areas. Consequently, breeding
alternative varieties that are adapted to projected future climatic conditions is an important
strategy to achieve the wheat self-sufficiency targets. Thus, research institutions engaged
in variety development are encouraged to facilitate the transition to other wheat varieties
adaptable to diverse agroecologies.
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