
Citation: Yu, Y.; Zhou, Q.; Wang, H.;

Lv, K.; Zhang, L.; Li, J.; Li, D.

LP-YOLO: A Lightweight Object

Detection Network Regarding Insect

Pests for Mobile Terminal Devices

Based on Improved YOLOv8.

Agriculture 2024, 14, 1420. https://

doi.org/10.3390/agriculture14081420

Academic Editors: Gniewko Niedbała,

Magdalena Piekutowska, Sebastian

Kujawa and Tomasz Wojciechowski

Received: 1 August 2024

Revised: 19 August 2024

Accepted: 20 August 2024

Published: 21 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

LP-YOLO: A Lightweight Object Detection Network Regarding
Insect Pests for Mobile Terminal Devices Based on
Improved YOLOv8
Yue Yu 1, Qi Zhou 2, Hao Wang 2, Ke Lv 3, Lijuan Zhang 4, Jian Li 1,* and Dongming Li 4,*

1 School of Information Technology, Jilin Agricultural University, Changchun 130118, China;
yueyu@mails.jlau.edu.cn

2 School of Computer Science, Xi’an Jiaotong University, Xi’an 710049, China;
2224111333@stu.xjtu.edu.cn (Q.Z.); 2222210687@stu.xjtu.edu.cn (H.W.)

3 School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China;
2022302191115@whu.edu.cn

4 College of Internet of Things Engineering, Wuxi University, Wuxi 214105, China; zhanglijuan@cwxu.edu.cn
* Correspondence: lijian@jlau.edu.cn (J.L.); lidongming@cwxu.edu.cn (D.L.)

Abstract: To enhance agricultural productivity through the accurate detection of pests under the con-
strained resources of mobile devices, we introduce LP-YOLO, a bespoke lightweight object detection
framework optimized for mobile-based insect pest identification. Initially, we devise lightweight
components, namely LP_Unit and LP_DownSample, to serve as direct substitutes for the majority of
modules within YOLOv8. Subsequently, we develop an innovative attention mechanism, denoted
as ECSA (Efficient Channel and Spatial Attention), which is integrated into the network to forge
LP-YOLO(l). Moreover, assessing the trade-offs between parameter reduction and computational
efficiency, considering both the backbone and head components of the network, we use structured
pruning methods for the pruning process, culminating in the creation of LP-YOLO(s). Through a
comprehensive series of evaluations on the IP102 dataset, the efficacy of LP-YOLO as a lightweight
object detection model is validated. By incorporating fine-tuning techniques during training, LP-
YOLO(s)n demonstrates a marginal mAP decrease of only 0.8% compared to YOLOv8n. However, it
achieves a significant reduction in parameter count by 70.2% and a remarkable 40.7% increase in FPS,
underscoring its efficiency and performance.

Keywords: object detection; pests; lightweight network; LP-YOLO; attention mechanism

1. Introduction

The proliferation of pests not only precipitates substantial economic losses in agricul-
tural production but also catalyzes the dissemination of infectious diseases and disrupts
ecological equilibria. Effective pest detection mitigates the risk of widespread infestations
and diminishes both the difficulty and the expenditure associated with pest management
endeavors. Moreover, precise pest identification underpins the study of pest ecologi-
cal habits and reproductive patterns, thus providing a scientific basis for the pursuit of
sustainable agricultural development.

Historically, pest identification has primarily relied on the specialized expertise of
entomologists and taxonomists. However, with the rise of the Internet and advancements
in information technology, new methodologies for identifying crop pests and diseases
have surfaced. The introduction of the R-CNN algorithm [1] marked a critical juncture
in applying deep learning to object detection, utilizing Convolutional Neural Networks
(CNNs) for feature extraction and classification within candidate regions, significantly
boosting detection accuracy. This evolution spurred the development of algorithms such
as Fast R-CNN [2] and Faster R-CNN [3], which incorporate Region Proposal Networks
(RPNs) to enhance detection efficiency and speed.

Agriculture 2024, 14, 1420. https://doi.org/10.3390/agriculture14081420 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture14081420
https://doi.org/10.3390/agriculture14081420
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://doi.org/10.3390/agriculture14081420
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture14081420?type=check_update&version=1


Agriculture 2024, 14, 1420 2 of 24

Recent advancements in single-stage detection algorithms, like the SSD (Single-Shot
Multibox Detector) series [4] and RetinaNet [5], have notably pushed forward the field of
object detection. The SSD framework introduced an innovative approach for multi-scale
object detection by directly predicting objects at various scales from feature maps, enabling
real-time performance. Enhancements such as SSDLite [6], which employs depthwise
separable convolutions, have optimized the model for deployment on resource-constrained
devices. Furthermore, models like MDSSD [7] have integrated multi-scale deconvolutional
modules to bolster the detection of small objects.

RetinaNet, introduced in 2017, tackled the challenge of class imbalance in object
detection with the introduction of Focal Loss, selectively down-weighting easily classi-
fiable examples to concentrate on challenging instances, thereby enhancing the model’s
accuracy in scenarios with significant class imbalance. Subsequent enhancements to Reti-
naNet involved the adoption of more efficient backbone architectures, such as Efficient-
Net [8], and improvements to the Feature Pyramid Network (FPN) for better multi-scale
feature representation.

Simultaneously, the YOLO (You Only Look Once) series [9] of algorithms, operating on
a single-stage detection pipeline, has demonstrated exceptional speed and accuracy. The lat-
est iteration, YOLOv10 [10], builds upon previous versions by incorporating advanced
network architectures and optimization techniques, further extending the boundaries of
real-time object detection performance.

In parallel, the development of attention mechanisms in deep learning has continued to
evolve, enhancing model performance across a spectrum of tasks including object detection.
Initially utilized in natural language processing, attention mechanisms have been increas-
ingly applied to computer vision, significantly improving the ability of neural networks
to focus on relevant features within vast quantities of visual data. Recent advancements,
such as the introduction of transformer models in vision tasks, exemplified by the Vision
Transformer (ViT) [11], have revolutionized how models process images, highlighting the
utility of attention mechanisms in interpreting complex scenes more effectively.

Further developments include the integration of attention into existing architectures to
refine their efficacy. For instance, the Bottleneck Transformers [12] incorporate transformer
blocks seamlessly within convolutional networks, enhancing the representational power
without compromising the efficiency inherent to CNNs. Moreover, the CrossViT [13] struc-
ture introduces dual-branch transformers to handle different scale features simultaneously,
boosting performance in multi-scale object detection.

Recent advancements in pest target detection, driven by deep learning, convolutional
neural network (CNN) technologies, and the integration of sophisticated attention mech-
anisms, have enabled more accurate pest identification and classification across diverse
environments. In 2023, Zhang et al. [14] introduced an enhancement to YOLOX [15] via
a Cross-Layer Transformer, achieving an AP50 of 57.7 on the IP102 dataset. Likewise,
Zhu et al. [16] introduced the CBF-YOLO network, incorporating CSE-ELAN, Bi-PAN,
and FFE modules, to enhance detection of common soybean pests in complex environments,
achieving a new benchmark with a mean average precision (mAP) of 86.9%. However,
the extensive parameter counts and complexity inherent in these algorithms render them
less suitable for deployment on field mobile devices, a limitation attributed to their sub-
stantial computational demands and resource requirements. Consequently, their practical
application, especially in agricultural scenarios where mobility and resource constraints
are paramount, remains a formidable challenge.

In the domain of insect detection, recent investigations have also underscored the
development of lightweight networks, yielding remarkable accomplishments. For instance,
Xu et al. [17] developed a lightweight SSV2-YOLO-based model aimed at detecting sugar-
cane aphids in unstructured natural environments, contributing significantly to the field.
In their methodology, they employed ShuffleNet V2 modules as replacements for the origi-
nal components of the YOLOv5 network, maintaining the core structure. This adaptation,
while striving for enhanced model compactness, introduced a trade-off, affecting accuracy



Agriculture 2024, 14, 1420 3 of 24

to some extent and presenting challenges in achieving the desired level of lightweight
efficiency. Nevertheless, the aforementioned model, despite its advancements, remains
insufficiently lightweight and is limited in its pest detection range. There exists a pivotal
opportunity for the design of an even more streamlined network that preserves, if not
enhances, detection accuracy.

In response to this challenge, we introduce LP-YOLO, a network that achieves a
substantial reduction in parameters and complexity without compromising detection
accuracy. To harmonize model precision with scale and simplicity, we embrace depthwise
separable convolution and channel shuffle, aiming to refine the network’s operational
efficiency. Furthermore, the incorporation of both spatial and channel attention mechanisms
serves to amplify the network’s receptive capacity and adaptability while concurrently
attenuating irrelevant inputs. We unveil the innovative LP_Unit and LP_DownSample
modules, which are devised as strategic alternatives to the architectural components of
YOLOv8, culminating in the establishment of our LP-YOLO(l) framework. Subsequent
network pruning efforts yield an even more streamlined variant, LP-YOLO(s). The LP-
YOLO framework encompasses two distinct models, LP-YOLO(l) and LP-YOLO(s), each
available at five different scales: n, s, m, l, and x.

The contributions of this research are threefold:

• Innovative lightweight modules: We introduce two pioneering lightweight modules,
LP_Unit and LP_DownSample, leveraging depthwise separable convolution to di-
minish computational load and parameter quantity. The implementation of channel
shuffle addresses the restricted information flow between channel groups, a limitation
encountered with depthwise separable convolution. These enhancements substan-
tially elevate the network’s lightweight characteristics by replacing segments of the
original architectural framework.

• Efficient Channel and Spatial Attention (ECSA): To harness the computational efficacy
of Efficient Channel Attention (ECA) while compensating for its omission of spatial
attention, we propose the ECSA mechanism. This novel approach, in conjunction with
the CBAM attention mechanism, directs the network’s focus towards critical informa-
tion during data processing, significantly boosting feature extraction capabilities. This
integration facilitates the derivation of the LP-YOLO(l) model.

• Optimized network pruning: The LP-YOLO(l) undergoes a strategic network prun-
ing process, followed by fine-tuning training, culminating in the LP-YOLO(s) model.
We implement weight pruning to halve the output channels of recurrent backbone
network modules, thereby reducing parameters and computational demands while
preserving essential weights. Moreover, by augmenting the repetition of select mod-
ules, we enhance feature extraction depth. For the network’s neck and head sections,
we streamline by pruning neurons and connections, thus advancing the network’s
efficiency, compactness, and operational performance. We compare the parameter
counts of the backbone and head before and after network pruning using the modi-
fied network. After pruning, the parameters of the backbone decrease from 702,013
to 251,457, a reduction of 64.2%. The head’s parameters decrease from 2,074,092 to
746,009, a reduction of 64.0%. Additionally, we find that the detect layer alone ac-
counts for 39.2% of the total parameters before pruning, and the reduction in this
layer contributes to 29.2% of the total parameter reduction. Therefore, reducing the
number of detection heads is necessary. On inference speed, network pruning also
produces significant effects. Consequently, LP-YOLO(s) nearly matches YOLOv8n,
with a minimal 0.8% mAP reduction, yet achieves a remarkable 70.2% reduction in
parameter volume.

2. Material and Methods

Given the extensive content in this section, Figure 1 provides a flowchart that outlines
all the steps of our approach.



Agriculture 2024, 14, 1420 4 of 24

Previous 
Work

Proposed 
Methodology

Experimental 
Design

Experimental 
Setup

Datasets

Experimental 
Environment

Yolov8

Lightweight 
Networking

Attention 
Mechanism

LP_Unit, 
LP_DownSample

Network 
Pruning and 

LP-YOLO 

Comparative 
Experiment

Ablation 
Experiment

Additional 
Experiments

Figure 1. Material and Methods part’s flow chart.

2.1. Experimental Setup
2.1.1. Datasets

For this study, we utilized the IP102 dataset, a comprehensive benchmark specifically
designed for pest identification tasks. The dataset includes 102 categories of pests, compris-
ing a total of 18,975 images that capture various developmental stages of pests, ranging
from larvae to adults within these categories. To ensure effective model training and evalu-
ation, the dataset was divided into distinct sets: 13,282 images for training, 1329 images
for validation, and 4364 images for testing. The allocation of these images is graphically
illustrated in Figure 2.

The IP102 dataset was obtained from https://github.com/xpwu95/IP102 (accessed on
19 August 2024), as initially described by Wu et al. in their paper on large-scale agricultural
pest detection [18]. The dataset is openly accessible under the terms of its license.

Figure 2 illustrates the distribution of images across different categories in the IP102
dataset. The X-axis represents various categories within the dataset, where each number cor-
responds to a specific class. The Y-axis shows the number of images contained within each
category. Notably, classes with a high number of images, such as Class 24 (aphids), Class
70 (blind bugs), and Class 101 (leafhoppers), have significantly larger datasets compared
to others. Conversely, classes with the fewest images, such as Class 59 (grape mealybug),
Class 60 (Colomerus vitis), and Class 75 (Phyllocoptes oleiverus ashmead), highlight the
challenges of class imbalance within the dataset.

The species number of the insect

Image quantity

209
168

254310

25
72125

72
108

64 27

146

34

206
57

183
150

6
22

77
8

2822 13
60 6523

140

Figure 2. IP102 dataset distribution.

2.1.2. Experimental Environment

The experimental environment was configured with Python 3.8.0 and PyTorch 1.12.1.
Computations were facilitated by a 3090 graphics card, operating under CUDA version 11.3.

During the training process of our proposed model, we employed early stopping as
the termination condition, monitoring the validation loss to avoid overfitting. Training was

https://github.com/xpwu95/IP102


Agriculture 2024, 14, 1420 5 of 24

set to run for a maximum of 500 epochs; however, it was terminated earlier if the validation
loss did not improve for 10 consecutive epochs. On average, the training process lasted
around 250 epochs. This approach ensured that the model was sufficiently trained while
preventing overfitting, allowing for a balanced evaluation of its performance.

2.2. Previous Work
2.2.1. YOLOv8

YOLO, an acronym for “You Only Look Once,” represents a paradigm shift in real-time
object detection within the domain of computer vision. By conceptualizing object detection
as a regression problem, YOLO obviates the necessity for traditional sliding window and
region proposal methodologies, thereby facilitating end-to-end model training. At the
heart of YOLO’s methodology is the division of the input image into a grid, within which
bounding boxes and class probabilities are predicted for each grid cell. This innovative
approach has not only accelerated detection speeds but also improved accuracy, rendering
YOLO applicable across a multitude of real-time contexts, including autonomous vehicular
navigation and surveillance systems. Through its iterative developments, YOLO has
continually enhanced its accuracy, detection velocity, and architectural sophistication,
thereby reaffirming its stature as a seminal algorithm in computer vision.

As the most recent iteration preceding YOLOv9, YOLOv8 augments its predecessors
by integrating several significant advancements and optimizations. It utilizes a more
complex network structure, Darknet-53 [19], to augment its feature extraction efficacy. Fur-
thermore, YOLOv8 integrates novel methodologies such as the Spatial Attention Module
(SAM) [20] and Path Aggregation Network (PAN) [21], aimed at refining detection precision
and minimizing false positives. Its adoption of multi-scale detection techniques allows for
the effective identification of objects across varying scales, thereby enhancing the model’s
robustness and adaptability to diverse object dimensions. YOLOv8 also introduces innova-
tive strategies to advance detection accuracy while preserving the algorithm’s hallmark
rapid processing capability. Key enhancements in YOLOv8 include an evolved network
architecture, optimized anchor box configurations, and sophisticated loss functions, all
contributing to its exceptional performance metrics. This iteration continues to extend
the frontiers of object detection technology, positioning it as an optimal solution for tasks
requiring real-time, efficient computing. YOLOv8 is disseminated in five distinct models,
n, s, m, l, and x, with each model representing a progressive increase in scale.

2.2.2. Lightweight Networking

Lightweight network architectures seek to balance the dual objectives of minimizing
scale and computational complexity with the imperative of preserving model efficacy.
Network pruning, an initial approach in this domain, strategically eliminates superfluous
parameters and connections to reduce model dimensions and enhance inferential effi-
ciency [22]. Despite its effectiveness in streamlining models, this method may inadvertently
compromise accuracy. Network pruning is a technique used to optimize deep learning
models by systematically removing redundant parameters and connections within the
network. The primary goal of pruning is to reduce the model’s size and computational
complexity while maintaining, or even improving, its performance. This process involves
identifying and eliminating weights that contribute minimally to the overall functionality
of the network, thereby streamlining the model.

The benefits of network pruning are significant: it can lead to faster inference times,
lower memory usage, and reduced energy consumption, making it especially valuable for
deploying models on resource-constrained devices such as mobile phones and embedded
systems. However, the pruning process must be carefully managed to avoid removing
critical parameters, which could degrade the model’s accuracy. When applied effectively,



Agriculture 2024, 14, 1420 6 of 24

network pruning can yield a more efficient model that performs comparably to its larger,
unpruned counterpart. The objective function for pruning can be expressed as:

Lprune = Ltask + λ
N

∑
i=1

∥wi∥ (1)

where Lprune represents the overall pruning loss, Ltask denotes the task-specific loss function
(e.g., classification or regression loss), λ is a regularization coefficient controlling the
pruning strength, N is the total number of weights in the network, and wi indicates the ith
weight in the network, with ∥wi∥ typically representing the L1 norm (absolute value) of
the weight wi, encouraging sparsity.

In contrast, knowledge distillation harnesses the insights of larger, more complex
teacher models to guide the training of more compact student models, aiming to curtail
resource consumption while safeguarding performance levels [23]. This technique is
beneficial for accelerating the education of student models and elevating their operational
performance; however, it bears the potential drawbacks of promoting overfitting and
escalating both training duration and computational demands.

The design of network architectures represents another pivotal avenue for achieving
lightweight models. Prolonged exploration in neural network structures has unveiled op-
portunities for crafting architectures that substantially reduce parameter counts and compu-
tational requisites. This exploration has given rise to several seminal lightweight networks,
including GhostNet [24], MobileNetV3 [25], EfficientDet [26], EfficientNetV2 [27], and
ShuffleNet [28]. In addition to these manually crafted architectures, Neural Architecture
Search (NAS) [29] offers an automated method for generating lightweight network designs.
This approach utilizes Neural Architecture Search without training, enhancing the effi-
ciency of the search process and reducing resource consumption. While NAS is recognized
for its ability to efficiently design high-performance models, this method is still typically
resource-intensive, and the resulting model structures may pose interpretative challenges.

In the present study, we initially apply the principles of network structure design to
devise the LP_Unit and LP_DownSample modules. By integrating these modules into
the existing framework, we derive the LP-YOLO(l) model, characterized by its reduced
footprint. Subsequently, employing network pruning techniques, we significantly diminish
network complexity, culminating in the development of the LP-YOLO(s) model.

To achieve a reduction in network complexity, we engineered the LP_Unit and
LP_DownSample modules by employing depthwise separable convolution and channel
shuffling techniques. Subsequently, the Efficient Channel and Spatial Attention (ECSA)
mechanism was devised, integrating both spatial and channel attention to enhance pro-
cessing efficiency. The integration of ECSA alongside the Convolutional Block Attention
Module (CBAM) within the LP_Unit and LP_DownSample modules ensured heightened
sensitivity to pivotal aspects of the input data, thereby augmenting detection precision.
In the final phase, network optimization was pursued through the application of weight
pruning and structured pruning techniques, aimed at refining the network’s architecture,
followed by meticulous fine-tuning during training. The ensuing sections delineate these
measures in detail.

2.2.3. Attention Mechanism

To augment the network’s ability to differentially prioritize pivotal information within
the input data, thereby attenuating the focus on non-critical details, we integrate two dis-
tinct attention mechanism modules: our proposed Efficient Channel and Spatial Attention
(ECSA) and the established Convolutional Block Attention Module (CBAM) [20]. Prior to
detailing these innovations, an overview of foundational attention mechanism modules,
characterized by their relatively simpler functionalities, is warranted.



Agriculture 2024, 14, 1420 7 of 24

The Convolutional Block Attention Module (CBAM) incorporates both channel and
spatial attention mechanisms. The channel attention mechanism is expressed as:

Mc(X) = σ(MLP(AvgPool(X)) + MLP(MaxPool(X))) (2)

The spatial attention mechanism is expressed as:

Ms(X) = σ( f 7×7([AvgPool(X); MaxPool(X)])) (3)

where X is the input feature map, σ denotes the sigmoid function, MLP represents a
Multi-Layer Perceptron, and f 7×7 indicates a convolution operation with a 7 × 7 kernel.
The Efficient Channel Attention (ECA) module, depicted in Figure 3, initiates with a
global average pooling operation applied to the input feature maps, transitioning their
dimensions from (N, C, H, W) to (N, C, 1, 1). This process facilitates the aggregation
of global contextual information, paralleling the operations inherent in the Squeeze-and-
Excitation (SE) attention mechanism. Subsequently, the module computes the dimensions
of the adaptive convolution kernel. This computation notably involves a 1D convolution
aimed at capturing the interdependencies among channels, with the convolution kernel’s
dimensions determined by the following formula:

k =

∣∣∣∣ log2(c)
γ

+
b
γ

∣∣∣∣ (4)

In the described methodology, where c represents the number of channels, and γ and
b serve as hyperparameters, the convolution kernel, derived from preceding calculations,
is strategically applied to the feature maps. This application aims to assign distinct weights
to each channel. Specifically, this allocation process is executed through element-wise
multiplication between each channel’s feature map and its corresponding weight, culmi-
nating in the generation of weighted feature maps. Subsequent to this step, the weighted
feature maps undergo a normalization procedure, which meticulously adjusts the weight
distribution across channels, thereby enhancing the model’s attention mechanism.

C C

H H

W W

 �

1 1 C 1 1 C

GAP !

 

k = 5

Adaptive Selection of

         Kernel Size:

            k = " (C)

: element-wise product

Figure 3. Diagram of ECA.

To augment the model’s ability to isolate and prioritize critical features within input
data, we integrate two principal attention mechanisms: the Channel Attention Module
(CAM) and the Spatial Attention Module (SAM), as part of the Convolutional Block At-
tention Module (CBAM). The CAM assigns weights to different channels of a feature map
based on their relevance, thereby emphasizing channels with informative content while
suppressing those deemed less pertinent. SAM, in contrast, focuses on identifying and
accentuating specific spatial locations within the feature map that are crucial for the task,
by computing attention weights that spotlight significant regions. This dual-attention strat-



Agriculture 2024, 14, 1420 8 of 24

egy ensures a comprehensive analysis of both channel and spatial information, significantly
enhancing the model’s feature extraction and classification capabilities.

Furthermore, we introduce the Efficient Channel and Spatial Attention (ECSA) mecha-
nism, which adeptly combines channel and spatial attentions. ECSA integrates Efficient
Channel Attention (ECA) with spatial attention (SA), allowing the network to simultane-
ously refine the focus on both channel and spatial dimensions. Unlike the CBAM, which
applies channel and spatial attention in sequence, ECSA performs both attention mech-
anisms in a unified process. This not only streamlines the attention mechanism but also
enhances computational efficiency by avoiding redundant operations. While SENet focuses
exclusively on channel attention, potentially missing spatial context, and the CBAM’s
sequential approach may introduce additional computational overhead, ECSA efficiently
balances channelwise recalibration with spatial refinement. This results in improved ac-
curacy and processing speed by directly addressing both types of information, achieving
more effective feature representation with reduced computational cost.

The inclusion of these attention mechanisms aligns with the design principles of
lightweight networks, prioritizing computational efficiency and minimal parameterization.
As depicted in Figure 4, the architecture of the ECSA and CBAM exemplifies this strategic
blend of attention-based analysis, ensuring that the network remains responsive to critical
feature cues within constrained resource parameters, thus achieving heightened accuracy in
detection tasks. To visually demonstrate the advantages of the CBAM attention mechanism
we used and our proposed ECSA, we conducted the following heatmap experiments.

Input Feature Refined Feature

Channel

Attention

  Module

Spatial

Attention

  Module

Input Feature Refined Feature

Efficient

 Channel

Attention

Spatial

Attention

  Module

Figure 4. Diagram of ECSA and CBAM.

2.3. Proposed Methodology
2.3.1. LP_Unit, LP_DownSample

To achieve a balance between lightweight network architecture and precision retention,
we developed two specialized modules: LP_Unit and LP_DownSample. These modules
were strategically devised to substitute the conventional C2f and Conv modules within the
original network’s backbone, incorporating depthwise separable convolution as a corner-
stone technology. Different from standard convolutional processes, depthwise separable
convolution disaggregates the convolutional operation into two distinct stages: depthwise
convolution and pointwise convolution. Initially, the input tensor undergoes feature extrac-
tion through depthwise convolution, followed by dimensionality reduction via pointwise
convolution. This bifurcation significantly diminishes both computational complexity and
parameter count, whilst preserving the model’s accuracy. A comparative illustration of
traditional convolution versus depthwise separable convolution is provided in Figure 5.



Agriculture 2024, 14, 1420 9 of 24

Traditional 

Convolution

Depthwise 

Convolution
Pointwise 

Convolution

Depthwise

Separable

Convolution

Figure 5. Contrast between traditional convolution and depthwise separable convolution.

Further augmenting our network’s efficiency and model’s representational capacity,
the channel shuffle operation interlaces feature maps across various layers, thereby en-
riching feature diversity and bolstering the model’s interpretability. This mechanism is
crucial for promoting feature integration, mitigating overfitting risks, and streamlining
model architecture. Executable through a straightforward linear transformation, channel
shuffle ensures computational efficiency. The conceptual foundation of channel shuffle is
depicted in Figure 6. In the channel shuffle operation, the feature map channels are shuffled
to improve computational efficiency. The shuffle operation can be expressed as:

Shuffle(X) = reshape(X, (N, g, C/g, H, W)) (5)

where X is the input feature map, N is the batch size, g is the number of groups, C is the
number of channels, H is the height, and W is the width of the feature map.

C
h

a
n

n
e

ls

Inputs GConv Channel Shuffle Outputs

Figure 6. Diagram of channel shuffle. GConv donates group convolution, which is a type of
convolution that divides the input channels into groups and applies convolution operations within
each group independently. This approach can reduce model complexity and improve computational
efficiency, making it suitable for efficient deep learning models.

In our design, the LP_Unit module, as illustrated in Figure 7, initiates with a channel
split operation on the input feature map. Subsequently, one split undergoes processing via
a 1 × 1 convolution layer, followed by a depthwise separable convolution (with a stride
of 1), before merging with the counterpart split. The initial 1 × 1 convolution serves to
diminish the channel count, thereby simplifying the ensuing depthwise separable convolu-
tion’s complexity. After merging, the consolidated feature map is subjected to an Efficient
Channel and Spatial Attention (ECSA) layer, aimed at accentuating pivotal information,
consequently enhancing the model’s accuracy. The process concludes with a channel shuffle
operation to foster enhanced inter-channel interaction, ensuring a comprehensive feature



Agriculture 2024, 14, 1420 10 of 24

representation. Implementing the LP_Unit in lieu of YOLOv8’s C2f module markedly
diminishes parameter volume while preserving, if not augmenting, performance efficacy.

Channel Split

1 1 Conv DWConv 1 1 Conv

Concat Channel ShuffleECSA

BN ReLU

BN ReLU BN

(stride=1)

Figure 7. Structure of LP_Unit. DWConv denotes depthwise convolution. It and the following 1 × 1
convolution together form the depthwise separable convolution.

Moreover, the LP_DownSample module, depicted in Figure 8, introduces an innova-
tive, lightweight downsampling approach intended to supplant the conventional Conv
layer within the YOLOv8 backbone. This module channels the input feature map into dual
pathways, bypassing the channel split. One pathway mirrors the LP_Unit’s convolution
branch, albeit with the depthwise separable convolution’s stride adjusted to 2. Concur-
rently, the alternate pathway executes a depthwise separable convolution, also with a stride
of 2. The amalgamation of outputs from both pathways undergoes further refinement
through the Convolutional Block Attention Module (CBAM) and a subsequent channel
shuffle operation, culminating in a feature map optimally poised for subsequent layers.

1 1 Conv DWConv 1 1 Conv

Concat Channel ShuffleCBAM

DWConv 1 1 Conv

BN ReLU

BN ReLU

BN ReLU

BN

BN

(stride=2)

(stride=2)

Figure 8. Structure of LP_DownSample. DWConv denotes depthwise convolution. It and the
following 1 × 1 convolution together form the depthwise separable convolution.

In our analysis, we compared the LP_Unit and LP_DownSample modules with clas-
sic lightweight networks such as MobileNet and ShuffleNet. Our modules incorporate
depthwise separable convolutions, a technique similar to that used in MobileNet, which
is effective in reducing computational complexity. Both MobileNet and our modules em-
ploy batch normalization and ReLU activations to enhance training stability. Additionally,
our LP_Unit integrates channel shuffle operations, akin to ShuffleNet, which improves
feature propagation across grouped convolutions. Beyond these similarities, our approach
introduces advanced attention mechanisms, specifically the CBAM and ECSA, which are
not part of the standard MobileNet or ShuffleNet architectures. These attention modules
significantly improve feature representation by focusing on crucial areas of the feature
maps. Moreover, our use of residual connections in LP_Unit and LP_DownSample mirrors
strategies from ResNet architectures, aiding in training deeper networks by addressing
gradient vanishing issues. The downsampling strategy in LP_DownSample, utilizing a
stride of 2, aligns with established techniques but is specifically optimized in our design
to balance computational efficiency and feature extraction. Overall, while our modules
share foundational elements with MobileNet and ShuffleNet, the incorporation of sophisti-
cated attention mechanisms and flexible group configurations distinguishes our approach,
offering notable advancements in lightweight neural network performance.

2.3.2. Network Pruning and LP-YOLO

In the quest to refine the YOLOv8 architecture for enhanced efficiency without com-
promising accuracy, we introduced the LP_Unit and LP_DownSample modules as strategic
replacements for the C2f and Conv modules within the YOLOv8 backbone, extending



Agriculture 2024, 14, 1420 11 of 24

this modification to certain elements of the network’s head as well. The resultant archi-
tecture, dubbed LP-YOLO(l), embodied our initial step towards a lightweight yet precise
detection model.

Subsequent efforts to diminish the network’s parameter footprint and streamline its
complexity led to the adoption of network pruning strategies. Specifically, weight pruning
was employed to reduce the output channels of LP_DownSample and LP_Unit—modules
recurrently featured in the backbone—by fifty percent. This reduction not only trimmed
the parameter count and computational demand but also eliminates less impactful weights.
Concurrently, we augmented the repetition of the LP_Unit module within the backbone to
enrich the network’s capacity for feature extraction, enabling nuanced detail capture across
varying spatial dimensions.

Furthermore, in addressing the network’s neck and head components, we prioritized
neuronal and junction pruning to alleviate the inherent complexity unsuitable for a stream-
lined network. This pruning simplified the interconnections within the neck and head,
reducing the number of detection heads from three to two, thus optimizing inference speed
and promoting network sparsity.

The pruned variant, designated as LP-YOLO(s), comprised five model sizes, n, s, m,
l, and x, categorized according to their dimensions and parameter counts. Comparative
visualizations of the YOLOv8n and LP-YOLO(s)n models, along with their respective
module output parameters, as shown in Figures 9 and 10, illustrate the streamlined structure
and reduced complexity of LP-YOLO(s)n, highlighting its lightweight design. Meanwhile,
detailed specifications for the intermediate variant, LP-YOLO(l), are outlined in Table 1.

Input

Images

Conv Conv C2f Conv Conv Conv SPPFC2f C2f

C2f

C2f

C2f

C2f

Concat

Concat

ConcatConcat

UpSample UpSamplee

ConvConv

Detect

20 20 512 0.25 240 40 512 0.2580 80 256 0.25

C2f

Conv Conv2d BatchNorm2d SiLU

Bottleneck Conv Conv +

SPPF

MaxPool2d

MaxPool2d

MaxPool2d Concat Conv

Conv

Conv Split Bottleneck Concat Conv

640 640 3

C2f

n = 2 n = 2

320 320

64 0.25

160 160

128 0.25

160 160

128 0.25

80 80

256 0.25

80 80

256 0.25

80 80

768 0.25

40 40

512 0.25

20 20

512 0.25 2

20 20

512 0.25 2

40 40

512 0.25 2

20 20

512 0.25 2

40 40

512 0.25 2

40 40

512 0.25

80 80

512 0.25

40 40

512 0.25

40 40

256 0.25

40 40

768 0.25

40 40

512 0.25

20 20

512 0.25

20 20

512 0.25 3

20 20 Output Size

32 0.25 Output Channels

Figure 9. The overall architecture of YOLOv8n, where n = 2 means that the module is repeated twice.

Input

Images

LP_D LP_U SPPF

C2f

C2f

Concat

Concat

UpSample

Detect

20 20 512 0.2540 40 256 0.25

C2f

Bottleneck Conv Conv +

SPPF

MaxPool2d

MaxPool2d

MaxPool2d Concat Conv

Conv

Conv Split Bottleneck Concat Conv

640 640 3

LP_D LP_D LP_D LP_DLP_U LP_U LP_U

n = 2 n = 2

LP_D

160 160 160 160 80 80 80 80 40 40 40 40 20 20 20 20 20 20

40 4040 40

20 20 20 20

320 320

32 0.25 64 0.25 64 0.25 128 0.25 128 0.25 256 0.25 256  0.25 512 0.25 512 0.25 512 0.25

768 0.25256 0.25

256 0.25 768 0.25

20 20 Output Size

32 0.25 Output Channels

Figure 10. The overall architecture of LP-YOLOn(s)n, where n = 2 means that the module is repeated
twice. Also, LP_U and LP_D refer to the LP_Unit shown in Figure 7 and the LP_DownSample shown
in Figure 8, respectively.



Agriculture 2024, 14, 1420 12 of 24

Contrary to our initial expectations, LP-YOLO(s)n exhibited suboptimal performance
during the training phase. This prompted an evaluation of potential remedial strategies,
including knowledge distillation and fine-tuning. Given the inherent challenges associated
with knowledge distillation—namely, the efficiency of knowledge transfer, operational
complexity, and computational expenditure—we opted for fine-tuning as the more viable
solution. Consequently, our approach entailed first training LP-YOLO(l), utilizing the resul-
tant weights as a foundation for fine-tuning LP-YOLO(s). This strategy culminated in the
pruned network achieving commendable convergence and enhanced performance metrics.

Table 1. Specification for the LP-YOLO(l).

Operator Output Size Projection From Output Channels n

Images 640 × 640 - - 3 -
LP_D 320 × 320 0 −1 64 × w 1
LP_D 160 × 160 1 −1 128 × w 1
LP_U 160 × 160 2 −1 128 × w 3 × d
LP_D 80 × 80 3 −1 256 × w 1
LP_U 80 × 80 4 −1 256 × w 6 × d
LP_D 40 × 40 5 −1 512 × w 1
LP_U 40 × 40 6 −1 512 × w 6 × d
LP_D 20 × 20 7 −1 512 × w × r 1
LP_U 20 × 20 8 −1 512 × w × r 3 × d
SPPF 20 × 20 9 −1 512 × w × r 1

Upsample 40 × 40 10 −1 512 × w × r 1
Concat 40 × 40 11 [−1, 6] 512 × w × (1 + r) 1

C2f 40 × 40 12 −1 512 × w 3 × d
Upsample 80 × 80 13 −1 512 × w 1

Concat 80 × 80 14 [−1, 4] 768 × w 1
C2f 80 × 80 15 −1 256 × w 3 × d

LP_D 40 × 40 16 −1 256 × w 1
Concat 40 × 40 17 [−1, 12] 768 × w 1

C2f 40 × 40 18 −1 512 × w 3 × d
LP_D 20 × 20 19 −1 512 × w 1

Concat 20 × 20 20 [−1, 9] 512 × w × (1 + r) 1
C2f 20 × 20 21 −1 512 × w × r 3 × d

Detect - 22 [15, 18, 21] - -

Illustrative of this developmental trajectory, Figure 11 delineates the entire process
from the initial adaptation of YOLOv8 towards the lightweight LP-YOLO configuration,
inclusive of network training phases.

YOLOv8 LP-YOLO(l) LP-YOLO(s)

Replace with LP_Unit 

and LP_DownSample
Network pruning

Train on IP102 dataset

Fine-tune 

using the 

weights 

obtained 

from trained 

LP-YOLO(l)

Figure 11. The whole process of lightweight YOLOv8 to obtain LP-YOLO and network training.

Table 2 delineates model performance after each major modification, vividly illustrat-
ing the changes in the model following each significant improvement.

Table 2. Model performance after each major modification.

mAP50(%) mAP50-95(%) Param/M FLOPs/G FPS Latency/ms

YOLOv8n 63.0 40.7 3.35 9.7 263.2 3.8
LP-YOLO(l)n 62.3 39.4 2.77 7.7 312.5 3.2
LP-YOLO(s)n 62.2 39.8 1.00 3.4 370.4 2.7



Agriculture 2024, 14, 1420 13 of 24

2.4. Experimental Design
2.4.1. Experimental Setup for Comparative Analysis

For alignment with mobile terminal device constraints and to streamline experimenta-
tion, we predominantly utilized the ‘n’ model size for both YOLOv8 and LP-YOLO frame-
works. To ascertain the efficacy and lightweight properties of the developed LP-YOLO
architecture, comparative analyses were conducted on the IP102 dataset, featuring LP-
YOLO(s), LP-YOLO(l), and other leading lightweight networks. The YOLOv8n’s backbone
was substituted with five notable lightweight architectures: GhostNet, MobileNetV3-Small,
MobileNetV3-Large, ShuffleNetV2-x1, and ShuffleNetV2-x2. This analysis also included
LP-YOLO(s)n and LP-YOLO(l)n, alongside the scaled-down iterations of the YOLO se-
ries, namely, YOLOv5n and YOLOv8n, ensuring uniform experimental conditions and
hyperparameter settings across all models.

In order to validate the efficacy of the newly developed LP-YOLO model for pest
detection, it was benchmarked against an array of leading object detection frameworks
within our experimental setup. This comparison included YOLOv5n, YOLOv8n, YOLOX-L,
Faster R-CNN, SSD300, and RetinaNet [30], selected for their relevance and performance in
state-of-the-art object detection tasks.

Additionally, we also trained, validated, and tested larger model sizes from the
YOLOv8 series and our LP-YOLO(s) series, specifically using YOLOv8m, YOLOv8l, LP-
YOLO(s)m, and LP-YOLO(s)l. This demonstrated that our lightweight strategy was equally
applicable across different model sizes.

2.4.2. Ablation Study Procedure

To delineate the impact of various enhancement techniques on detection efficacy, abla-
tion studies were conducted utilizing the IP102 dataset. The experimental configurations,
outlined in Table 3, encompassed five distinct improvement strategies. The incorporation of
LP_Unit and LP_DownSample was evaluated for their roles in substituting certain network
structures. Additionally, the utilization of ECSA and CBAM attention mechanisms was
examined for their integration at strategic model junctures. In scenarios devoid of LP_Unit
and LP_DownSample, the ECSA and CBAM mechanisms were appended to the C2f and
Conv modules, correspondingly. The foundational YOLOv8n model served as a baseline,
devoid of the aforementioned enhancement techniques. The LP-YOLO(s)n model, embody-
ing all five strategies, was juxtaposed against variants in the ablation framework. For clarity
and ease of analysis, a distinct nomenclature was assigned to the models engaged in these
ablation studies.

Table 3. Different improvement schemes.

LP_Unit LP_DownSample ECSA CBAM Pruning

YOLOv8n
YOLO-Unit ✓

YOLO-DownSample ✓
LP-no(l)n ✓ ✓

LP-ECSA(l)n ✓ ✓ ✓
LP-CBAM(l)n ✓ ✓ ✓
LP-YOLO(l)n ✓ ✓ ✓ ✓

LP-no(s)n ✓ ✓ ✓
LP-ECSA(s)n ✓ ✓ ✓ ✓
LP-CBAM(s)n ✓ ✓ ✓ ✓ ✓
LP-YOLO(s)n ✓ ✓ ✓ ✓ ✓

Note: The symbol “✓” indicates that the corresponding module is included in the model on the left.



Agriculture 2024, 14, 1420 14 of 24

2.4.3. Additional Experiments

Given our objective to enhance agricultural productivity through accurate pest de-
tection on mobile devices, we conducted additional experiments to further validate the
performance and robustness of LP-YOLO. We performed a visual comparison of heatmaps
generated by YOLOv8n, LP-YOLO(l)n, and LP-YOLO(s)n models to assess the impact of
our Efficient Channel and Spatial Attention (ECSA) mechanism and CBAM on feature
focus. Using Grad-CAM, we analyzed heatmaps from the IP102 dataset to compare how
these models prioritized relevant pest features. Additionally, we tested the robustness of
LP-YOLO(s)n by introducing various noise types, including Gaussian and salt-and-pepper
noise, into the input images, and evaluated the model’s performance by measuring changes
in mAP50, mAP50-95, and FPS. Finally, we applied LP-YOLO(s)n to real-world video data
captured in agricultural fields to validate its adaptability and effectiveness in uncontrolled
environments, ensuring its practical application in mobile-based pest detection.

3. Results and Discussion
3.1. Evaluation Indicators

In evaluating the efficacy of object detection models within the domain of deep learn-
ing, several performance metrics are pivotal: recall, precision, average precision (AP), mean
average precision (mAP), the total number of model parameters, floating-point operations
per second (FLOPs), frame rate (FPS), and response time (latency).

The mathematical formulations for precision, recall, AP, and mAP are delineated in
Equations (6)–(9). In these equations, TP (True Positives) represents the number of correctly
detected objects, FP (False Positives) refers to the number of incorrectly detected objects,
and FN (False Negatives) denotes the objects that were missed by the model. Average
precision (AP) is calculated as the area under the precision–recall curve (Equation (8)),
and mean average precision (mAP) is the mean of the AP values across all classes, providing
an overall measure of the model’s accuracy, as shown in Equation (9).

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

AP =
∫ 1

0
P(R)d(R) (8)

mAP =
1
N

N

∑
i=1

APi (9)

The assessment of lightweight object detection algorithms conventionally employs a
suite of critical metrics. Model complexity is gauged by the number of parameters, while
computational intensity is quantified through floating-point operations per second (FLOPs).
FPS measures the algorithm’s real-time processing capability, whereas latency delineates
the temporal delay from input reception to output generation, a factor of paramount
importance for systems requiring swift responsiveness.

3.2. Model Training and Fine-Tuning Process

As seen on the Figure 12a, LP-YOLO(l)n exhibited a stable decline in loss values during
training, approaching the minimum value, while mAP and other object detection metrics
steadily increased towards their maximum values. The training required approximately
250 epochs in total. The training processes of other models during the experiment were
similar to this. As shown in the Figure 12b, during the fine-tuning process of LP-YOLO(s)n,
the early stage of training exhibited a slight performance drop in mAP for LP-YOLO(s)n.
This initial decline could be attributed to the model’s adjustment period, where the pruned
model structure was adapting to the pre-trained weights. Even though the parameters were



Agriculture 2024, 14, 1420 15 of 24

consistent with those of the original, non-pruned model, the reduced complexity required
the model to recalibrate its internal representations. This phenomenon was particularly
evident in the early epochs. As the training progressed, typically up to around 250 epochs,
the model began to stabilize, and the performance improved steadily. The use of pre-trained
weights from LP-YOLO(l)n ensured that LP-YOLO(s)n could recover from the initial drop
and converge effectively, as evidenced by the smooth rise in mAP. The final result was
a model that, despite being significantly pruned, retained high accuracy with a reduced
parameter count and enhanced FPS.

(a) LP-YOLO(l)n training process (b) LP-YOLO(s)n fine-tuning training process

Figure 12. Decline curve of the model training loss and the change curve of the mAP of (a) LP-
YOLO(l)n and (b) LP-YOLO(s)n during training on the IP102 dataset (introduced in Section 2.1.1).
The “results” line shows the raw values per epoch, while the “smooth” line displays a smoothed
version to highlight overall trends.

3.3. Comparison and Ablation Results

Table 4 delineates the outcomes of the comparative experiments with other lightweight
networks, substantiating the LP-YOLO’s performance and lightweight attributes. Notably,
YOLOv8n and LP-YOLO(s)n exhibited parameter counts of 3,342,336 and 996,147, respec-
tively, indicating a 70.2% reduction in parameters for LP-YOLO(s)n relative to YOLOv8n.
When benchmarked against models employing MobileNetV3 and ShuffleNetV2 backbones,
our LP-YOLO(l)n and LP-YOLO(s)n variants not only exemplified enhanced lightweight
features but also maintained competitive mAP values, rendering them exceptionally suited
for mobile device applications. The analysis revealed LP-YOLO(l)n’s competitive edge
over other lightweight networks and LP-YOLO(s)n’s superior lightness after pruning,
without compromising mAP performance.

Table 4. Comparison of different lightweight networks.

Method Backbone mAP50(%) Param/M FLOPs/G FPS Latency/ms

YOLOv5n - 62.4 2.84 8.7 277.8 3.6
YOLOv8n - 63.0 3.34 9.6 263.2 3.8
YOLOv8n GhostNet 58.6 2.21 5.8 333.3 3.0
YOLOv8n MobileNetV3-L 61.5 2.37 6.2 333.3 3.0
YOLOv8n MobileNetV3-S 59.4 1.66 3.9 370.4 2.7
YOLOv8n ShuffleNetV2-x2 62.8 2.81 7.8 303.0 3.3
YOLOv8n ShuffleNetV2-x1 60.3 1.95 4.7 344.8 2.9

LP-YOLO(l)n - 62.3 2.77 7.7 312.5 3.2
LP-YOLO(s)n - 62.2 1.00 3.4 370.4 2.7

The outcomes of the comparative experiments with state-of-the-art object detect net-
works are encapsulated in Table 5. Upon evaluation, it was observed that, relative to the
previously lightest model, YOLOv5n, our LP-YOLO established a new benchmark for
model efficiency. Specifically, LP-YOLO(l)n exhibited a reduction of 0.25 million in parame-
ter count, 1.0 billion in floating-point operations (FLOPs), and a decrease of 0.4 ms in latency.
Building upon this foundation, LP-YOLO(s)n further advanced the lightweight design
initiated by LP-YOLO(l)n, achieving a 64.1% reduction in parameters alongside notable de-
creases in both FLOPs and latency metrics. Performance-wise, LP-YOLO(s)n demonstrated



Agriculture 2024, 14, 1420 16 of 24

superior mean average precision (mAP50) compared to Faster R-CNN, SSD300, and Reti-
naNet, while closely trailing YOLOv8n—the model with the highest mAP50 value—by
a marginal 0.8%. These comparative experiments unequivocally affirmed LP-YOLO’s
advantage as a highly efficient lightweight object detection model. In addition, the data
demonstrated that both LP-YOLO(s)m and LP-YOLO(s)l excelled in maintaining a strong
balance between accuracy and efficiency when compared to larger models like YOLOv8m
and YOLOv8l. Despite using significantly fewer parameters—7.54 M for LP-YOLO(s)m
and 17.15 M for LP-YOLO(s)l—these models achieved competitive mAP50 scores of 75.4%
and 77.1%, respectively. Moreover, both models delivered superior FPS and lower la-
tency, with LP-YOLO(s)m reaching 174.3 FPS and LP-YOLO(s)l achieving 123.2 FPS. This
performance underscored the effectiveness of our lightweight strategy, proving its suit-
ability across various model sizes while ensuring a high processing speed and reduced
computational load.

While these larger model sizes are indeed well suited for complex scenarios and
intensive tasks, it is also important to consider potential limitations. Although LP-YOLO(s)n
maintained competitive mAP values even with a significant reduction in parameters, there
may be edge cases where this reduction could negatively impact performance. For example,
in highly complex or densely populated scenes, the simplified model might struggle to
capture fine details, potentially leading to decreased detection accuracy or robustness
under certain conditions. Addressing these potential limitations and exploring strategies
to mitigate them could provide a more comprehensive understanding of the model’s
performance across diverse real-world applications.

Table 5. Comparison of different algorithms for object detection.

mAP50(%) Param/M FLOPs/G FPS Latency/ms

YOLOv8m 78.4 25.92 79.4 83.2 19.6
YOLOv8l 80.6 43.71 165.8 50.7 20.7

LP-YOLO(s)m 75.4 7.54 27.8 174.3 9.7
LP-YOLO(s)l 77.1 17.15 64.3 123.2 13.4

YOLOv5n 62.4 2.84 8.7 277.8 3.6
YOLOv8n 63.0 3.34 9.6 263.2 3.8
YOLOX-L 62.4 4.06 10.3 263.2 3.8

Faster-RCNN 54.9 12.01 23.5 88.5 11.3
SSD300 56.3 6.36 15.6 238.1 4.2

RetinaNet 59.6 9.79 17.2 138.9 7.2
LP-YOLO(l)n 62.3 2.77 7.7 312.5 3.2
LP-YOLO(s)n 62.2 1.00 3.4 370.4 2.7

The outcomes of the ablation experiments are encapsulated in Table 6. The analysis
revealed that the integration of ECSA and CBAM attention mechanisms significantly
augmented the mAP, with a minimal increase in parameter count, underscoring their
efficacy in enhancing detection accuracy. Conversely, LP_Unit and LP_DownSample were
identified as potent measures for ameliorating network complexity. Specifically, relative to
the base YOLOv8n model, implementations designated as YOLO-Unit and YOLO-Down
exhibited parameter reductions of 9.0% and 10.2%, respectively. Furthermore, the merits
of network pruning and fine-tuning training were corroborated. Notably, LP-YOLO(s)n,
in comparison to LP-YOLO(l)n, demonstrated a negligible decrement in mAP50 of 0.1%,
alongside a substantial reduction in parameters of 63.9% and an enhancement in FPS
of 15.6%.



Agriculture 2024, 14, 1420 17 of 24

Table 6. Ablation results of different methods.

mAP50(%) mAP50-95(%) Param/M FLOPs/G FPS Latency/ms

YOLOv8n 63.0 40.7 3.35 9.7 263.2 3.8
YOLO-Unit 62.5 40.2 3.04 7.9 277.8 3.6

YOLO-Down 62.2 40.8 3.00 8.4 285.7 3.5
LP-no(l)n 61.3 39.5 2.77 7.6 312.5 3.2

LP-ECSA(l)n 61.4 38.8 2.77 7.6 285.7 3.5
LP-CBAM(l)n 61.4 39.0 2.78 7.7 294.1 3.4
LP-YOLO(l)n 62.3 39.4 2.77 7.7 312.5 3.2

LP-no(s)n 61.2 38.5 0.99 3.3 344.8 2.9
LP-ECSA(s)n 61.7 39.0 1.00 3.3 357.1 2.8
LP-CBAM(s)n 62.0 39.2 0.99 3.4 370.4 2.7
LP-YOLO(s)n 62.2 39.8 1.00 3.4 370.4 2.7

3.4. Detection Results Visualization

This segment of the study illustrates the LP-YOLO model’s efficacy through visual
comparisons of prediction outcomes on the IP102 dataset. Notably, the LP-YOLO model
demonstrated commendable predictive performance. Figure 13 juxtaposes partial predic-
tion outcomes from YOLOv8n, LP-YOLO(l)n, and LP-YOLO(s)n against the ground truth
for several images, showcasing the model’s accuracy.

Labels YOLOv8n

LP-YOLO(l)n LP-YOLO(s)n

Figure 13. Pictures with labels and pictures of detection results.

However, instances of mismatches between predictions and actual labels were ob-
served, exemplified in Figure 14. An analysis into the causes of these discrepancies revealed
several contributing factors:

1. The color morphology of insects is similar to the background, which leads to the
recognition failure, among which (a) and (b) in Figure 14 are typical representatives.

2. Insects, as the object of target recognition, have certain particularity. Some in-
sects have great morphological changes during the growth process from larva to adult;
Phyllocnistis Citrella Stainton (c) in Figure 14 is such an insect.

3. There are large differences among some species of insects, such as the blister beetles
in Figure 14d.

We conducted detailed comparative experiments on YOLOv8n and LP-YOLO(s)n
using the IP102 dataset. By comparing the prediction results of these two models, we found
no significant differences in their overall performance, as both demonstrated high levels of
detection accuracy and stability. Figures 15 and 16 depict some sample detection results,
indicating that both YOLOv8n and LP-YOLO(s)n performed well in pest detection tasks.



Agriculture 2024, 14, 1420 18 of 24

However, LP-YOLO(s)n exhibited significantly fewer parameters and lower complexity
compared to YOLOv8n, highlighting the advantage of our proposed LP-YOLO model.

(c)                                          (d)

(a)                                          (b)

Figure 14. Examples of Prediction Failures Due to Insect and Background Similarity (a,b), Growth-
Stage Morphological Changes in Phyllocnistis citrella (c), and Species Differences in Blister Beetles (d).

Figure 15. Detection results on YOLOv8n.

Figure 16. Detection results on LP-YOLO(s)n.



Agriculture 2024, 14, 1420 19 of 24

3.5. Additional Experimental Validation of LP-YOLO
3.5.1. Visual Comparison of Heatmaps

In this experiment, we conducted a comparative analysis of heatmaps generated by
different models, including YOLOv8n, LP-YOLO(l)n, and LP-YOLO(s)n, to evaluate the
effectiveness of the Efficient Channel and Spatial Attention (ECSA) mechanism integrated
into LP-YOLO. We employed Grad-CAM to generate heatmaps for a set of images from
the IP102 dataset. As shown in Figure 17, these heatmaps visually represent the regions
within an image that the model deems important for making predictions. By comparing
these heatmaps across the three models, we aimed to determine the degree of focus each
model placed on the relevant features of the pests.

(a) Original Image (b) YOLOv8n (c) LP-YOLO(l)n (d) LP-YOLO(s)n

(e) Original Image (f) YOLOv8n (g) LP-YOLO(l)n (h) LP-YOLO(s)n

Figure 17. Comparison of heatmaps across two images. The first row displays the original image (left),
YOLOv8n heatmap (second), LP-YOLO(l)n heatmap (third), and LP-YOLO(s)n heatmap (fourth) for
the first image. The second row follows the same order for the second image.

The results showed that the heatmaps generated by LP-YOLO(l)n exhibited a signifi-
cant improvement in attention focus compared to the baseline YOLOv8n model. Specifically,
LP-YOLO(l)n demonstrated a more concentrated activation on the pest regions, whereas
YOLOv8n’s activations were more dispersed. While LP-YOLO(s)n was slightly less focused
than LP-YOLO(l)n, it still outperformed YOLOv8n, indicating that the ECSA mechanism
effectively enhances feature extraction, leading to more precise localization of pests. These
findings suggest that the integration of the ECSA mechanism in LP-YOLO(l)n substantially
improves the model’s ability to focus on critical regions, thereby enhancing its detection
performance and making it better suited for scenarios where accurate localization of small
objects, such as pests, is crucial.

3.5.2. Robustness to Noise

To assess the robustness of the LP-YOLO(s)n model, we introduced various types
of noise into the input images from the IP102 dataset and visually analyzed the model’s
performance under these degraded conditions. The noise types applied included Gaussian
noise with sigma values of 25 and 50, as well as salt-and-pepper noise with salt_prob and
pepper_prob set to 0.05 and 0.1, respectively. Figure 18 illustrates how these noise types
affect the appearance of the input images.



Agriculture 2024, 14, 1420 20 of 24

(a) (b) (c) (d) (e)

Figure 18. Images illustrating the impact of various types of noise: (a) original image, (b) Gaussian
noise with a variance of 25, (c) Gaussian noise with a variance of 50, (d) salt-and-pepper noise with
salt_prob and pepper_prob set to 0.05, and (e) salt-and-pepper noise with salt_prob and pepper_prob
set to 0.1.

Despite these visual degradations, the results presented in Table 7 demonstrate that
LP-YOLO(s)n maintained a relatively stable performance. Specifically, with Gaussian noise
(variance 25), the mAP50 dropped by only 1.2%, and with a variance of 50, the drop was
3.5%. For salt-and-pepper noise, the mAP50 decrease was 1.8% at the lower noise level and
8.8% at the higher level. These findings indicate that LP-YOLO(s)n is highly resilient to
various types of noise, with only a slight degradation in performance even under more
severe noise conditions. This robustness to noise, as quantified in Table 7, is a key advantage
for practical applications, where environmental factors may introduce noise into the input
data. The model’s ability to maintain high accuracy despite these challenges underscores
its reliability and makes it a valuable tool for pest detection in less-than-ideal conditions.

Table 7. Performance of LP-YOLO(s)n across different noise conditions.

Noise Type mAP50(%) mAP50-95(%) FPS

No noise 62.2 39.8 370.4
Gaussian noise (25) 61.0 38.6 370.2
Gaussian noise (50) 58.7 36.2 360.3
Salt-and-pepper noise (0.05) 60.4 36.8 364.9
Salt-and-pepper noise (0.1) 53.4 31.6 354.3

3.5.3. Real-World Application: Predicting Insect Pests in Field-Captured Videos

In the final experiment of our study, we assessed the effectiveness of the LP-YOLO
model in real-world agricultural environments by deploying it to detect and classify pests
in videos captured under actual field conditions. These videos, featuring a high density of
various pests, were processed using the LP-YOLO(s)n algorithm, segmented into frames
for a detailed analysis.

Figure 19 illustrates pest detection in a group setting. Across multiple frames, LP-
YOLO(s)n demonstrated robust detection capabilities, accurately identifying pests even
in densely populated scenarios. Despite the proximity and potential overlap of subjects
within these groups, the model assigned confidence scores that reflected high reliability in
distinguishing individual pests. This precision is crucial for accurately quantifying pest
populations, a key factor in effective pest management strategies.

Figure 19. Insects in a social state.



Agriculture 2024, 14, 1420 21 of 24

Figure 20 depicts pest detection during critical biological phases, such as reproduction
and molting. The model effectively recognized and classified pests through these stages,
with assigned confidence scores validating its ability to detect pests even when they
exhibited less distinct visual features. Understanding these dynamics is also vital for
targeted pest control interventions, particularly during vulnerable phases of the pest
life cycle.

Figure 20. Individual insects at important life stages.

In this uncontrolled outdoor environment, the performance of LP-YOLO(s)n was
consistent with observations made under controlled laboratory conditions, showcasing the
model’s adaptability to variable environmental factors such as changes in lighting, motion
blur, and complex backgrounds, and proving its robustness in field applications. This field
application of LP-YOLO(s)n highlights its practical applicability and effectiveness for pest
detection and classification in real-world agricultural settings. The model’s high detection
rate and consistent performance across different pest stages and groupings confirm its
suitability as a valuable tool in agricultural pest management. By facilitating accurate and
timely pest identification, LP-YOLO(s)n supports enhanced decision-making for pest con-
trol strategies, ultimately contributing to improved crop protection and yield. We provide
the generated video file with detection boxes, which can be accessed at https://drive.google.
com/file/d/1cJxPEKRlRTMJpBvGnoYVyGLsuPIhsM8g/view?usp=sharing (accessed on
21 August 2024).

3.6. Discussion

We experimentally demonstrated the superiority of our proposed model in terms of
accuracy and lightweight design. During the process of predicting images in the dataset
with the trained model and comparing these predictions with the actual labels, we ana-
lyzed potential reasons for prediction errors. Next, we plan to compare our model with
similar research results to comprehensively assess our model and address key issues in
pest detection.

First, we compared our model with studies that also utilized the IP102 dataset, such
as the work by Zhang et al. [14]. We were pleased to find that our model outperformed
theirs in both mAP and lightweight design. Our analysis revealed that part of our model’s
accuracy advantage was due to our use of the YOLOv8 base model, which was superior to
their YOLOX base model. Additionally, we applied fine-tuning during training, which they
did not. In terms of lightweight design, we developed a lightweight model and performed
network pruning, whereas their focus was not on model reduction. Nevertheless, their
research provided valuable insights. Their Cross-Layer Transformer significantly enhanced
the flow of information and accuracy, which could serve as a reference and improvement
for future work in this field. The model by Wei et al. [31], which was also based on the
IP102 dataset, achieved an mAP50 of 0.671, slightly higher than our 0.622. However, their
primary focus was on improving accuracy, so their model was naturally less optimized for
lightweight design compared to ours.

In Table 8, we compare the performance of LP-YOLO(s)n with other state-of-the-art
models, specifically CLT-YOLOX [14], AEC-YOLOv8n [31], and C3M-YOLO [32], which

https://drive.google.com/file/d/1cJxPEKRlRTMJpBvGnoYVyGLsuPIhsM8g/view?usp=sharing
https://drive.google.com/file/d/1cJxPEKRlRTMJpBvGnoYVyGLsuPIhsM8g/view?usp=sharing


Agriculture 2024, 14, 1420 22 of 24

have also been evaluated on the IP102 dataset. Notably, AEC-YOLOv8n achieves the
highest mAP50 at 67.1%, outperforming the other models in terms of detection accuracy.
However, LP-YOLO(s)n demonstrates a significant advantage in terms of model efficiency.
With a parameter count of just 1.00M, LP-YOLO(s)n is the most lightweight among the
compared models, resulting in an impressive FPS of 83.2, which is higher than that of
CLT-YOLOX and slightly lower than C3M-YOLO. This comparison highlights the trade-off
between detection accuracy and model efficiency, where LP-YOLO(s)n strikes a balance by
offering competitive accuracy while significantly reducing the computational burden.

Table 8. Performance comparison of LP-YOLO(s)n with other object detection models on the
IP102 dataset.

mAP50(%) Param/M FPS

CLT-YOLOX [14] 57.7 10.5 61.9
AEC-YOLOv8n [31] 67.1 7.8 -

C3M-YOLO [32] 57.2 7.1 97.0
LP-YOLO(s)n (ours) 62.2 1.00 83.2

Next, we compared our model with other studies in the pest detection field. For in-
stance, Sun et al. [33] used a dataset of 1810 images they collected. Our model’s parameter
count was less than half of theirs, showcasing superior lightweight characteristics, which
was a result of our proposed lightweight model and network pruning techniques. However,
their mAP50 metric reached 0.939, which was higher than our 0.622. This difference was
partly due to their proposed Universal Inverted Bottleneck (UIB) block, as well as the
dataset differences. Their dataset had fewer images and pest species, with backgrounds
consisting solely of spotted tomato leaves, making it easier to achieve a higher mAP.

Finally, we reviewed papers in the pest detection field that did not propose new
network models. For example, Guo et al. [34] summarized widely used public datasets for
pest detection and recognition and discussed various algorithms proposed in recent years.
That paper provided a comprehensive overview and outlook on pest detection, offering
valuable resources for researchers in the field. Additionally, the paper by Appiah et al. [35]
introduced a novel mobile application powered by AI models that provided real-time pest
and disease identification services. This was an excellent application-oriented work that
effectively aided practical production efforts.

4. Conclusions

This study introduced LP-YOLO, an innovative pest detection methodology optimized
for mobile platforms. To elevate detection capabilities, we integrated two sophisticated
attention mechanisms: ECSA and CBAM. Further advancing the network’s efficiency,
the LP_Unit and LP_DownSample modules were developed to streamline the network ar-
chitecture. Subsequent network pruning and meticulous fine-tuning were employed to sig-
nificantly curtail the parameter volume. Comparative analyses against existing lightweight
networks and diverse object detection algorithms, alongside methodical ablation studies,
underscored LP-YOLO’s enhanced performance metrics. Notably, LP-YOLO(s)n achieved a
minimal reduction in mAP of only 0.8% relative to YOLOv8n, while concurrently facilitating
a substantial 70.2% decrease in parameter count and a 40.7% improvement in FPS.

Additionally, we conducted experiments for a visual comparison of heatmaps to
compare our model’s focus on image features with other models, robustness to noise to test
the model’s robustness, and Predicting insect pests in field-captured videos to demonstrate
the model’s functionality and validate its applicability to real-world scenarios.

Looking ahead, we propose targeted avenues for deepening the research into deep
learning-based pest detection. Given the pronounced morphological variations exhibited by
insects throughout their life cycles and the considerable diversity within species, these factors
can potentially compromise detection accuracy. Consequently, future dataset compilation ef-



Agriculture 2024, 14, 1420 23 of 24

forts should meticulously encompass these variances, ensuring the inclusion of comprehensive
insect representations across all developmental stages and intra-species variations.

Author Contributions: Conceptualization, Y.Y. and H.W.; data curation, Y.Y., Q.Z., H.W. and K.L.;
methodology, Y.Y., Q.Z., J.L. and D.L.; validation, Y.Y., Q.Z. and D.L.; visualization, Y.Y., Q.Z., H.W.
and K.L.; writing—original draft, Y.Y., Q.Z. and H.W.; resources, K.L. and L.Z.; funding acquisition,
L.Z.; supervision, L.Z., J.L. and D.L.; writing—review and editing, K.L., L.Z., J.L. and D.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (61806024,
62206257), the Jilin Province Science and Technology Development Plan Key Research and Develop-
ment Project (20210204050YY), the Wuxi University Research Start-up Fund for Introduced Talents
(2023r004, 2023r006), the National Training Program of Innovation and Entrepreneurship for Under-
graduates (S202310698140), the Changchun Science and Technology Development Program (grant
number 21ZGN26), and the Jilin Province Science and Technology Development Program (grant
number 20230508026RC).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The IP102 dataset used to support the findings of this study was
deposited in the PRCV2019 repository (DOI: 10.1109/CVPR.2019.00899). All the data mentioned in
the paper are available through the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

2. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

3. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28. [CrossRef]

4. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings Part I 14; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 21–37.

5. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

6. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

7. Cui, L.; Ma, R.; Lv, P.; Jiang, X.; Gao, Z.; Zhou, B.; Xu, M. MDSSD: Multi-scale deconvolutional single shot detector for small
objects. arXiv 2018, arXiv:1805.07009.

8. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

9. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

10. Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. Yolov10: Real-time end-to-end object detection. arXiv 2024,
arXiv:2405.14458.

11. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

12. Srinivas, A.; Lin, T.Y.; Parmar, N.; Shlens, J.; Abbeel, P.; Vaswani, A. Bottleneck transformers for visual recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 16519–16529.

13. Chen, C.F.R.; Fan, Q.; Panda, R. Crossvit: Cross-attention multi-scale vision transformer for image classification. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 357–366.

14. Zhang, L.; Cui, H.; Sun, J.; Li, Z.; Wang, H.; Li, D. CLT-YOLOX: Improved YOLOX Based on Cross-Layer Transformer for Object
Detection Method Regarding Insect Pest. Agronomy 2023, 13, 2091. [CrossRef]

15. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.
16. Zhu, L.; Li, X.; Sun, H.; Han, Y. Research on CBF-YOLO detection model for common soybean pests in complex environment.

Comput. Electron. Agric. 2024, 216, 108515.

http://doi.org/10.48550/arXiv.1506.01497
http://dx.doi.org/10.3390/agronomy13082091


Agriculture 2024, 14, 1420 24 of 24

17. Xu, W.; Xu, T.; Thomasson, J.A.; Chen, W.; Karthikeyan, R.; Tian, G.; Shi, Y.; Ji, C.; Su, Q. A lightweight SSV2-YOLO based model
for detection of sugarcane aphids in unstructured natural environments. Comput. Electron. Agric. 2023, 211, 107961.

18. Wu, X.; Zhan, C.; Lai, Y.K.; Cheng, M.M.; Yang, J. IP102: A Large-Scale Benchmark Dataset for Insect Pest Recognition.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June
2019; pp. 8787–8796.

19. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
20. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.
21. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768.
22. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. Adv. Neural Inf. Process.

Syst. 2015, 28. [CrossRef]
23. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
24. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589.
25. Koonce, B. MobileNetV3. In Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization;

Apress: Berkeley, CA, USA, 2021; pp. 125–144.
26. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790.
27. Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. In Proceedings of the International Conference on Machine

Learning, PMLR, Virtual, 18–24 July 2021; pp. 10096–10106.
28. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856.

29. Mellor, J.; Turner, J.; Storkey, A.; Crowley, E.J. Neural architecture search without training. In Proceedings of the International
Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 7588–7598.

30. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

31. Wei, J.; Gong, H.; Li, S.; You, M.; Zhu, H.; Ni, L.; Luo, L.; Chen, M.; Chao, H.; Hu, J.; et al. Improving the Accuracy of Agricultural
Pest Identification: Application of AEC-YOLOv8n to Large-Scale Pest Datasets. Agronomy 2024, 14, 1640. [CrossRef]

32. Zhang, L.; Zhao, C.; Feng, Y.; Li, D. Pests Identification of IP102 by YOLOv5 Embedded with the Novel Lightweight Module.
Agronomy 2023, 13, 1583. [CrossRef]

33. Sun, H.; Nicholaus, I.T.; Fu, R.; Kang, D.K. YOLO-FMDI: A Lightweight YOLOv8 Focusing on a Multi-Scale Feature Diffusion
Interaction Neck for Tomato Pest and Disease Detection. Electronics 2024, 13, 2974. [CrossRef]

34. Guo, B.; Wang, J.; Guo, M.; Chen, M.; Chen, Y.; Miao, Y. Overview of Pest Detection and Recognition Algorithms. Electronics 2024,
13, 3008. [CrossRef]

35. Appiah, O.; Hackman, K.O.; Diallo, B.A.A.; Ogunjobi, K.O.; Diakalia, S.; Valentin, O.; Abdoul-Karim, D.; Dabire, G. PlanteSaine:
An Artificial Intelligence Empowered Mobile Application for Pests and Disease Management for Maize, Tomato, and Onion
Farmers in Burkina Faso. Agriculture 2024, 14, 1252. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.48550/arXiv.1506.02626
http://dx.doi.org/10.3390/agronomy14081640
http://dx.doi.org/10.3390/agronomy13061583
http://dx.doi.org/10.3390/electronics13152974
http://dx.doi.org/10.3390/electronics13153008
http://dx.doi.org/10.3390/agriculture14081252

	Introduction
	Material and Methods
	Experimental Setup
	Datasets
	Experimental Environment

	Previous Work
	YOLOv8
	 Lightweight Networking
	Attention Mechanism

	Proposed Methodology
	LP_Unit, LP_DownSample
	Network Pruning and LP-YOLO

	Experimental Design
	Experimental Setup for Comparative Analysis
	Ablation Study Procedure
	Additional Experiments


	Results and Discussion
	Evaluation Indicators
	Model Training and Fine-Tuning Process
	Comparison and Ablation Results
	Detection Results Visualization
	Additional Experimental Validation of LP-YOLO
	Visual Comparison of Heatmaps
	Robustness to Noise
	Real-World Application: Predicting Insect Pests in Field-Captured Videos

	Discussion

	Conclusions
	References

