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Abstract: The maturity grading of walnuts during harvesting relies on experience. In this paper,
walnut images in a natural environment were collected to construct a dataset, and deep learning
algorithms were utilized to combine walnut internal physical and chemical indicators to carry out
research on walnut maturity detection methods and further research on walnut oil content prediction
by combining walnut images with walnut oil content indicators. The main contents of this paper
include collecting walnut images in a natural environment, constructing datasets, and using deep
learning algorithms combined with internal physical and chemical indexes of walnuts to study walnut
maturity detection and oil content prediction methods. First, two walnut image acquisition schemes
were designed, and a total of 9504 images were collected from 23 August to 21 September 2021. The
dataset was expanded to 18,504 images through data preprocessing and image enhancement. A
self-supervised Gaussian attention network (GATCluster) walnut ripeness detection method based
on image clustering is proposed to develop ripeness criteria through unsupervised clustering, and the
accuracy of the criteria is verified by analysis of variance (ANOVA). The maturity detection accuracy
of the test set of 1500 images is 88.33%. Secondly, a walnut oil content prediction method based
on improved ResNet34 is proposed. The feature extraction capability is improved by introducing
the Squeeze-and-Excitation Networks (SENet) channel attention mechanism and the convolutional
self-attention module. The prediction results on 50 images show that the root mean square error,
average absolute percentage error, and regression coefficient are 2.96, 0.103, and 0.8822, respectively.
The experiments show that the method performs well in predicting the oil content of walnuts at
different maturity levels.

Keywords: walnut; maturity detection; oil content prediction; convolutional neural networks; GATCluster

1. Introduction

Walnuts, belonging to the genus Juglans in the family Juglandaceae, are one of the
world’s “four major nuts”. Currently, walnut oil in China is primarily extracted through
the physical pressing of walnuts after the green husks are removed [1]. The green husks
can be processed into cosmetics, and the entire walnut has high economic value, indicating
significant development potential for the walnut industry. However, the primary challenge
constraining the development of China’s walnut oil industry is the heavy reliance on
traditional experience for the harvesting process, which follows the solar terms. Therefore,
there is an urgent need for walnut maturity classification to guide frontline farmers in
harvesting, thereby improving the oil yield, quality, and production of walnut oil.

With the continuous improvement of computing power and the development of
deep learning, this idea has become feasible. Convolutional neural networks (CNNs),
as representative deep learning networks, have rapidly developed in recent years and
have demonstrated significant contributions in agriculture and forestry. For example,
Mohammadreza et al. proposed a cross-instance-guided contrastive clustering method
that considers cross-sample relationships to increase the number of positive pairs [2].
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Barburiceanu et al. developed an algorithm based on CNNSs to classify leaf diseases by ex-
tracting leaf vein features [3]. Additionally, Lin et al. designed an anchor-free convolutional
neural network for multi-class agricultural pest detection [4]. A multivariate prediction
model based on near-infrared spectroscopy was used to nondestructively assess the inter-
nal quality and ripeness of peaches by Minas et al. of Colorado State University, USA [5].
Sripaurya et al. of Prince of Songkhla University, Thailand, used a portable near-infrared
equipment device to compare the input data to a predetermined threshold corresponding
to the ripeness status of bananas, and by comparing the input data to the thresholds with
different levels of minima between the input data and the thresholds banana ripeness
detection was performed [6]. Khisanudin et al. (2020) from Ahmad Dahlan University
used an HSV color space model combined with a plain Bayesian classification algorithm
to identify dragon fruit ripeness with an average accuracy of 86.6% [7]. Syaifuddin (2020)
et al. (2020) from the State University of Yogyakarta, Indonesia, extracted palm phenotypic
features and built a fuzzy model to detect palm ripeness with an accuracy of 71.4% [8]. Guo
et al. study by comparing multispectral and hyperspectral imagery and multiple machine
learning methods [9]. Full hyperspectral spectra combined with random forest (RF) were
found to be the most accurate in predicting corn seed yield under high vegetation cover. as
well as the application prospect in the field of aerial remote sensing is also very great [10].

Furthermore, with the development of regression algorithms, they have been applied
not only in data mining and data analysis but also in fields such as agriculture and forestry,
biology, and mechanical engineering. For instance, Silva et al. proposed a method using ar-
tificial neural networks (ANNs) and regression models to model tree height and eucalyptus
volume yield in the agricultural and pastoral systems (AGP) of the Zona da Mata Mineira
region in Brazil, aiming to predict eucalyptus volume yield [11]. The experimental results
indicated that this method could be used for height and volume estimation of eucalyptus in
the AGP of the study area. Fiorentino et al. from the Polytechnic University of Marche, Italy,
proposed a framework including a region suggestion CNN for head localization and cen-
tering and a regression CNN for accurate depiction of HC [12]. Tang et al. from Vanderbilt
University, USA, proposed the BUSN algorithm for body part regression [13]. The method
requires no labeling and uses the prediction results as a supervised scheme to train the
model. Doan et al. from Sungkyunkwan University, South Korea, proposed a self-guided
ordered regression neural network (SONNet) that automatically and robustly performs
kernel segmentation and classification simultaneously [14]. He et al. at the University of
llinois, USA, proposed a method for designing a cascaded fully convolutional regression
network (C-FCRN) using a density regression model (DRM) and using an auxiliary con-
volutional neural network (AuxCNN) to assist in the training of the intermediate layer of
the C-FCRN, which is used to automatically count cells in microscope images, with better
results than traditional algorithms [15].

The recognition of walnut maturity characteristics shares significant similarities with
the above examples [16,17]. Therefore, the objective of this paper is to utilize and improve
CNN and regression algorithm-related technologies to address the current lack of specific
walnut maturity standards, which leads to indiscriminate harvesting during the harvest
period and consequently low oil yield. Taking Xiangling walnuts from Huanglong County,
Yan’an City, Shaanxi Province as the research subject, this study aims to investigate walnut
maturity detection and oil yield prediction. First, a deep clustering algorithm will be
used to cluster walnut images to establish walnut maturity standards [18]; then, variance
analysis will be conducted on the physical and chemical indicators of walnuts to verify the
maturity standards. Subsequently, the performance of the walnut maturity detection model
will be evaluated using the maturity standards. Finally, a regression algorithm based on
deep learning will be proposed to predict the walnut oil yield.
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2. Materials and Methods
2.1. Materials
2.1.1. Walnut Original Image Acquisition

Combined with the cultivation method of Xiangling walnuts and the specific growth
situation of Xiangling walnuts in Huanglong County, Yan’an City, Shaanxi Province, two
image acquisition schemes were formulated, one of which was to collect images of walnuts
in their natural hanging state, and the other to collect images of walnuts that needed to be
measured for internal quality parameters.

Walnut Image Acquisition Program I: (1) The image acquisition time was from
23 August to 21 September 2021, and the acquisition location was in Yan’an City, Shaanxi
Province, with the specific location at latitude 35°43’43"" N and longitude 109°53'50" E.
(2) After the fruit entered the ripening stage, we used a cell phone to take pictures, the cell
phone was parallel to the cut surface of the characteristic parts that can show the maturity
degree of the fruit, e.g., the fruit with a crack in the epidermis should be parallel to the cut
surface of the cracked part; the exposed fruit should be parallel to the cut surface of the
exposed part; and, if the fruit is intact, it will be parallel to the side of the fruit at any angle.
(3) We used this way of shooting every other day, each time from 8:00 a.m. to 11:00 a.m.
and 2:00 p.m. to 5:00 p.m., shooting 500 images per day.

Walnut Image Acquisition Program II: (1) In 21 May 2021, Xiangling walnuts entering
the fruiting period were manually marked, totaling 252 fruits at the same time; (2) fruit
entering the ripening period, from 23 August 2021 onwards, were photographed every
three days, each time 36 fruits were selected, marking the fruit number 1-36, in order to
capture the 36 fruits in the state of hanging branches and an image of walnuts on a white
board. (3) Shooting walnut images in the hanging state, the same method as in Program I.
(4) While shooting walnut images on a white board, we took walnuts in the order of their
serial number and placed them on the white board. We kept the walnuts in their natural
environment and photographed them with their cut side facing up on the white board. The
camera of the cell phone and the white board were in the horizontal position; the distance
between the camera and the walnuts was 10 cm; and the walnuts were placed in the same
position every time.

The collected walnut images were named by their photographed serial number
+ date + fruit state, and the images were stored in JPG format with a resolution of
3072 pixels x 4096 pixels. A total of 9504 images of the original walnut dataset were fi-
nally collected and stored in the archive according to their shooting date.

An example of walnut dataset images is shown in Figure 1.

Figure 1. Examples of walnut image.
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2.1.2. Construction of Walnut Maturity Detection Data Set

In order to improve the image diversity and generalization ability of the walnut
dataset, image processing is carried out in this paper. First, the image brightness is uni-
formly adjusted to avoid the brightness difference affecting the training effect. Second, the
adaptive histogram equalization (AHE) algorithm is used to enhance the image details
and improve the feature extraction ability. In addition, the image is rotated at different
angles by rotational transformation to increase the data diversity and improve the model
generalization ability. Pretzel noise is also added to randomly transform pixel points into
black and white pixels to suppress high-frequency features of the image, avoid overfitting,
and improve the accuracy and robustness of the model. Finally, the leaf segmentation
image is used to simulate masking and increase the number of masking images to im-
prove the feature extraction ability of the model for the presence of masked fruits. The
principle of masking is to incompletely mask the fruit maturity features and to provide
full coverage for severely masked fruits, retaining only the most intact walnuts. Through
the above processing, the walnut image dataset is optimized to provide a better basis for
model training.

The original dataset of 9504 images is expanded using image enhancement techniques.
We adopt image rotation to expand 3000 images, add pretzel noise to expand 3000 images,
and simulate occlusion to expand 3000 images. And the brightness and contrast of all
images are unified. Finally, the walnut ripeness detection dataset is established, which
consists of 18,504 images. The walnut images after image enhancement [19,20] are shown
in Figure 2.

Figure 2. Example of walnut maturity detection dataset.

After obtaining the dataset according to Walnut Image Acquisition Scheme I it was
divided into training and test sets. Among them, the training set is 16,752 sheets and the
test set A is 1500 sheets. Due to the maturity detection method proposed in this paper,
internal quality parameters of walnuts are required. Only then can the reasonableness
of the developed maturity standard be verified. Therefore, according to the acquisition
program II, the 252 walnut images collected in the hanging state constitute the test set B as
the walnut maturity standard validation data. The final test set totaled 1752 walnut images.
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2.1.3. Construction of the Walnut Oil Content Prediction Dataset

On 21 May 2021, 252 fruits of Xiangling walnuts sitting at the same time were manually
labeled when the fruits entered the fruit-sitting stage. After waiting for the fruit to enter the
ripening stage, 36 fruits were selected each time and labeled with fruit serial numbers 1-36.
36 images of walnuts with fruits in the hanging state and on the white board were taken in
sequence. Finally, 504 original walnut oil content prediction data sets were acquired. The
252 collected fruits were grouped by date. The walnuts collected on the same date were
divided into three groups by serial number for parameter measurement. The measurements
corresponded to the 504 walnut images in date and serial number order [21,22].

Afterwards, the dataset was expanded by scaling the image size, randomly rotating,
and adding noise. A total of 504 images corresponding to the oil content of 252 walnut
fruits were obtained for the walnut oil content prediction dataset. Among the 504 images,
100 walnut images with a uniform distribution of three maturity categories were selected
as the test set, and the remaining 404 images were used as the training set. The image of
the walnut oil content prediction dataset after the image enhancement process is shown in
Figure 3.

Figure 3. Walnut oil content prediction dataset.

The 404 images are among the original training set images. Image rotation expands
to these 1596 images. Adding salt and pepper noise further expands the 404 images. The
final training set has 2404 images, corresponding to the oil content of 202 walnuts. The test
set has 100 images, corresponding to the oil content of 50 walnuts. The walnut oil content
prediction dataset is thus completed. There are 2504 images in total.

2.2. Methods

This chapter consists of two parts: the detection method of walnut fruit maturity and
the design of the detection method of walnut fruit oil content. The next section will be an
introduction to the construction principles of the two methods.

2.2.1. Algorithm for Clustering Walnut Maturity

By characterizing the images in the dataset. As the walnut fruit’s green skin color
does not change significantly during the ripening period, the walnut fine cracks are not
obvious. So, there are high requirements for the model’s feature extraction ability. In this
paper, the deep clustering model GATCluster [23] is selected as a network to solve the
walnut ripeness clustering problem. The GATCluster model clustering process is shown in
Figure 4.
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Figure 4. GATCluster model clustering process. GP is the global pooling layer, FC is the fully
connected layer, and Conv is the convolutional layer. GATCluster attention feature module.

Walnuts have similar phenotypic features such as rind color, shape, and size. The
difference in phenotypic features of walnuts between similar maturity levels is small, so
the requirements for the model’s ability to extract features are more stringent. The task of
the attention module is to find the most discriminative local regions. It is loaded into the
model. The GATCluster attention feature module is shown in Figure 5.
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Figure 5. Attention feature module. Mul is the channel independent multiplication. “K(u, ®)” is the
Gaussian kernel function.

Taking the features extracted from ResNet34 as input, a fully connected layer is used
to estimate the parameter ®. The model focuses on discriminating localized regions by
multiplying each channel of the convolved features with the attention map. The GATClus-
ter [24] network locates discriminative localized regions by means of a two-dimensional
Gaussian kernel. The Gaussian kernel function K(u; ®) is shown in Equation (1).

K(u; @) = e~ a(i=m)TE-1u=p), O
x=1,..,Handy=1,... W,

where u = [x, y]T denotes the coordinate vector and ® = [y, £] denotes the parameters of
the Gaussian kernel, j1 = [y, py] " is the mean vector defining the most discriminative
position, & € R?*? is the covariance matrix defining the shape and size of the localized
region, « is a predefined hyperparameter, and H and W are the height and width of the
attention graph. The weighted features are mapped to the attention features using a global
pooling layer and a fully connected layer.

GATCluster uses a soft attentional loss function with the formula shown in Equation (2).

N 1 kK A? N A
La (lf/ li) = khzl_lihlog(lih> - (1 - lz'h) log(1—1¢)
1 Zh’ lz‘zh//zh/,

M
Zp = Z l]'h,]’l = 1,2,...,k
j=1

=1,...,k @)
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where [, is the output of the attention module, l;” is the feature label of the regression, and
zj, is the clustering assignment frequency to prevent null clustering from occurring.

In Equation (2) the feature label l;” encourages high scoring regions of the current
image and suppresses low scoring regions of the image, thus making /;” a more confident
version. With this operation, the image region that the attention module focuses on is
more salient to the image semantics and more discriminative compared to other regions of
the image.

(1) Algorithm for clustering walnut maturity

Since traditional algorithms are less effective at clustering images in natural environ-
ments, the GATCluster algorithm draws on a theorem introduced by DAC [25,26]. The
theorem suggests that clustering can be redefined as a binary classification problem. The
similarities and differences between two fruits are measured, and then it is determined
whether they belong to the same maturity level. For each fruit x;, the labeling feature
li = f(xj,w), where f(-,w) is a mapping function with parameter w. The parameter w
obtains the maturity result by minimizing the objective function. Based on the above
theory, GATCluster formulates the clustering problem as an optimization problem with
probabilistic and non-empty clustering constraints, as shown in Equation (3).

minE(w) = Zi,]- L(rij, G |l]]||2> - ijl li-1;,

s.t.Vi Hli”l:l,Oglihgl,h:L...,k (3)

N
Vhp, = %Zl Lip, - (nonemptycluster)
1=

where in the non-empty constraint p;, denotes the frequency of assigning N samples to the
h-th cluster.

The GATCluster algorithm ensures that the learned features are one-hot encoded
by the labeled feature theorem, where each bit represents a cluster, and all predefined K
clusters are non-empty [27]. The labeling feature theorem is shown in Equation (4).

Vi,j,li c Ek,ll' 7&1]<:>1’1] :O,Zi:l]'@)’rij =1,

(3] =k @

By combining the label feature theorem and the Gaussian attention mechanism phase
introduced above, Equation (3) can be expressed as Equation (5), which further optimizes
the representation of the clustering problem. The formula is shown in Equation (5).

N N
minE(w) = Z LR(VZ']', L, lj) + Z(“lLT(li) +aoLp(l;) +asLa(l;, 1)) (5)
i=1 i—1

where Lg and Lt correspond to the first and second terms in Equation (5), respectively. Lg
is the nonempty constraint satisfied, and L 4 is the loss function of the Gaussian attention
mechanism introduced above. a1, &y, and &3 are hyperparameters that balance different
loss weights. The clustering results are obtained by minimizing E(w).

2.2.2. Walnut Maturity Test Platform Setup

The walnut clustering algorithm for walnut ripeness based on GATCluster uses
16,752 walnut images with different ripeness levels from the training set in the walnut
ripeness detection dataset as the model training data. The experimental equipment is a
desktop computer with the system of Windows 10, and the hardware configuration of the
computer is shown in Table 1.

The training of walnut ripeness detection algorithm GATCluster was completed using
a Python 3.8.3-based Pytorch 1.7 platform. The learning rate was set to 0.001, momentum
was set to 0.9, batch size was 32, and weight decay was 0.0005 during the training of walnut
ripeness clustering algorithm of GATCluster.
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Table 1. Computer hardware configuration parameters.

Device Name Parameters
CPU Intel(R) Core(TM) i9-10900KF CPU @ 3.7 GHz
RAM 16 G
GPU NVIDIA GeForce RTX 3080 16 G
Solid state drive 1T
Mechanical drive 1T

2.2.3. Evaluation Mechanism for Walnut Maturity Criteria

This section is designed to evaluate the accuracy of the GATCluster deep clustering
algorithm for walnut maturity clustering criteria. The algorithm clustering results were
first utilized as a ripeness criterion to delineate the images of test set B. Afterwards, the
physicochemical indexes of walnut fruits embodying ripeness within the grouping were
measured and analyzed by ANOVA to prove whether there were significant differences.
From there, the reasonableness of the algorithm’s criteria is verified. Finally, the spe-
cific performance of the detection method is quantitatively evaluated in the direction of
four indicators: average precision, recall, F1 score, and accuracy [28].

(1) Determination of physical and chemical indicators of walnut maturity

The 252 fruits collected in Section 2.1.2 were grouped by date. The walnut fruits
collected on the same date were divided into three groups for parameter measurements in
serial number order and were used as control groups for each other. The walnut physical
traits and internal quality parameters to be measured were as follows: fruit transverse
diameter (mm), fruit longitudinal diameter (mm), fruit weight (with green skin, in g), nut
weight (g), protein content, water content, oil content, soluble sugar content, and crude
fat content.

(2) Results of validated clustering method for physical and chemical indexes of walnuts

Walnut fruits of different maturity categories differed in phenotypic characteristics,
but it remains to be tested whether there are differences in physicochemical indicators.
The images of test set B were clustered using the GATCluster clustering algorithm to
classify walnut ripeness into three categories. ANOVA was used to determine whether
there were significant differences in the physicochemical indexes of the three groups of
fruits as expected.

(3) Quantitative analysis for maturity detection

In this study, four evaluation indexes, including average precision (Prec, P), recall
(Rec, R), F1 score (F1-score, F1) and accuracy (Acc), were used to quantitatively evaluate
the walnut ripeness detection methods. The specific calculation formulas are as follows:

Prec = %, (6)
Rec = TPTTPFN' )
F= ®

ACC = ,?0 tTa”l ©)

where T, denotes the case where the model predicts a positive sample and the actual
sample is also positive; F, denotes the case where the model predicts a positive sample, but
the actual sample is negative; and Fy denotes the case where the model predicts a negative
sample, but the actual sample is positive. Total denotes the total number of data.
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2.2.4. Algorithm Design for Walnut Oil Content Prediction

Since the differences in walnut oil content among different maturity levels are mainly
manifested in the pericarp state, the phenotypic characteristics of walnut fruits at adjacent
maturity levels are extremely similar. Therefore, it is required that the model has a strong
feature extraction ability for color and crack [29].

And the residual structure of the ResNet34 network [30,31] has the characteristic of
maximizing the retention of image feature information. Therefore, the ResNet34 network
is chosen to be used as the base network and improved for the above problems. The
individual components of the algorithm are described next.

2.2.5. Channel Attention Mechanism

Since the model needs to solve the problem of similar phenotypic characteristics of
walnuts with similar maturity, the original feature extraction network of ResNet34 could
not meet the requirements of practical applications, so the feature extraction network was
improved. In this paper, a channel attention module (SENet) [32] is added after each
set of residual blocks of the original ResNet network. The feature correction uses global
information to enhance the useful feature information and dilute the useless features. The
workflow diagram of the SENet network is shown in Figure 6.

Figure 6. SENet module workflow diagram.

The first step of SENet is to compress the features of each channel as a descriptor for
that channel, using average pooling to average the features in the channel with the formula
shown in Equation (10).

1 H W .y
Ze = Fyg(uc) = mZizl ijl uc(i,j), (10)

where Z; denotes the c-th value of the compressed 1 x 1 x C, C is the number of channels,
H is the height of the image, W is the width of the image, and u. (i, ) is the value of the
c-th layer, the i-th row, and j-th column of the output of the previous layer transformation.

The second step of the excitation is to integrate the information of the 1 x 1 x C vectors
by using the structure of a fully connected layer, Relu activation function, and sigmoid [33].
The formula is shown in Equation (11).

Fex(z, W) = 0(g(z, W)) = c(W6(W;2)), (11)

where 0 refers to the Relu activation function, Wj refers to the first fully connected layer,
W refers to the second fully connected layer, z is the result after global average pooling,
and o refers to the sigmoid function.

2.2.6. Convolutional Self-Attention Module

Since the cracks in the skin of walnuts just transferred from Maturity i to Maturity
ii are not obvious, this places a high demand on the feature extraction capability of the
network. Therefore, the convolutional self-attention (Acmix) module [34] is added to the
original network to improve the performance.

For the convolution operation, it can be split into two steps: transformation and offset
aggregation. In the first stage, the input features are linearly projected with weights along a
certain position. In the second stage, the projected feature map is positionally transformed
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and aggregated. Its two-stage formulae are shown in Equations (12) and (13), and the
flowchart of convolution operation is shown in Figure 7.

gi(].’"”f) = kpafij (12)
k k
gl(] = Shlft(gzj ’p - |::| q— |:2:| )/gij = Zgl(jp’q)/ (13)
P4
Stage | Stage Il
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Figure 7. Convolution operation flow chart.

For the self-attention mechanism, self-attention allows the model to focus on more
important regions in a larger content space. The multi-head self-attention mechanism can
also be operated in two phases. Firstly, in the first stage, the query, key, and value vectors
are computed by a1 x 1 convolutional transform. In the second stage, the attention weights
are computed, and the aggregation of the value vector weight matrices is computed. Its two-
stage formula is shown in Equations (14) and (15), and the flowchart of the self-attention
mechanism is shown in Figure 8.

I I I
g =Wy fi k) =W £ 0l = Wi = will g, (14)
lﬁl
EONIC
8ij = |l (Za,beNk(i]’) A(qz(j)’ki!))Ugb)’ (15)

where |- | is the concatenation of the outputs of the N attentions; W(l), ngl), and Wé” are
the projection matrix of the query, key, and value vectors, respectively; Ni(i, j) denotes the

pixel-localized region of spatial extent k centered on (i, j); and A (’71(]) k(l)) refers to the

features in Nk(i, j).

Stage [ Stage Il

similarity matching

1 |
. ! } value
1 1 |
1 1 ]
1 Conv 1x1 @ i | WAﬁention
: ! | i
| I
| I
| I

Weights

Figure 8. Flow chart of self-attention mechanism.
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2.2.7. Walnut Oil Content Prediction Test Platform Setup

Different walnut oil content prediction algorithms based on improved ResNet34
used images from the walnut oil content prediction dataset as experimental data, and
the experimental machine was a desktop computer with the same configuration as in
Section 2.2.2.

The improved Residual Networks 34 (ResNet34) algorithm was implemented using the
Python 3.8.3-based Pytorch 1.7 platform. The learning rate was set to 0.001, the momentum
was set to 0.9, the batch size was 8, the weight decay was 0.0005, the discard ratio was 0.5,
and the momentum was 0.9 during the training process of the improved ResNet34.

2.2.8. Evaluation Indexes of Walnut Oil Content Prediction Algorithm

The root mean square error (RMSE), mean absolute percentage error (MAPE), and
coefficient of determination (R?) were used as the evaluation indexes for the testing process
of the algorithms for predicting the oil content of walnuts of different maturity [35,36].
RMSE is the square root of the difference between the sample and the mean value, and it is
then divided by the total number of samples. The smaller the value of RMSE, the higher
the accuracy of the model prediction. R? is expressed as the regression curve fitting R?,
which is the average of the absolute percentage errors of each sample. The smaller the value
of the average absolute percentage error, the better the model prediction. The root mean
square error, and the mean absolute percentage error, and the coefficient of determination
are shown in Equations (16)—(18).

RMSE = (16)
MAPE = (17)
L (-y)
RP=1-21 = (18)
i;w—w

where N represents the total sample size, y represents the true value, and y represents
the predicted value. RMSE is the root mean square error, MAPE is the mean absolute
percentage error, and R? is the coefficient of determination.

3. Results
3.1. Walnut Maturity Test Results
3.1.1. Walnut Maturity Clustering Results

The unsupervised clustering algorithm GATCluster is trained using 16,752 images of
different maturity levels in the training set. After the training was completed, GATCluster
classified the walnut images with different maturity levels into three categories: maturity
category one, maturity category two, and maturity category three. The phenotypic features
of walnuts in the three maturity categories were analyzed. Develop walnut maturity
criteria. The clustering result of the GATCluster algorithm is shown in Figure 9. The walnut
maturity criteria developed by the GATCluster algorithm are shown in Table 2.
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Maturity i [

Maturity ii

Figure 9. Maturity clustering results of GATCluster algorithm.

Table 2. Maturity classification and phenotypic characteristics.

Maturity Level Phenotypic Features Examples
Maturity i Dark green or green rind color
Maturity ii Peel color yellow-green, cracked at or

around the top of the fruit

Maturity iii Green rind cracked, nuts exposed

3.1.2. Results of the Validated Clustering Method for Physical and Chemical
Indexes of Walnut

Walnut fruits of different maturity categories differed in phenotypic characteristics,
but it remains to be tested whether there are differences in physicochemical indicators.
The GATCluster clustering algorithm was used to cluster the images corresponding to the
252 walnuts with measured physicochemical indexes in test set B, and the walnuts were
classified into three maturity categories. The clustering results were quantitatively analyzed
by internal quality parameters of walnuts measured by physicochemical experiments. An
analysis of variance (ANOVA) was performed using SPSS software to analyze the physical
traits and internal nutrient content of walnut fruits in the three categories of maturity.

Physicochemical experiments included measurement of fruit shape parameters and
extraction of walnut samples for nutrient compositional analysis.

Among the quality parameter classifications obtained by testing after the physico-
chemical experiments are shown in Table 3.

Table 3. Nutrient content of each maturity level.

. Maturity Level

Properties — . —

Maturity i Maturity ii Maturity iii
Oil content (58.574 +0.89) c (65.578 +1.687) a (64.727 +1.735) b
Water content (29.246 + 0.370) a (19.928 +4.615.) b (18.272 £ 2.781) ¢
Protein content (21.8154 +2.467) a (18.0+1.23) b (16.426 +0.404) ¢
Soluble sugar content (5.385 £ 0.979) a (3.545 £ 0.846) b (3.037 £ 1.077) c
Weight (44.350 + 1.167) ¢ (50.390 + 7.135) b (57.386 +0.834) a
Transverse diameter (41.689 £+ 5.097) a (43.149 4+ 4.069) a (44422 +4811)a

Longitudinal diameter (47.541 +4.763) a (48.704 + 1.159) a (49.192 + 1.657) a

The data in Table 3 are “mean = standard deviation”. Different lowercase letters after the data in the same column
indicate significant differences (p < 0.05). A different letter at the end of the data represents a significant difference,
while the same letter represents a non-significant difference.
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3.1.3. Walnut Ripeness Recognition Detection

The walnut maturity level developed in Section 3.1.2 was used as a criterion. Test the
unsupervised clustering algorithm trained in Section 3.1.1 on test set A. Ripeness detection
is performed using 1500 walnut images from test set A, which includes 500 images each of
ripeness category I, ripeness category II, and ripeness category III. The maturity recognition
results of some walnut fruit sample images are shown in Figure 10.

col— 8 0.0

Detection image Detection result ~ Detection image D‘eztexction result
Figure 10. Results of walnut maturity detection.

3.1.4. Quantitative Analysis for Maturity Detection

In this section, a total of 1500 images from test set A is used for cross-validation
and quantitative evaluation of the established improved GATCluster model. The results
obtained for the specific evaluation metrics are shown in Table 4.

Table 4. Quantitative evaluation results of walnut maturity detection.

Evaluation Indicators

Maturity Level
Prec Rec F1-Score Acc
Maturity i 92.18% 92% 92.09%
Maturity ii 82.69% 86% 84.31% 88.33%
Maturity iii 90.44% 87% 88.69%

3.2. Results of the Walnut Oil Content Prediction Algorithm

In order to verify the effectiveness of the improved ResNet34 model proposed in
this paper in predicting the oil content of walnut fruit images with different maturity
levels, 50 images from the test data were used for oil content prediction, and the improved
ResNet34 model was analyzed and evaluated from a quantitative point of view. Some of
the image prediction results are shown in Figure 11, and the model prediction scores are
shown in Table 5.

Figure 11. Detection results of the oil content prediction model for walnut fruits. Real values are in
red and predicted values are in blue.
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Table 5. Prediction score of oil content of the improved ResNet34.

Evaluation Indicators Result
MAPE 0.103
RMSE 2.96

R2 0.8822

4. Discussion
4.1. Evaluation of Walnut Ripeness Detection Algorithm Results

Quantitative evaluation of walnut ripeness detection results using a confusion matrix.
The smaller the sum of non-diagonal elements in the confusion matrix, the higher the
detection accuracy. As shown in the confusion matrix, among 1500 walnut images with
different maturity levels, 1325 were correctly detected and 175 were incorrectly detected.

In addition, false detection mainly occurs between neighboring maturity levels, such as
between Maturity i and Maturity ii and between Maturity ii and Maturity iii. For example,
among the walnut images in Maturity i, 40 were misidentified as Maturity ii; among the
walnut images in Maturity ii, 24 were misidentified as Maturity i and 46 were misidentified
as Maturity iii; and among the walnut images in Maturity iii, 15 were misidentified as
Maturity i and 50 were misidentified as Maturity ii. The reason for these misidentifications
is that the differences in phenotypic characteristics of walnuts during the maturity transition
are not obvious. The results of walnut maturity detection are presented in the form of a
confusion matrix, as shown in Figure 12.

Confusion matrix for discriminating walnut maturity

e 400
Maturity i

300

Maturity ii 4
I 200

Correct maturity category

r 100
Maturity iii

Maturity ii Maturity ii
Forecast maturity category

Maturity i

Figure 12. Confusion matrix diagram of walnut maturity detection.

The method can detect the maturity of walnut images with different maturity levels
with an overall accuracy of 88.33%, in which the recognition precision of maturity category
one is 92.18%, the recall is 92%, and the F1 score is 92.09%. The detection effect of Maturity
iii is slightly lower than that of Maturity i. The recognition precision, recall, and F1 score
are 90.44%, 87%, and 88.69%, respectively. Maturity i had the worst detection effect,
significantly lower than the other two maturity stages, with recognition precision, recall
and F1 scores of 82.69%, 86% and 84.31%, respectively. The reason that the recognition
precision of Maturity ii was lower than that of Maturity i and iii was that the walnut images
of Maturity ii were easily confused with those of Maturity i and maturity category III,
whereas the phenotypic characteristics of walnuts in Maturity i and iii were more different
and difficult to confuse. According to the walnut ripeness detection results in Table 5 and
Figure 10, it can be seen that the method in this paper can effectively detect the ripeness of
walnut fruits.
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4.2. Evaluation of the Results of Walnut Oil Content Detection Algorithm

As can be seen in Table 6, the mean absolute percentage error (MAPE) of the improved
ResNet34 model for predicting the oil content of 50 walnut images with different maturity
levels is 0.103, the root mean square error (RMSE) is 2.96, and the coefficient of determina-
tion (R?) is 0.8822. This indicates that the regression prediction of oil content of walnuts
with different maturity levels with the improved ResNet34 model has a low margin of error.
Therefore, it is proved that the model can accurately recognize the oil content of walnuts in
the state of hanging branches, which meets the needs of the production line.

Table 6. Prediction score of oil content of each model.

Models RMSE MAPE R?

ResNet34 8.576 0.186 0.62
ResNet34 + SeNet 4.989 0.144 0.754
ResNet34 + Acmix 5.965 0.162 0.696
ResNet34 + SeNet + Acmix 2.960 0.103 0.8822

4.2.1. Ablation Experiment

In order to verify the performance of the improved ResNet34 model, a total of four sets
of ablation experiments were set up with the original ResNet34 model, ResNet34 + SeNet
model, ResNet34 + Acmix model, and ResNet34 + SeNet + Acmix model, respectively,
and a total of 50 images of walnuts in the hanging state of the test data were subjected to
different maturity walnut oil content regression prediction. The four groups of models
were compared in terms of root mean square error, average absolute percentage error, and
coefficient of determination, and the four groups of ablation experiments are shown in
Table 6.

The experiments showed that after the SENet channel attention module and ACmix
module were introduced into the ResNet34 model separately, both of them showed the
effect of increasing the R? score and decreasing the RMSE score and MAPE. This indicates
that the SENet channel attention module effectively enhances the model’s ability to extract
phenotypic features, thus improving the regression accuracy.

When the channel attention SENet module and ACmix module are introduced into
the ResNet model at the same time, the R? score rises by 0.2622, and the RMSE score and
MAPE score decrease by 5.616 and 0.083, respectively. It is a better performance than the
introduction of one module alone. The results show that the improved ResNet34 model in
this paper can effectively predict the oil content of walnuts with different maturity levels.

4.2.2. Comparative Experiment

In order to verify the performance of the improved ResNet34 for the prediction of
the oil content of walnuts at different maturity levels, the improved ResNet34 network
is compared with the VGG series of networks (VGG16, VGG19) [37,38], ResNetl8, and
ResNet50 for the comparison experiments in this section. The four groups of comparative
models were used to predict the oil content regression of walnuts with different maturity
levels on 50 images of walnuts selected in the hanging branch state. The five groups
of models were compared on three evaluation indexes: root mean square error, average
absolute percentage error, and coefficient of determination. The five groups of comparison
experiments are shown in Table 7.

As can be seen from Table 7, the improved ResNet34 network proposed in this paper
achieves optimal results in terms of RMSE, MAPE, and R? scores. The lowest RMSE value
indicates that the gap between the predicted value and the real value of the improved
ResNet model proposed in this paper is the smallest; the R? value of 0.8822 indicates that
88.22% of the walnut images with different maturity can be predicted with the model for oil
content, and the score closest to one indicates that the fitting effect of the method proposed
in this paper is more accurate; the smaller the MAPE is, the better the model is; and the
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minimum MAPE score also proves that the improved ResNet34 model proposed in this
paper has a better regression effect compared with other models.

Table 7. Comparison test evaluation index score.

Models RMSE MAPE R2
ResNet18 9.234 0.237 0.6473
ResNet50 12.824 0.378 0.5357
Vggl6 9.587 0.203 0.6589
Vgg19 7.236 0.218 0.689
ResNet34 + SENet + Acmix 2.96 0.103 0.8822

5. Conclusions

In response to the lack of a walnut maturity standard in China’s walnut industry, this
paper proposes a walnut maturity detection method based on GATCluster and a walnut
oil content prediction method based on improved ResNet34, using datasets from real
production bases. The main results are as follows:

We constructed datasets for walnut maturity detection and walnut oil content predic-
tion using image enhancement techniques like rotation, contrast adjustment, and noise
addition. For maturity detection, a GATCluster-based method was used due to the subtle
changes in features like green skin color and fine cracks. The method achieved an 88.33%
accuracy on 1500 test images. For oil content prediction, an improved ResNet34 model
was designed for regression analysis. It predicted the oil content of walnut images with
different maturity levels, achieving an RMSE of 0.96, an MAPE of 0.0083, and an R? score
of 0.8822. Ablation and comparison experiments validated the method’s effectiveness.

In conclusion, a non-contact walnut fruit maturity and oil content prediction method
is proposed in this paper. It has been validated to achieve considerable accuracy, pos-
sesses good application value, and has a certain improvement on the current experience-
dependent predicament of walnut harvesting.

However, despite the progress made in the detection method in this paper, further
improvements are still needed. Future research will focus on the following aspects:

Dataset Enrichment: The current datasets are from the 2021 Shannon walnuts from
Huanglong County, Yan’an City, Shaanxi Province. To enhance robustness, walnut images
from consecutive years and varied climatic conditions are necessary. As well as attempting
to expand the training set of different varieties of walnut fruit. Attempts were made to use
other walnut varieties for training set expansion (e.g., Hanfeng walnut, Daixiang walnut)
to enhance the generalizability of the method across different varieties of walnuts, as well
as obtaining photos of walnuts obscured by leaves in natural situations to improve the
model’s recognition ability.

Comprehensive Feature Collection: Current studies use single-angle images, which
do not capture the complete phenotypic characteristics of the walnut. Utilizing panoramic
cameras to collect full-feature information about the walnut sphere will improve the
accuracy of maturity and oil content predictions.

Enrichment of shooting angles: when acquiring photos for this dataset, the walnut
fruit crack was intentionally placed in the center of the frame. The original intent was to
show more detail about the crack, but it may have led to the introduction of potential bias.
Subsequent shoots may consider acquiring more photos of walnuts at more natural angles
to increase the richness of the dataset.
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