A Simple Window Screen to Create Electric Discharges for Repelling and Exterminating Stable Flies and Houseflies in Cattle Barns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fly Species
2.2. Anesthetizing Adult Flies Using Carbon Dioxide (CO2)
2.3. Construction of the CADS
2.4. Determination of Optimal Voltages for Repelling and Spark-Exposing Flies Using a Closed-Box System
- flies that avoided entering the electric field of the CADS;
- flies that entered the electric field and were irradiated with sparks;
- flies that were bounced back to the bottom of the lower box and examined the survival of these flies.
2.5. Measurement of Electric Current in Anesthetized Flies Exposed to Sparks
2.6. Measurement of Ionic Wind, Negative Ion, and Ozone Generation in a Corona-Discharging Electric Field
2.7. Evaluation of Feasibility for CADS Installed on a Greenhouse Window
2.8. Statistical Analysis
3. Results
3.1. Evaluation of Fly Avoidance Behavior in Response to an Electric Field Using a CADS-Equipped Enclosure
- those successfully passing through the CADS and moving to the upper box;
- those avoiding the electric field of the CADS by remaining on the outer metal net surface or the wall and bottom of the lower box;
- those perishing after spark irradiation within the electric field;
- those being bounced back to the bottom of the lower box before entering the electric field.
3.2. Generation of Negative Ions, Ozone, and Ionic Wind by the CADS
3.3. Extermination of Flies Entering the CADS through Arc Discharge-Mediated Sparks
3.4. Practical Tasks Assigned to the CADS for Fly Control
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baldacchino, F.; Muenworn, V.; Desquesnes, M.; Desoli, F.; Charoenviriyaphap, T.; Duvallet, G. Transmission of pathogens by Stomoxys flies (Diptera, Muscidae): A review. Parasite 2013, 20, 26. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, L.; Ohbayashi, T.; Inokuma, H. Serum thymidine kinase activity as a useful marker for bovine leukosis. J. Vet. Diagn. Investig. 2019, 21, 871–874. [Google Scholar] [CrossRef]
- Machtinger, E.T.; Gerry, A.C.; Murillo, A.C.; Talley, J.L. Filth fly impacts to animal production in the united states and associated research and extension needs. J. Integr. Pest Manag. 2021, 12, 41. [Google Scholar] [CrossRef]
- Semelbauer, M.; Mangová, B.; Barta, M.; Kozánek, M. The factors influencing seasonal dynamics and spatial distribution of stable fly Stomoxys calcitrans (Diptera, Muscidae) within stables. Insects 2018, 9, 142. [Google Scholar] [CrossRef]
- Thomas, G.D.; Skoda, S.R.; Berkebile, D.R.; Campbell, J.B. Scheduled sanitation to reduce stable fly (Diptera: Muscidae) populations in beef cattle feedlots. J. Econ. Entomol. 1996, 89, 11–414. [Google Scholar] [CrossRef]
- Kohara, J.; Takeuchi, M.; Hirano, Y.; Sakurai, Y.; Takahashi, T. Vector control efficacy of fly nets on preventing bovine leukemia virus transmission. J. Vet. Med. Sci. 2018, 80, 1524–1527. [Google Scholar] [CrossRef]
- Lorn, S.; Klakankhai, W.; Nusen, P.; Sumarnrote, A.; Tainchum, K. Pyrethroid susceptibility in Stomoxys calcitrans and Stomoxys indicus (Diptera: Muscidae) collected from cattle farms in southern thailand. Insects 2022, 13, 711. [Google Scholar] [CrossRef] [PubMed]
- Sharif, S.; Liénard, E.; Duvallet, G.; Etienne, L.; Mongellaz, C.; Grisez, C.; Franc, M.; Bouhsira, E.; Jacquiet, P. Attractiveness and specificity of different polyethylene blue screens on Stomoxys calcitrans (Diptera: Muscidae). Insects 2020, 11, 575. [Google Scholar] [CrossRef]
- Barta, M.; Semelbauer, M.; Mangová, B.; Kozánek, M. Entomopathogenic fungi associated with Stomoxys calcitrans in Slovakia and efficacy of local fungal strains against the stable fly. Acta Fytotechnica Zootechny 2022, 25, 97–108. [Google Scholar] [CrossRef]
- Alam, M.J.; Zurek, L. Association of Escherichia coli O157:H7 with houseflies on a cattle farm. Appl. Environ. Microbiol. 2004, 70, 7578–7580. [Google Scholar] [CrossRef]
- Ahmad, A.; Nagaraja, T.G.; Zurek, L. Transmission of Escherichia coli O157:H7 to cattle by house flies. Prev. Vet. Med. 2007, 80, 74–81. [Google Scholar] [CrossRef]
- Russell, J.B.; Jarvis, G.N. Practical mechanisms for interrupting the oral-fecal lifecycle of Escherichia coli. Mol. Microbiol. Biotechnol. 2001, 3, 265–272. [Google Scholar]
- Mukherjee, A.; Cho, S.; Scheftel, J.; Jawahir, S.; Smith, K.; Diez-Gonzalez, F. Soil survival of Escherichia coli O157:H7 acquired by a child from garden soil recently fertilized with cattle manure. J. Appl. Microbiol. 2006, 101, 429–436. [Google Scholar] [CrossRef]
- Brandl, M.T. Plant lesions promote the rapid multiplication of Escherichia coli O157:H7 on postharvest lettuce. Appl. Environ. Microbiol. 2008, 74, 5285–5289. [Google Scholar] [CrossRef]
- Ibekwe, A.M.; Grieve, C.M.; Papiernik, S.K.; Yang, C.-H. Persistence of Escherichia coli O157:H7 on the rhizosphere and phyllosphere of lettuce. Lett. Appl. Microbiol. 2009, 49, 784–790. [Google Scholar] [CrossRef]
- Luo, Y.; He, Q.; McEvoy, J.L. Effect of storage temperature and duration on the behavior of Escherichia coli O157:H7 on packaged fresh-cut salad containing romaine and Iceberg lettuce. J. Food Sci. 2010, 75, M390–M397. [Google Scholar] [CrossRef]
- Petrikovszki, R.; Zalai, M.; Bogdányi, F.T.; Ferenc Tóth, F. The effect of organic mulching and irrigation on the weed species composition and the soil. Plants 2020, 9, 66. [Google Scholar] [CrossRef]
- Wang, K.; Sun, X.; Long, B.; Li, F.; Yang, C.; Chen, J.; Ma, C.; Xie, D.; Wei, Y. Green production of biodegradable mulch films for effective weed control. ACS Omega 2021, 6, 32327–33233. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Toyoda, H. A simple and safe electrostatic method for managing houseflies emerging from underground pupae. Agronomy 2023, 13, 310. [Google Scholar] [CrossRef]
- Matsuda, Y.; Takikawa, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. A simple electrostatic device for eliminating tobacco sidestream to prevent passive smoking. Instruments 2018, 2, 13. [Google Scholar] [CrossRef]
- Matsuda, Y.; Takikawa, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. Selective electrostatic eradication of Sitopholus oryzae nesting in stored rice. J. Food Technol. Preserv. 2018, 2, 15–20. [Google Scholar]
- Matsuda, Y.; Toyoda, H. Target-size-dependent application of electrostatic techniques for pest management in greenhouses. Agronomy 2023, 13, 125. [Google Scholar] [CrossRef]
- Kusakari, S.; Matsuda, Y.; Toyoda, H. Electrostatic insect repulsion, capture, and arc-discharge techniques for physical pest management in greenhouses. Agronomy 2023, 13, 23. [Google Scholar] [CrossRef]
- Chen, J.; Davidson, J.H. Ozone production in the negative DC corona: The dependence of discharge polarity. Plasma Chem. Plasma Process 2003, 23, 501–518. [Google Scholar] [CrossRef]
- Izumi, N.; Sajiki, J. Effects of bisphenol A (BPA) on sex ratio of a housefly. Bull. Public Health Lab. Chiba Prefect. 2003, 27, 14–17. [Google Scholar]
- Friesen, K.; Berkebile, D.R.; Zhu, J.J.; Taylor, D.B. Laboratory rearing of stable flies and other muscoid diptera. J. Vis. Exp. 2018, 138, 57341. [Google Scholar]
- Nilson, T.L.; Sinclair, B.J.; Roberts, S.P. The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster. J. Insect Physiol. 2006, 52, 1027–1033. [Google Scholar] [CrossRef]
- Griffith, W.T. Electrostatic phenomena. In The Physics of Everyday Phenomena, a Conceptual Introduction to Physics; Bruflodt, D., Loehr, B.S., Eds.; McGraw-Hill: New York, NY, USA, 2004; pp. 232–252. [Google Scholar]
- Francis, A.W. Ozone. In McGraw Hill Encyclopedia of Science & Technology; Geller, E., Moore, K., Eds.; McGraw-Hill: New York, NY, USA, 2022; pp. 664–666. [Google Scholar]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Kaiser, K.L. Air breakdown. In Electrostatic Discharge; Kaiser, K.L., Ed.; Taylor & Francis: New York, NY, USA, 2006; pp. 1–93. [Google Scholar]
- Hogan, C.J.; Lee, M.H.; Biswas, P. Capture of viral particles in soft X-ray-enhanced corona systems: Charge distribution and transport characteristics. Aerosol Sci. Technol. 2004, 38, 475–486. [Google Scholar] [CrossRef]
- Kettleson, E.M.; Ramaswami, B.; Hogan, C.J.; Lee, M.-H.; Statyukha, G.A.; Biswas, P.; Angenent, L.T. Airborne virus capture and inactivation by an electrostatic particle collector. Environ. Sci. Technol. 2009, 43, 5940–5946. [Google Scholar] [CrossRef]
- Kettleson, E.M.; Schriewer, J.M.; Buller, R.M.L.; Biswas, P.P. Soft X-ray enhanced electrostatic precipitation for protection against inhalable allergens, ultrafine particles, and microbial infections. Appl. Environ. Microbiol. 2013, 79, 1333–1341. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Nonomura, T.; Takikawa, Y.; Takami, T.; Toyoda, H. A simple electrostatic precipitator for trapping virus particles spread via droplet transmission. Int. J. Environ. Res. Public Health 2021, 18, 4934. [Google Scholar] [CrossRef]
- Li, C.S.; Wen, Y.M. Control effectiveness of electrostatic precipitation on airborne microorganisms. Aerosol Sci. Technol. 2003, 37, 933–938. [Google Scholar] [CrossRef]
- Lee, S.-A.; Willeke, K.; Mainelis, G.; Adhikari, A.; Wang, H.; Reponen, T.; Grinshpun, S.A. Assessment of electrical charge on airborne microorganisms by a new bioaerosol sampling method. J. Occup. Environ. Hyg. 2004, 1, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Nonomura, T.; Toyoda, H. Turkestan cockroaches avoid entering a static electric field upon perceiving an attractive force applied to antennae inserted into the field. Insects 2021, 12, 621. [Google Scholar] [CrossRef] [PubMed]
Category 1 | Flies | Voltage (kV) Applied | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 9.8 | ||
A | HF | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
GF | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
SF | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
B | HF | 0 | 86.7 ± 2.8 a | 87.8 ± 1.6 a | 98.6 ± 0.5 a | 99.3 ± 0.3 a | 100 a | 100 a | 100 a | 100 a | 100 a | 100 a |
GF | 0 | 87.1 ± 1.7 a | 88.6 ± 1.1 a | 98.9 ± 0.3 a | 99.6 ± 0.2 a | 100 a | 100 a | 100 a | 100 a | 100 a | 100 a | |
SF | 0 | 2.5 ± 1.3 b | 3.5 ± 0.8 b | 5.5 ± 0.9 b | 5.1 ± 1.8 b | 0 b | 0 b | 0 b | 0 b | 0 b | 0 b | |
C | HF | 0 | 13.3 ± 2.7 a | 12.2 ± 1.7 a | 1.4 ± 0.6 a | 0.7 ± 0.09 a | 0 a | 0 a | 0 | 0 | 0 | 0 |
GF | 0 | 13.8 ± 1.8 a | 11.4 ± 1.2 a | 1.2 ± 0.4 a | 0.4 ± 0.09 a | 0 a | 0 a | 0 | 0 | 0 | 0 | |
SF | 0 | 97.5 ± 1.2 b | 96.5 ± 0.8 b | 94.5 ± 0.9 b | 95.9 ± 1.8 b | 62.5 ± 2.5 b | 23.1 ± 1.5 b | 0 | 0 | 0 | 0 | |
D | HF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 a | 0 a | 0 a | 0 a |
GF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 a | 0 a | 0 a | 0 a | |
SF | 0 | 0 | 0 | 0 | 0 | 37.5 ± 2.6 a | 76.9 ± 1.5 a | 100 b | 100 b | 100 b | 100 b |
Voltage (kV) Applied | Categories 1 | |||
---|---|---|---|---|
A | B | C1 | C2 | |
0 | 96.6 ± 1.8 a | 0 a | 1.2 ± 0.3 a | 2.2 ± 0.5 a |
1 | 24.8 ± 1.2 b | 69.2 ± 0.8 b | 1.4 ± 0.6 a | 5.2 ± 0.7 a |
5 | 2.1 ± 0.7 c | 40.6 ± 1.2 c | 1.2 ± 0.2 a | 57.2 ± 4.5 b |
7 | 0 d | 0 a | 31.2 ± 0.8 b | 69.2 ± 7.8 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takikawa, Y.; Matsuda, Y.; Kakutani, K.; Sonoda, T.; Toyoda, H. A Simple Window Screen to Create Electric Discharges for Repelling and Exterminating Stable Flies and Houseflies in Cattle Barns. Agriculture 2024, 14, 1435. https://doi.org/10.3390/agriculture14091435
Takikawa Y, Matsuda Y, Kakutani K, Sonoda T, Toyoda H. A Simple Window Screen to Create Electric Discharges for Repelling and Exterminating Stable Flies and Houseflies in Cattle Barns. Agriculture. 2024; 14(9):1435. https://doi.org/10.3390/agriculture14091435
Chicago/Turabian StyleTakikawa, Yoshihiro, Yoshinori Matsuda, Koji Kakutani, Takahiro Sonoda, and Hideyoshi Toyoda. 2024. "A Simple Window Screen to Create Electric Discharges for Repelling and Exterminating Stable Flies and Houseflies in Cattle Barns" Agriculture 14, no. 9: 1435. https://doi.org/10.3390/agriculture14091435
APA StyleTakikawa, Y., Matsuda, Y., Kakutani, K., Sonoda, T., & Toyoda, H. (2024). A Simple Window Screen to Create Electric Discharges for Repelling and Exterminating Stable Flies and Houseflies in Cattle Barns. Agriculture, 14(9), 1435. https://doi.org/10.3390/agriculture14091435