
Citation: Wei, W.; Xiao, M.; Duan, W.;

Wang, H.; Zhu, Y.; Zhai, C.; Geng, G.

Research Progress on Autonomous

Operation Technology for

Agricultural Equipment in Large

Fields. Agriculture 2024, 14, 1473.

https://doi.org/10.3390/

agriculture14091473

Academic Editor: Lixia Hou

Received: 16 July 2024

Revised: 19 August 2024

Accepted: 27 August 2024

Published: 29 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Review

Research Progress on Autonomous Operation Technology for
Agricultural Equipment in Large Fields
Wenbo Wei 1 , Maohua Xiao 1,* , Weiwei Duan 1, Hui Wang 2, Yejun Zhu 1, Cheng Zhai 2 and Guosheng Geng 1

1 College of Engineering, Nanjing Agricultural University, Nanjing 210031, China;
wboclear@stu.njau.edu.cn (W.W.); 2024112031@stu.njau.edu.cn (W.D.); yjzhu@njau.edu.cn (Y.Z.);
gsgeng@njau.edu.cn (G.G.)

2 Weichai Lovol Intelligent Agricultural Technology Co., Ltd., Weifang 261206, China;
wanghui4@lovol.com (H.W.); zhaicheng@lovol.com (C.Z.)

* Correspondence: xiaomaohua@njau.edu.cn; Tel.: +86-13951756153

Abstract: Agriculture is a labor-intensive industry. However, with the demographic shift toward an
aging population, agriculture is increasingly confronted with a labor shortage. The technology for
autonomous operation of agricultural equipment in large fields can improve productivity and reduce
labor intensity, which can help alleviate the impact of population aging on agriculture. Nevertheless,
significant challenges persist in the practical application of this technology, particularly concerning
adaptability, operational precision, and efficiency. This review seeks to systematically explore the
advancements in unmanned agricultural operations, with a focus on onboard environmental sensing,
full-coverage path planning, and autonomous operational control technologies. Additionally, this
review discusses the challenges and future directions of key technologies for the autonomous opera-
tion of agricultural equipment in large fields. This review aspires to serve as a foundational reference
for the development of autonomous operation technologies for large-scale agricultural equipment.

Keywords: agricultural equipment; autonomous operation; environmental sensing; complete-
coverage path planning

1. Introduction

Agriculture is a typical labor-intensive industry that relies heavily on labor [1]. With
the aging of the population, the agriculture in countries where smallholder farming is the
prevalent form of agriculture has been severely affected. These effects are more severe
in countries such as China, where smallholder farmers predominate. Compared to 1990,
about 4 million hectares of cropland were abandoned in China in 2019 [2]. In the future, the
aging population in China is expected to accelerate further, necessitating urgent measures
to reduce agriculture’s heavy reliance on manual labor [3–5]. To cope with the status quo
of smallholder agriculture, new agricultural models have been encouraged by the Chinese
government, mainly including family farms, new rural cooperatives, and large-scale farms.
The new model is conducive to promoting modern agriculture towards an intelligent and
scaled agricultural production model [6,7]. The technology of autonomous operation of
agricultural equipment in large fields can be adapted to new modes of agricultural produc-
tion, which is an important method to improve productivity and reduce labor intensity, and
it helps to alleviate the impact of population aging on agricultural production [8–13]. The
key technologies for autonomous operation of large-scale agricultural equipment mainly
include onboard environmental sensing technology, complete-coverage path-planning
technology and autonomous operation control technology, as shown in Figure 1.
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Figure 1. Schematic diagram of the key technology for autonomous operation of agricultural equip-
ment in large fields. This figure illustrates the comprehensive workflow, from multi-sensor environ-
mental data acquisition to complete-coverage path planning, culminating in the autonomous oper-
ation of agricultural machinery. Collectively, these factors influence the overall effectiveness of au-
tonomous operations in large-scale agricultural machinery. 

Onboard environmental sensing technology is the primary condition for agricultural 
machines to achieve unmanned operations [14], and it is also the key to ensuring the safe 
and efficient operation of unmanned agricultural machines in complex and variable un-
structured farmland environments. Despite the remarkable advancements achieved in un-
manned farm machinery, its practical application continues to confront numerous chal-
lenges, stemming from the intricacies and variability of the farmland environment. For 
example, a single sensor is often utilized to gather environmental information during un-
manned operation processes such as cultivation, management, and harvesting [15]. How-
ever, a single sensor can only obtain one-sided information when sensing the environ-
ment, and there are problems, such as insufficient autonomous sensing ability and poor 
environmental adaptability. Agricultural machines equipped with multiple environment-
aware sensors have improved stability and reliability in unmanned operations, but the 
application of multi-sensor information fusion algorithms still faces challenges [16]. 
Hence, analyzing the data characteristics of sensors employed in environmental sensing 
technologies, while fully leveraging the redundancy and complementary aspects of multi-
sensor data, is crucial for developing stable and reliable environmental sensing systems. 

The key to realizing the unmanned operation of agricultural equipment lies in the 
complete-coverage path-planning technology. For different operational tasks and farm-
land environments, the goal is often to minimize operational costs and cover a wide range 
of operations [17]. Path-planning technology is employed to devise the optimal driving 
path for achieving efficient and precise farmland operations. Path-planning techniques 
are typically categorized into global path planning and local path planning [18,19]. Global 
path planning aims to plan the optimal path in the whole operation area to maximize the 
coverage and minimize the costs. Local path planning focuses on responding to real-time 
changes in the environment, ensuring that agricultural machinery can safely and effi-
ciently accomplish operational tasks in a dynamic environment. At this stage, the main 
problems faced by path-planning technology include operational efficiency, operational 
plot coverage, operational safety, and other aspects. Despite significant advancements in 

Figure 1. Schematic diagram of the key technology for autonomous operation of agricultural equip-
ment in large fields. This figure illustrates the comprehensive workflow, from multi-sensor envi-
ronmental data acquisition to complete-coverage path planning, culminating in the autonomous
operation of agricultural machinery. Collectively, these factors influence the overall effectiveness of
autonomous operations in large-scale agricultural machinery.

Onboard environmental sensing technology is the primary condition for agricultural
machines to achieve unmanned operations [14], and it is also the key to ensuring the
safe and efficient operation of unmanned agricultural machines in complex and variable
unstructured farmland environments. Despite the remarkable advancements achieved
in unmanned farm machinery, its practical application continues to confront numerous
challenges, stemming from the intricacies and variability of the farmland environment.
For example, a single sensor is often utilized to gather environmental information during
unmanned operation processes such as cultivation, management, and harvesting [15]. How-
ever, a single sensor can only obtain one-sided information when sensing the environment,
and there are problems, such as insufficient autonomous sensing ability and poor environ-
mental adaptability. Agricultural machines equipped with multiple environment-aware
sensors have improved stability and reliability in unmanned operations, but the application
of multi-sensor information fusion algorithms still faces challenges [16]. Hence, analyzing
the data characteristics of sensors employed in environmental sensing technologies, while
fully leveraging the redundancy and complementary aspects of multi-sensor data, is crucial
for developing stable and reliable environmental sensing systems.

The key to realizing the unmanned operation of agricultural equipment lies in the
complete-coverage path-planning technology. For different operational tasks and farmland
environments, the goal is often to minimize operational costs and cover a wide range
of operations [17]. Path-planning technology is employed to devise the optimal driving
path for achieving efficient and precise farmland operations. Path-planning techniques
are typically categorized into global path planning and local path planning [18,19]. Global
path planning aims to plan the optimal path in the whole operation area to maximize
the coverage and minimize the costs. Local path planning focuses on responding to real-
time changes in the environment, ensuring that agricultural machinery can safely and
efficiently accomplish operational tasks in a dynamic environment. At this stage, the main
problems faced by path-planning technology include operational efficiency, operational
plot coverage, operational safety, and other aspects. Despite significant advancements in
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path-planning technology, it still faces numerous challenges and requires further research
and improvement. Enhancing its adaptability to complex environments, real-time respon-
siveness, and multi-objective optimization is essential to meet the demands of modern
agricultural production.

Autonomous operation control technology is the core for enabling the unmanned
operation of agricultural equipment, encompassing two key aspects: motion control and
operational control [20–22]. Motion control primarily enhances path-tracking accuracy
through speed control and steering control. Operation control addresses the specific tasks
performed by agricultural machinery in various operations, such as seeding, fertilizing,
spraying, and harvesting [23,24]. Motion control and operation control technologies com-
plement each other to ensure that intelligent farm machinery can efficiently and accurately
complete operational tasks in the complex and changing farmland environment. In farm-
land environments, where there are errors in existence due to factors such as undulating
terrain and changes in soil type, it is frequently challenging for motion control method-
ologies to accurately adhere to a predetermined path. Moreover, operational control is
essential for enhancing the autonomous operational capabilities of agricultural machinery,
achieving fully unmanned operations, and advancing agriculture towards intelligence and
precision. Although some common control methods can mitigate motion control errors and
improve the intelligence of operational control, there is still a need for some better methods
to improve motion control and operational control effectiveness.

In conclusion, onboard environmental sensing technology, complete-coverage path-
planning technology, and autonomous operation control technology are the key technolo-
gies for the unmanned operation of agricultural equipment in large fields. This paper
focuses on analyzing the current research status of these three components. Currently,
numerous scholars have conducted extensive studies on these three components. However,
intelligent agricultural machines, designed for unmanned operations in large fields, are
rapidly advancing, but progress overall is uneven. This uneven progress hinders scholars
from accurately pinpointing the direction of key technology development in this field.
Therefore, it is crucial to systematically summarize the research progress on the key tech-
nology of unmanned field operations for large agricultural equipment. The main objective
of this paper is to review and analyze representative literature on the key technology of the
unmanned field operation of large-scale agricultural equipment, providing a reference for
the development of unmanned field operation technology for large agricultural machinery.

2. Onboard Environmental Sensing Technology

Onboard environmental sensing technology is primarily employed to address the
complexities and dynamic nature of the operational environment by utilizing localization
systems and sensory devices mounted on agricultural machinery. The operational state
of the machinery is then continuously adjusted in real time, informed by the data on the
terrain, obstacles, and other environmental factors [25,26]. Subsequently, the system swiftly
modifies the machine’s operational status in response to real-time data inputs. Compared
to onboard sensing tasks for road vehicles, farmland lacks distinctive structured features,
making it essential to create environment models of typical farmland elements using sensor
data for unmanned farm machinary operations. Key sensory elements in farmland comprise
information on farmland boundaries, crop rows, and obstacles within the farmland (as
illustrated in Figure 2). Currently, the onboard environmental sensing tasks of intelligent
agricultural equipment in unstructured farmland environments are mainly focused on
localization data acquisition, farmland boundary detection, navigation line extraction, and
obstacle detection [27–30]. The main methods are vision and radar detection, which are
committed to improving the robustness of the sensing system and enhancing the autopilot
and autonomous operation performance of the agricultural equipment.
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including GPS, BDS, GLONASS, and Galileo, rather than referring to a singular satellite 
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stations, encompassing both traditional and network RTK [37,38]. The RTK system, an 
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spatial data support for the implementation of precision agriculture [39]. In recent years, 
extensive research efforts have been undertaken by scholars to advance navigation and 
localization techniques grounded in GNSS technology. Yue et al. [40] designed an auto-
matic navigation system for a tracked orchard sprayer based on GNSS technology. The 
navigation operation accuracy was improved by compensating the effect of machine vi-
bration on the localization data. Kaivosoja et al. [41] developed a GNSS error simulator to 
simulate the positioning error and positioning reliability of GNSS in various typical agri-
cultural scenarios. Lee et al. [42] designed a dual antenna to receive localization infor-
mation so that the harvester can obtain the current direction even under stationary work-
ing conditions. Although RTK-GNSS achieves high positioning accuracy in open environ-
ments, farmland conditions are often complex and variable, with frequent challenges, 
such as signal occlusion, multipath effects, and environmental obstacles, which can com-
promise positioning accuracy [43–45]. Consequently, multi-sensor information fusion 
technology is being progressively integrated into agricultural machinery navigation, har-
nessing complementary advantages to enhance overall localization performance. Jing et 
al. [46] designed an automatic navigation grading system for GNSS/INS, which utilized 
adaptive square root Kalman filtering to fuse the data from GNSS and INS to improve the 
operational efficiency of grading machines. Li et al. [47] fused GNSS positioning equip-
ment and an inertial measurement unit based on a fuzzy adaptive finite impulse response 
Kalman filter algorithm to enable high positioning accuracy and the stability of agricul-
tural implements. Xu et al. [48] proposed a backpropagation neural network-based 
GNSS/INS/OD/NHC adaptive combined navigation method considering vehicle motion, 

Figure 2. Typical perceptual elements in farmland: (a) farm boundary; (b) ditch; (c) crop row;
(d) operating farm machinery; (e) stationary obstacle; (f) person.

The acquisition of precise positioning data is the fundamental prerequisite for en-
abling the navigation operations of agricultural machinery. The Global Navigation Satellite
System (GNSS) has emerged as a universally recognized and widely adopted technology
for tracking and positioning agricultural machinery, providing crucial data, such as head-
ing, speed, and time [31]. The GNSS encompasses multiple satellite positioning systems,
including GPS, BDS, GLONASS, and Galileo, rather than referring to a singular satellite
system [32,33]. While the GNSS can achieve positioning accuracy within a range of a few
meters to several meters in open environments, the autonomous navigation of agricultural
machinery demands centimeter-level precision, rendering typical GNSS accuracy insuffi-
cient for such applications [34–36]. Real-Time Kinematic (RTK) is a differential technique,
used for the real-time processing of carrier-phase observations from two measurement
stations, encompassing both traditional and network RTK [37,38]. The RTK system, an
enhancement technology built upon standard GNSS, significantly improves positioning
accuracy from meters to centimeters via differential algorithms, thereby offering essential
spatial data support for the implementation of precision agriculture [39]. In recent years,
extensive research efforts have been undertaken by scholars to advance navigation and
localization techniques grounded in GNSS technology. Yue et al. [40] designed an automatic
navigation system for a tracked orchard sprayer based on GNSS technology. The navigation
operation accuracy was improved by compensating the effect of machine vibration on
the localization data. Kaivosoja et al. [41] developed a GNSS error simulator to simulate
the positioning error and positioning reliability of GNSS in various typical agricultural
scenarios. Lee et al. [42] designed a dual antenna to receive localization information so
that the harvester can obtain the current direction even under stationary working condi-
tions. Although RTK-GNSS achieves high positioning accuracy in open environments,
farmland conditions are often complex and variable, with frequent challenges, such as
signal occlusion, multipath effects, and environmental obstacles, which can compromise
positioning accuracy [43–45]. Consequently, multi-sensor information fusion technology is
being progressively integrated into agricultural machinery navigation, harnessing comple-
mentary advantages to enhance overall localization performance. Jing et al. [46] designed
an automatic navigation grading system for GNSS/INS, which utilized adaptive square
root Kalman filtering to fuse the data from GNSS and INS to improve the operational
efficiency of grading machines. Li et al. [47] fused GNSS positioning equipment and an
inertial measurement unit based on a fuzzy adaptive finite impulse response Kalman filter
algorithm to enable high positioning accuracy and the stability of agricultural implements.
Xu et al. [48] proposed a backpropagation neural network-based GNSS/INS/OD/NHC
adaptive combined navigation method considering vehicle motion, which fully considered
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the relationship between forward speed, heading angular velocity, and lateral velocity.
A review of the literature reveals that multi-sensor fusion localization can leverage data
from additional sensors to ensure system stability and continuity in the event of sensor
failure. However, practical applications of multi-sensor fusion localization continue to face
challenges, including the complexity of data fusion algorithms and time synchronization
issues among sensors.

Field boundary detection and navigation line extraction are important foundations for
the autonomous operation capability of agricultural machinery. Currently, the methods
of farmland boundary detection by onboard sensing systems of agricultural machines
are mainly based on sensors such as mono/binocular vision and LiDAR. Hong et al. [48]
designed a field boundary recognition and ranging method based on a binocular vision
approach. Multi-feature fusion and split-tree algorithms were applied for cost calculation
and cost aggregation respectively. Using the multi-scale cost aggregation framework, the
linkage of matching costs at different scales was established to enhance the reliability in
weak texture regions. Then, the interference elimination method based on point-cloud conti-
nuity was designed according to land cultivation and crop growth. Adaptive extraction for
point-cloud boundary is realized, and accurate ridge boundary lines are identified, which
improves the stereo-matching accuracy and speed of farmland images. Wang et al. [49]
designed the detection method of non-regular headland boundary lines based on ma-
chine vision technology; this method provides a baseline for the automatic navigation
and turning of agricultural equipment at the boundary of the farmland to achieve the
whole autonomous navigation operation of agricultural machinery. Li et al. [50] proposed
a machine vision-based headland boundary detection method for paddy fields, which
introduced depth information, in addition to RGB images, to improve its detection accuracy.
A deep learning network combining a convolutional neural network and a recurrent neural
network was constructed for headland semantic segmentation. Meanwhile, an interactive
attention module is proposed to fuse the complementary information in RGB-D images
adaptively. In addition, the image preprocessing technique and the proposed distance-
based clustering algorithm for boundary points are applied to the headland segmentation
mask to obtain the boundary line of the farmland. This process provides technical support
for the automatic turning strategy of the agricultural machine. There often exists some
highly non-uniform vegetation at the field boundaries [51], which leads to difficulties in
extracting the field boundaries. Although the point-cloud data acquired by LiDAR at
the field boundary has irregular height characteristics, the data still have certain linear
characteristics [52–54]. Therefore, strengthening the linear features of the point-cloud
data becomes an important method for improving the accuracy of boundary extraction by
LiDAR sensors.

Navigational line extraction is also crucial for improving the autonomous operation of
agricultural machinery. Hou et al. [55] proposed a lightweight path recognition model based
on the U-Net model, which solves the problem of poor accuracy and real-time performance
of the method for recognizing navigation paths for fruits between ridges. The model
can also improve the real-time navigation and accuracy requirements. Gong et al. [56]
effectively extracted navigation lines based on the composite localization points of corn
and stems and solved the problem regarding the difficult extraction of navigation lines in
corn fields with weed interference. Diao et al. [57] proposed an algorithm for the extraction
of navigation lines of corn-spraying robots based on an improved YOLOv8s network. The
algorithm addressed the low accuracy of navigation line extraction for corn-spraying robots
in a complex farmland environment and improved the accuracy of the autopilot feature.
In addition, LiDAR is an important sensor for navigation line extraction. For example, it
can be used for crop row identification and navigation line extraction within regions of
interest in the LiDAR scanning area using the least squares method [58,59]. In addition,
Wang et al. [60] designed a navigation-line extraction method for an autonomous spraying
machine in an orchard based on LiDAR. Liu et al. [61] et al. proposed a tree row recognition
and navigation method based on the fusion of least squares and support vector machines.
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Using the least squares fitting method, combined with the SVM algorithm, to identify tree
rows, the centerline between rows in the orchard is predicted, which improves the accuracy
of the autonomous navigation of orchard equipment for the orchard environment.

Currently, farmland boundary detection and navigation line extraction are mostly
based on visual schemes, mainly image grayscale processing, image segmentation, navi-
gation line extraction, navigation line tracking, and other steps. The focus is on solving
the effect of natural illumination on the robustness of the detection system. The commonly
used methods for farmland boundary and navigation line extraction research are shown in
Table 1.

Table 1. Characterization and application of commonly used sensors for field boundary and naviga-
tion line extraction.

Method Sensor Type Characteristics Sensing Task

Vision Sensors

Monocular Camera
Monocular cameras are low cost and provide rich

image information, but lack depth data and are
susceptible to environmental influences.

Farmland boundary detection,
navigation line extraction

Binocular Camera

Binocular cameras can provide rich image information
and highly reliable depth information, but the

configuration and calibration are more complicated;
the computation is large, and parallax calculation

depends on computing resources.

Farmland boundary detection,
navigation line extraction

RGB-D Camera

RGB-D camera can provide an RGB map and a depth
map, and the calculation amount is small. However,
the measurement range is narrow, the noise level is

high, the field of view is small, and it is easily
interfered with by daylight.

Farmland boundary detection

Radar Sensor Lidar

LIDAR is highly accurate, stable, and reliable.
However, it has a high cost, is susceptible to dust
interference with the limited detection range, and

cannot recognize color and texture in farmland
boundary identification and navigation line extraction.

Navigation line extraction

Obstacle detection is an important method to improve the level of autonomous opera-
tion of farm machinery in large fields and to ensure safe operation. Currently, the research
on field obstacle detection based on the onboard sensing system of agricultural machinery
mainly includes methods based on vision detection, LiDAR detection, millimeter-wave
radar detection, and multi-sensor fusion detection [62], as shown in Figure 3.

In terms of visual detection, Li et al. [63] proposed a method based on a deep neural
network to detect obstacles such as people, concrete pillars, and utility poles in the orchard
environment. Their method can provide a basis for intelligent orchard robots to detect
obstacles automatically and distinguish traversable and non-traversable areas for obstacle
avoidance. Furthermore, Xue et al. [64] improved the YOLOv5s algorithm based on the
k-means clustering algorithm and CIoU loss function to improve the detection speed
of obstacles in farmlands. The algorithm also has reliable detection accuracy for small-
target obstacles. Xu et al. [65] detected moving obstacles in panoramic images based on
panoramic camera vision and the Lucas–Kanade optical flow algorithm. This method
has good transient and detection results for dynamic obstacle detection. Du et al. [66]
introduced spatial attention and deformable convolution into the Mask R-CNN model
to construct a segmentation algorithm for unstructured farmland obstacles. The model
can control the detection speed while still maintaining a reliable model detection accuracy.
Deep learning models perform well in image processing and feature extraction. Deep
learning methods have become some of the most widely used techniques in visual obstacle
detection. Representative research methods mainly include YOLO, Faster R-CNN, U-
Net, and RetinaNet. Deep learning models can automatically learn and extract complex
features in images, greatly improving the accuracy and robustness of obstacle detection.
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The commonly used camera types and features when using deep learning methods for
obstacle detection are shown in Table 2.
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Table 2. Deep learning of camera types and characteristics commonly used in obstacle detection.

Camera Type Features Advantages Common Cameras

RGB Cameras

A standard color camera that
captures images in the red,

green, and blue color
channels.

RGB cameras provide rich color and texture
information that helps distinguish between

different types of obstacles, are low cost, and
are easy to integrate and deploy.

Logitech C920, Sony Alpha
Series (Logitech, Lausanne,

Switzerland)

Depth Camera
In addition to capturing RGB
images, it also acquires depth

information for each pixel.

Combining depth information and RGB
images improves the accuracy and reliability
of obstacle detection, providing more precise
obstacle localization, especially in complex

environments.

Intel RealSense (Intel, Santa
Clara, CA, USA), Microsoft
Kinect 360 (Microsoft 360,

Washington, DC, USA)

Stereo Camera

Captures stereo images
through two cameras and uses

parallax to calculate depth
information.

Provides high-precision depth perception for
fine obstacle detection tasks and is more

reliable than a single depth camera in terms
of detection accuracy and range.

ZED Series (ZED Series, San
Francisco, America),

Bumblebee2 (Teledyne FLIR,
Washington, DC, USA)

Panoramic
Camera

Capable of capturing images
or videos with a 360-degree

field of view.

In obstacle detection, it provides a
comprehensive view of the environment,

reduces blind spots, and improves the
coverage and accuracy of obstacle detection.

Ricoh Theta (RICOH, Tōkyō,
Japan), Insta360 Pro (insta360,

Shenzhen, China)

In terms of obstacle detection by LiDAR and millimeter-wave radar, Shang et al. [67]
proposed a 3D laser point-cloud method for detecting field obstacles based on Euclidean
clustering. First, the voxel down-sampling method and RANSAC algorithm are utilized to
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filter the point cloud and differentiate between ground and above-ground objects. Then,
the obstacles are recognized based on the Euclidean clustering frame of the K-D tree, which
achieves the detection of agricultural implements, haystacks, field ridges, short houses,
and trees on both sides of the field road. T. Wang et al. [68] proposed an adaptive method
for the real-time 3D detection of obstacles for a single sub-domain based on the semantic–
geometric–intensity fusion strategy. The inaccurate 3D detection of obstacles in the absence
of many samples is addressed, and the experimental results demonstrate the high accuracy
and efficiency of the proposed method in performing obstacle detection. Using a millimeter-
wave radar for farmland obstacle detection has the problem of high computation because of
the presence of many invalid targets in the output data. Therefore, Xue et al. [69] addressed
this issue by filtering out empty targets, pseudo-targets, and non-threatening data based
on the invalid target filtering method. The above literature uses LiDAR or millimeter-wave
radar as the detection sensor, which achieves better detection results. However, there is
still the problem of high computation, which leads to low detection efficiency and is not
easy to deploy.

Vision-based methods for obstacle detection are low cost and have advantages in
measuring object height and width, as well as in recognition accuracy. They can also
provide rich planar information. However, the role of vision distance and ranging accuracy
in these methods are not as good as those in a millimeter-wave radar. Moreover, these
methods are easily affected by light and weather [70]. LiDAR can obtain accurate position
data while not being affected by light conditions. However, when a large amount of dust
exists in the farmland environment, features such as shape and texture information of the
obstacles are more difficult to obtain. Single sensors are still deficient in terms of reliability,
robustness, and accuracy in obstacle detection. Multi-sensor information fusion methods
for obstacle detection synthesize heterogeneous information from different sensors and
have their respective advantages. Hence, applying these methods has become the main
trend in obstacle detection. Lv et al. [71] designed a decision-level fusion algorithm by
combining the advantages of millimeter-wave radar in range and speed measurement and
the advantages of the camera in type recognition and lateral localization. After calibrating
the outer parameters of the millimeter-wave radars and the inner and outer parameters of
cameras, the obstacle detection test was conducted in a ROS environment. Comparative
experiments with sensor fusion algorithms showed that the detection accuracy of the
decision-level fusion algorithm was 95.19%, which is higher than that of feature-level and
data-level fusion by 4.38% and 6.63%, respectively. Cai. [72] realized the temporal and
spatial fusion of vision and millimeter-wave radars based on a fusion detection technology
for a vision–millimeter-wave radar. The task of detecting obstacle dimensions in the visual
depth map was accomplished using the effective target selected by the millimeter-wave
radar as the seed point. The problem of detecting the spatial location and dimensional
information of obstacles in front of agricultural machines was solved. Kragh et al. [73] used
conditional random fields to fuse LiDAR and camera sensing probabilistically with semantic
segmentation and combined appearance-based and geometric detection methods. Finally,
a multimodal fusion algorithm was applied to achieve obstacle detection in agriculture
with moving ground vehicles. Multi-sensor fusion sensing technology has shown great
advantages in farmland obstacle detection and will be gradually applied to farmland
obstacle detection in the future. The farmland environment is complex and variable, and
a single sensor is prone to blind spots or insufficient information in obstacle detection.
Multi-sensor fusion can comprehensively utilize the advantages of different sensors to
make up for the shortcomings of a single sensor. The core of fusion technology is to solve
the problem of the fusion of heterogeneous data information from different sensors. By
fusing data from multiple sensors, such as RGB cameras, depth cameras, and LIDAR, more
comprehensive and precise environmental information can be obtained to improve the
accuracy and reliability of obstacle detection.
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3. Complete-Coverage Path-Planning Technology

Based on farmland information, operation types and sensory data, complete-coverage
path-planning technology plans optimal paths and commands the underlying modules to
deal with complex farmland environments effectively. Currently, the task of farm machine
path planning in unstructured farmland environments mainly focuses on global path plan-
ning and local path planning, with the goal of improving operational efficiency, operational
farmland coverage, and operational safety to adapt to the complex and changing opera-
tional environments in different farmlands and fields [74]. The classification of common
path-planning algorithms in path-planning technology and their range of applications
is presented in Table 3. To perform specific agricultural tasks such as deep loosening,
targeting, ridging, rotary ploughing, seeding, and applying pesticides, when operating
unmanned vehicles in a field, large agricultural equipment often follows a path comprising
straight lines and turns. Unlike standard roads, agricultural fields generally have irregular
shapes (depicted in Figure 4). Achieving smooth path trajectories and velocity continuum
is challenging when relying solely on a combination of straight lines and turns for complete-
coverage path planning. Therefore, in recent years, researchers have proposed numerous
algorithms to address complete-coverage path-planning problems in agricultural fields. In
this chapter, the representative algorithms for complete-coverage path-planning technology
are classified into two categories: classical path-planning algorithms and bionics-based
path-planning algorithms.

Table 3. Classification and application scope of common path-planning algorithms.

Classification Common Algorithms Common Application Areas

Algorithms based on graph search Dijkstra, A *, D * Global path planning
Algorithm based on sampling RRT Global path planning
Algorithms based on artificial

potential fields Artificial potential field method Local path planning

Algorithms based on curve fitting Arcs and straight lines, polynomial curves, spline
curves, Bessel curves, differential flatness Local path planning

Algorithms based on numerical
optimization

Describing and solving planning problems using
objective functions and constraints Local path planning

Intelligent algorithms based on
bionics

Genetic algorithms, particle swarm optimization
algorithms, ant colony algorithms

Global path planning, local path
planning
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3.1. Classical Path-Planning Algorithm

Global path planning is to plan an optimal operation path to carry out the operation
by combining the positioning information after determining the operation plot. Local
path planning integrates the real-time information obtained from the intelligent farm ma-
chinery vehicle-mounted sensing system, performs real-time path planning, and adjusts
the operational status. The main classical path-planning algorithms currently applied are
search-based global path-planning algorithms, sampling-based global path-planning algo-
rithms, artificial potential field-based local path-planning algorithms, local path-planning
algorithms based on curve fitting (arcs and straight lines, polynomial curves, spline curves,
Bezier curves, and differential flatness), and numerical optimization-based local path-
planning algorithms.

Shen et al. [75] proposed a primitive optimization strategy to correct the inter-row
path points based on the tree row position information. This strategy is a response to the
traditional A * algorithm’s problem of path point offsets that are not suitable for direct
substitution optimization. Xu et al. [76] designed an improved A * algorithm that reduces
the number of turns in global path planning and improves path stationarity and operational
efficiency. The RRT algorithm is slow to search when used for global path planning, and
when the number of iterations is small, the feasibility of the planned global path is poor.
Feng et al. [77] added global random sampling and key area sampling strategies to the RRT
algorithm to improve the global search capability and the effect of optimal paths. Kong
et al. [78] proposed an improved A * path-planning algorithm based on multi-constraint
Bessel curves. The approach combines robot kinematic constraints with Bézier curves to
smooth the turning paths of the A * algorithm, integrating multiple objectives, such as
minimum turn radius and continuous curvature, to achieve global path planning. The
literature [79,80] addresses the problem that traditional artificial potential field methods
tend to fall into local minima and suffer from goal unreachability during path planning, by
introducing an annealing algorithm and obstacle repulsive potential field function method
to avoid the falling into local optimum and unreachable goal phenomena. Boryga et al. [81]
proposed a path-planning method based on polynomial transition curves to plan the
trajectory of a machine turning in a field by using polynomial transition curves to reduce the
working and non-working distances and to improve the efficiency and energy utilization
of the machine. In addition to the above methods, the method of improving the local
path-planning algorithm by utilizing the circular arc tangent law has been well applied to
tracked harvesters (shown in Figure 5). The improvement reduces the frequency of steering
control of tracked harvesters, which in turn improves driving stability and operational
efficiency [82–86]. There is no essential difference between global path planning and local
path planning [87]. To adapt to the farmland operational environment, current optimization
strategies employed by research scholars to enhance algorithms typically include path-
planning algorithms that minimize time and distance costs; algorithms that accommodate
various shapes, sizes, and locations of obstacles; and algorithms that impose constraints
on the speed and energy consumption of agricultural machinery. By summarizing the
published literature, we find that global path-planning algorithms can be used for local
path planning after improvement, and local path-planning algorithms can be used for
global path planning after optimization. Therefore, focusing on integrating global path-
planning algorithms with local path-planning algorithms can enhance the realization of
complete-coverage path planning.
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3.2. Bionics-Based Path-Planning Algorithms

The main bionics-based path-planning algorithms are the genetic algorithm (GA),
the particle swarm optimization algorithm (PSO), and ant colony algorithm (ACO) [87].
A genetic algorithm-based path-planning optimization algorithm is a heuristic search
optimization algorithm designed to find the optimal path by simulating natural selection
and genetic mechanisms [88–90]. The path-planning optimization algorithm, based on
a genetic algorithm, can effectively search the complex path space to find the best path
solution that satisfies the specific optimization objective, which is especially suitable for
generating better paths in field environments with complex terrain and many obstacles.
The particle swarm optimization algorithm is an evolutionary computational technique
initially developed as a simplified model inspired by the coordinated flocking behavior of
birds in flight [91]. The process of path planning based on the particle swarm optimization
algorithm can be regarded as the process of finding the optimal position of many particles in
the solution space. The ant colony algorithm is designed to simulate the foraging behavior
of ants in nature. When applied to path planning, the algorithm utilizes a pheromone
update mechanism for path searching. Ants leave pheromones on the path, and other
ants choose the path based on the pheromone concentration, thus gradually finding the
optimal path. The above three algorithms are all group intelligence algorithms (pseudo-
code comparisons are shown in Table 4) that solve optimization problems by simulating
the behavior of organisms in nature or the behavior of groups.

Table 4. Pseudo-code comparison of bionics-based path-planning algorithms.

Step GA PSO ACO

Initialization Initialize population Initialize particles Initialize ants
Fitness Eval. Evaluate fitness Evaluate fitness Evaluate fitness

Selection Roulette wheel selection N/A Select next node based on probability
Crossover Single-point crossover N/A N/A
Mutation Swap mutation N/A N/A

Update Ind. Replace individual Update velocity and position Update pheromone
Update Best Find best individual Update global best Find global best path

Iteration Loop Repeat for max generations Repeat for max iterations Repeat for max iterations
Return Result Return best individual Return global best Return global best path

N/A means this item is empty.
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All three of the above algorithms possess global search capabilities and advantages in
parallel processing [92,93], enabling them to find optimal solutions in complex spaces. A
comparison of the effectiveness of bionics-based path-planning algorithms when applied to
path planning for farm machinery used in large fields is shown in Table 5. However, they
also suffer from complex parameter tuning, unstable convergence speed, and decreased
efficiency in high-dimensional spaces. The adaptability to specific problems and the
interpretability of the results also need further improvement and research. Therefore,
to suit the agricultural field operational environment, current optimization strategies
employed by research scholars to enhance algorithms typically encompass path-planning
algorithms that minimize time and distance costs, algorithms adaptable to various shapes,
sizes, and locations of obstacles, and algorithms imposing constraints on the speed and
energy consumption of agricultural machinery. In dynamic environments, various real-time
planning algorithms are chosen to navigate constraints such as moving targets and adapting
effectively to diverse operating environments. Zhou et al. [94] proposed a traversal path-
planning method by combining the Floyd algorithm with an improved genetic algorithm.
The traversal path problem when agricultural equipment traverses multiple plots is adapted.
Xu et al. [95] considered the kinematic model of agricultural machinery, defined the paths
that satisfy the kinematic model through parametric equations, and solved the initial
paths using an analytical method. Meanwhile, an improved real-time path-planning
algorithm for a parametric kinematic model of agricultural machinery is proposed based
on the particle swarm optimization algorithm. Zhao et al. [96] proposed a path-planning
method based on an improved bio-neurodynamic approach to enhance the path-planning
capability of arbitrarily shaped differential-drive agricultural robots. Through several
experiments in narrow and complex environments, the method was proven to have a
better path-planning ability. Zhang et al. [97] compared the hyper volume estimation
algorithm, the grid-based evolutionary algorithm, the turning point-driven evolutionary
algorithm, and the non-dominated sorting genetic algorithm to assess their effectiveness
in path planning. Their goal was to shorten the total path of agricultural machinery
operation and reduce the total turning angle. Then, they proposed a multi-objective
evolutionary algorithm-based path-planning method for agricultural mobile robots. Wu
et al. [98] proposed an improved adaptive ant colony optimization algorithm by introducing
a heuristic mechanism for directional information, an adaptive pseudo-random transfer
rule, and an unevenly distributed pheromone approach, in conjunction with the traditional
ant colony algorithm. The method improves the superiority of the ant colony optimization
algorithm in terms of convergence speed and global optimal solution search capability.

Table 5. Comparison of bionics-based path-planning algorithms.

Algorithm Category Global Search
Ability

Convergence
Speed

Computational
Complexity Adaptability Scalability

Genetic algorithm ⋆⋆⋆⋆ ⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆
Particle swarm
optimization ⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆

Ant colony algorithm ⋆⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆

⋆ represents the degree.

Currently, significant research progress has been made in applying complete-coverage
path-planning techniques in unstructured farmland environments. This research primarily
focuses on traditional algorithms (such as the A * algorithm, Dijkstra’s algorithm, geometric
methods, dynamic window approaches, etc.) and population intelligence algorithms (in-
cluding the ant colony optimization algorithm, the genetic algorithm, the particle swarm
optimization algorithm, etc.). By addressing global path planning and local path-planning
issues, operational efficiency, farmland coverage, and operational safety have been enhanced.
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4. Autonomous Operation Control Technology

Autonomous operation control technology is mainly based on the upper computer-
specified commands to control the movement and operation of intelligent agricultural
equipment. Taking the combined harvester shown in Figure 6 as an example, the au-
tonomous operation control system consists of a navigation sensor unit, a user interface
unit, a height sensor for the cutting table, an angle sensor, a tracking control unit, and a
hydraulic actuator unit. Currently, common research in motion control primarily focuses on
navigation tracking control. Research in operation control primarily focuses on equipment
controlling for tasks such as ploughing, planting, management, and harvesting operations.
Autonomous operation control is committed to improving the ability of self-driving farm
equipment to cope with complex farmland environments and to solving the uncertainty
problem brought abought by the low feedback and large inertia of farm machinery in
operation control.
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Motion control is the basis of autonomous operation control, and domestic and inter-
national research on the motion control of intelligent agricultural machines mainly includes
PID control methods, fuzzy control methods, model predictive control methods, optimal
control methods, and so on. For instance, to address the nonlinear characteristics of the
tractor’s longitudinal driveline system, Wang et al. [99] linearized the tractor’s longitudi-
nal dynamics model using an inverse modelling approach and designed a sliding-mode
variable-structure controller to mitigate the impact of external disturbances on acceleration.
Miao et al. [100] decoupled the control system into longitudinal and transverse motion con-
trol and designed a velocity controller based on the PID control algorithm. Wang et al. [101]
designed a large-angle steering control algorithm based on the instantaneous center of rota-
tion of the tracked vehicle for the steering characteristics of tracked agricultural machines
based on unilateral braking. It enables the tracked vehicle to steer directly to the target
heading. Navigation path tracking is the core technology to realize automatic navigation,
and it is also the current research hotspot in motion control. In recent years, research
scholars have applied model-free intelligent control methods (e.g., reinforcement learning,
particle swarm optimization, neural networks, etc.) to navigation path tracking and ob-
tained better results. Shan et al. [102] designed a reinforcement learning model to integrate
the PID controller with the PP controller to handle the tracking error and obtain better path
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tracking accuracy. Zhang et al. [103] proposed a two-depth Q-network-based vehicle path
tracking control method for mobile robots to achieve the accurate tracking of straight paths
and smooth transitions between polygonal trajectories. This method considers driving
speed and steering rate constraints to better approximate real-world scenarios.

Operation control is a direct part of ensuring the quality of an unmanned operation of
field agricultural equipment. Domestic and international research on unmanned operation
control of field agricultural equipment primarily focuses on equipment controlling for
ploughing, harvesting, sowing, and levelling operations. Wang et al. [104] developed a
tillage speed and slip ratio switching control system for wheeled electric tractors, which
can effectively control the speed and slip ratio under different tillage resistance, and has
better results in terms of tillage efficiency and tillage depth stability. To solve the problem
of a low level of automated control of the cutting platform height, Tan et al. [105] designed
a harvester cutting platform height adaptive system based on PID control technology
and tested the impact of activating the adaptive system at different forward speeds and
operating modes on the operating effect. The results show that the system meets the
harvester’s operational needs by adjusting the height of the cutting platform. Xue et al. [106]
designed a high-precision sowing depth control system for wheat planters based on fuzzy
PID control technology using real-time sowing depth as the feedback input, which ensured
the stability and consistency of sowing depth. Jing et al. [107] designed an adaptive PID
navigation control method considering the side-slip estimation to enhance the operational
stability of the unmanned farm grader, considering the side-slip phenomenon that occurs
during operation. At present, the research on motion control and operation control for
intelligent agricultural machinery and equipment has yielded significant results.

5. Conclusions and Prospection
5.1. Conclusions

Agricultural equipment achieves the perception of the complex and changing operat-
ing environment around it by carrying onboard environmental sensing sensors. It carries
out autonomous path planning and navigation according to the preset operation tasks
and map information and carries out the operation control of the operation equipment,
thus realizing the unmanned operation of large-scale agricultural equipment. To improve
the level of environmental sensing, path planning, and autonomous operation control of
large-scale agricultural equipment, researchers have carried out many studies. This review
systematically examines the progress of key technologies for the unmanned operation of
field agricultural equipment from three aspects: onboard environmental sensing technol-
ogy, coverage path-planning technology, and autonomous operation control technology.
Although the unmanned operation technology of field agricultural equipment has a wide
range of application prospects, it still faces a series of challenges and problems in practi-
cal application. The challenges of robustness of environment perception, practicality of
path-planning methods, and efficiency of autonomous operation control methods need
to be further improved. Through the systematic review, the key conclusions are drawn
as follows:

(1) Single-sensor onboard environmental sensing methods are no longer adequate
to meet the demands of unmanned operations. Traditional vision methods are affected
by environmental factors such as light and weather, resulting in insufficient stability and
accuracy under complex farmland conditions. Although LiDAR can provide high precision
distance information, it is susceptible to errors when interfered with by particulate matter
in agricultural fields. Therefore, the advantages of multiple sensors, such as vision, LiDAR,
and millimeter-wave radar, should be combined. Their characteristics in information
acquisition and environmental adaptability can be comprehensively utilized to enhance
the accuracy and robustness of farmland boundary detection, navigation line extraction,
and obstacle detection.

(2) Classical complete-coverage path-planning algorithms such as A * and Dijkstra
are suitable for planning in static environments but can result in unsmooth and inefficient
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paths in complex farmlands. The introduction of methods based on artificial potential
fields, sampling, and curve fitting can improve the accuracy and adaptability of path
planning. In addition, intelligent bionics-based algorithms, such as the genetic algorithm,
particle swarm optimization, and the ant colony algorithm, which optimize path selection
by simulating biological behavior, have certain advantages in finding the globally optimal
path in complex environments. Although complete-coverage path-planning techniques
have been well developed, the related algorithms are deficient in accuracy and timeliness
when dealing with terrain changes and the real-time requirements of dynamic farmland
environments.

(3) Research on motion control focuses on speed, steering, and navigation tracking,
using PID, fuzzy control, model prediction, optimal control, and other methods. Opera-
tional control encompasses scenarios such as ploughing, harvesting, seeding, and grading
operations, primarily enhancing operational quality and efficiency through PID adaptive
systems and fuzzy control techniques. While these research methods have significantly en-
hanced the unmanned operation capabilities of large-scale agricultural equipment, they still
inadequately address the low feedback and high inertia issues encountered by medium- to
large-size agricultural machinery during field operations. Autonomous operation systems
exhibit poor robustness under varying ground conditions, significant disparities in tracking
control performance, and limited adaptive capabilities to different ground conditions.

5.2. Prospection

Large-scale fields are the primary production zones for food crops, and the research
on agricultural equipment for these vast terrains is a critical issue that demands urgent
attention in advancing large-scale agriculture. The autonomous operation of agricultural
machinery in large farmland areas is a pivotal strategy to enhance production efficiency,
reduce labor intensity, and mitigate the impact of an aging population on agriculture. A
comprehensive overview of the research progress on key technologies for the autonomous
operation of large-scale farmland machinery will facilitate the systematic advancement of
agricultural equipment in these vast areas. Regarding onboard environmental sensing tech-
nology, multi-sensor fusion sensing technology has demonstrated significant advantages in
environmental sensing. However, existing research still faces the following shortcomings:
the complexity of data fusion algorithms results in inadequate real-time performance,
interference, and signal inconsistency among sensors. These issues negatively impact per-
ception accuracy, and there is poor adaptability to harsh environments. Therefore, future
research can focus on the following two aspects: first, optimizing data fusion strategies
and algorithms to enhance real-time and processing efficiency, to ensure rapid response
in complex farmland environments; second, improving sensor anti-interference capability
and signal consistency, adopting advanced calibration and compensation techniques to
enhance sensing accuracy and adaptability to harsh environments.

In terms of complete-coverage path-planning technology, current research mainly
focuses on single-field complete-coverage route planning technology. Existing research has
improved the real-time and adaptive nature of path planning by improving the relevant
algorithms, thus increasing operational efficiency, farmland coverage, and operational
safety. However, there have been relatively few studies on complete-coverage path planning
for multiple fields. To further enhance the efficiency of unmanned operations for large-
scale agricultural equipment, future research should prioritize the following aspects: First,
develop efficient path-planning algorithms applicable to multi-field environments to ensure
a smooth transition and path optimization between different farmlands. Second, with the
gradual realization of intelligent operation of agricultural machinery, the limitations of
single-machine agricultural operations are gradually becoming evident. Research should
focus on developing multi-machine intelligent scheduling and task allocation systems
tailored to diverse operational requirements across multiple fields, optimizing operation
sequencing and resource allocation. Leveraging the collective intelligence of groups of
agricultural machines can significantly enhance overall agricultural production efficiency.
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In terms of autonomous operational control technology, navigation accuracy and
operational quality have become critical factors in the effectiveness of operational systems.
Therefore, further research should investigate the variations in motion trajectories of
field agricultural equipment under different ground conditions and implement targeted
compensatory control measures to enhance the robustness, adaptability, and operational
accuracy of autonomous operation control systems.
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