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Abstract: When uncrewed agricultural machinery performs autonomous operations in the field, it
inevitably encounters obstacles such as persons, livestock, poles, and stones. Therefore, accurate
recognition of obstacles in the field environment is an essential function. To ensure the safety
and enhance the operational efficiency of autonomous farming equipment, this study proposes an
improved YOLOv8-based field obstacle detection model, leveraging depth information obtained
from binocular cameras for precise obstacle localization. The improved model incorporates the
Large Separable Kernel Attention (LSKA) module to enhance the extraction of field obstacle features.
Additionally, the use of a Poly Kernel Inception (PKI) Block reduces model size while improving
obstacle detection across various scales. An auxiliary detection head is also added to improve accuracy.
Combining the improved model with binocular cameras allows for the detection of obstacles and their
three-dimensional coordinates. Experimental results demonstrate that the improved model achieves
a mean average precision (mAP) of 91.8%, representing a 3.4% improvement over the original model,
while reducing floating-point operations to 7.9 G (Giga). The improved model exhibits significant
advantages compared to other algorithms. In localization accuracy tests, the maximum average error
and relative error in the 2–10 m range for the distance between the camera and five types of obstacles
were 0.16 m and 2.26%. These findings confirm that the designed model meets the requirements for
obstacle detection and localization in field environments.

Keywords: YOLOv8; binocular vision; field obstacle; autonomous agricultural machinery;
detection; localization

1. Introduction

Agricultural machinery is a critical tool for implementing precision agriculture, sig-
nificantly enhancing labor efficiency and reducing labor intensity. With the advancement
of intelligent agricultural machinery, autonomous agricultural machines are increasingly
attracting the attention of researchers [1]. However, the real-world farmland environment
is complex and unstructured, with inevitable obstacles such as humans, utility poles, and
stones present during task execution by intelligent agricultural machinery. To ensure the
safety and accuracy of autonomous operations in the field, it is crucial to detect surrounding
obstacles swiftly and accurately. In recent years, sensor technology has been applied to
autonomous farming operations, enabling the precise identification and localization of
typical obstacles in the field.

Currently, the detection of field obstacles primarily relies on radar and visual sensors.
Radar typically employs 2D/3D LiDAR for data acquisition, determining obstacle positions
through LiDAR point cloud processing [2,3]. Considering the cost and the complexity of
the farmland environment, visual sensors are more suitable for field obstacle detection than
radar. Visual sensors offer the advantage of providing rich information about obstacles,
including classification, shape, and texture [4]. Common visual sensors include monocular

Agriculture 2024, 14, 1493. https://doi.org/10.3390/agriculture14091493 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture14091493
https://doi.org/10.3390/agriculture14091493
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0003-1375-6280
https://doi.org/10.3390/agriculture14091493
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture14091493?type=check_update&version=2


Agriculture 2024, 14, 1493 2 of 18

and binocular cameras. Monocular cameras estimate target depth using image data from a
single viewpoint. In contrast, binocular cameras leverage parallax and matching features
from different viewpoints to obtain three-dimensional spatial information, enabling the
precise localization of targets [5,6].

Object detection is a fundamental task in computer vision, primarily aimed at locating
and identifying targets of interest in images or videos [7]. With the significant advances in
feature extraction and object detection achieved by deep learning methods, issues related
to the low accuracy and poor generalization capability of image-based methods have been
addressed, along with improvements in detection speed. Currently, mainstream object
detection algorithms are categorized into two-stage and one-stage methods [8]. R-CNN [9]
was the first popular two-stage detection algorithm, decomposing the detection task into
two phases: generating candidate regions and then classifying these regions with bounding
box regression. Classic two-stage models also include Fast R-CNN [10], Faster R-CNN [11],
and Cascade R-CNN [12]. While two-stage models offer commendable detection perfor-
mance, they are characterized by high complexity, significant computational demands, and
a large number of parameters, resulting in slower target detection speeds. These limitations
hinder the ability to effectively balance detection speed and accuracy. In contrast, one-stage
object detection algorithms simultaneously generate candidate boxes and perform classifica-
tion and bounding box regression, as exemplified by the YOLO (You Only Look Once) [13]
series, SSD (Single Shot MultiBox Detector) [14] model, and RetinaNet [15] model. The
SSD model employs convolutional neural networks (CNNs) to extract image features and
perform detection across multiple feature layers. This approach allows it to predict bound-
ing boxes and classes on feature maps of different scales, enabling robust object detection.
RetinaNet introduces a novel loss function, Focal Loss, to address the class imbalance issue.
Focal Loss enhances detection accuracy by reducing the focus on easily classified samples
and increasing the emphasis on hard-to-classify ones. In recent studies, Liu [16] utilized
the SSD algorithm for pedestrian detection in orchards. Peng [17] leveraged a multi-scale
feature fusion-based RetinaNet network to detect fruits in complex field environments.
These studies demonstrate the advantages of the SSD and RetinaNet algorithms in object
detection, though they still exhibit certain drawbacks in terms of speed and small object
detection. The YOLO series, including the classic YOLOv3 [18], YOLOv5 [19], and the
subsequent YOLOv6 [20], YOLOv7 [21], and YOLOv8 [22] models, are known for their high
computational efficiency, enabling high-precision real-time performance, and are widely
used in agriculture. For instance, Li [23] utilized YOLOv3-tiny as the base framework,
integrating its shallow features with the second prediction layer features to create a small
target detection layer for the third prediction layer. This approach, using a hybrid SEAM
and CBAM attention mechanism module, enhanced background interference resistance
and improved the average accuracy of the model by 11%. Xue [4] proposed an improved
method based on the YOLOv5s algorithm, employing the K-Means clustering algorithm to
generate anchor box scales to cover all scales as much as possible, and using the CIoU loss
function, combining three geometric measures—overlap area, center distance, and aspect
ratio—to reduce missed and false detections, thus improving detection accuracy.

The YOLOv8 architecture, a variant of the YOLO series object detection models, em-
ploys deep neural networks for object recognition and localization. Khow [24] introduced
CA and Wise-IoU into the YOLOv8 network, resulting in the YOLOv8-CAW model, which
not only enhances detection accuracy but also accurately estimates the distance of target
objects. Lan [25] aimed to improve the detection accuracy of uncrewed tractors for inclined
obstacles in farmland by optimizing the YOLOv8 model. Their enhancements included
embedding the SE attention mechanism to improve detection accuracy and utilizing Mo-
bileNetv2 and BiFPN to reduce computational load. The improved model achieved a
mean average precision (mAP) as high as 98.84%. Although these modified YOLOv8
models have demonstrated excellent performance in object detection tasks, the complex
field environment and the limited computational capacity of onboard equipment in un-
crewed agricultural machinery make obstacle detection a challenging task. Moreover, the
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diverse and variable shapes of field obstacles render YOLOv8 less robust to changes in
target shapes, often resulting in inaccurate localization. Additionally, YOLOv8 encounters
difficulties in detecting small targets, leading to false negatives and false positives. Field
obstacles are often occluded by crops, further contributing to false negatives or positives.
To address these issues, this study proposes a novel LPA-YOLOv8n model for the real-time
detection of field obstacles, aiming to enhance the accuracy and real-time performance of
obstacle detection in agricultural settings.

The main contributions of this paper are as follows:

(1) Introduction of LSKA in the SPPF Module: By incorporating the LSKA module, the
network’s focus on important features is enhanced, improving the model’s capability
to extract features in complex field environments. This effectively addresses the issue
of robustness to shape variations of various field obstacles.

(2) Replacement of the Bottleneck Block with PKI Block in the Backbone’s C2f Section:
This substitution serves as the primary gradient flow branch, allowing for a more
comprehensive consideration of targets at different scales and enhancing the model’s
ability to detect small or hard-to-detect objects.

(3) Addition of an Auxiliary Detection Head: By adding an auxiliary detection head
to the original detection head, the model gains additional information and feature
processing, improving the detection accuracy of occluded targets in agricultural
environments.

(4) Fusion of Detected Object Frame Information with Binocular Matching Algorithm:
This integration enables accurate identification and precise distance measurement of
typical obstacles in complex field environments.

The rest of the paper is structured as follows: Section 2 provides an overview of the
YOLOv8 model and details the proposed improvements and network architecture. Section 3
introduces the experimental setup and the design of the obstacle detection and localization
system. Section 4 presents and analyzes the experimental results, followed by a discussion
in Section 5. Finally, Section 6 concludes this paper by summarizing its contributions.

2. Proposed Improvement Methods
2.1. The YOLOv8 Algorithm

This section first provides an overview of the YOLOv8 algorithm structure, laying
the foundation for the design of the improved algorithm. The YOLOv8 network structure
consists of three main components: the backbone, neck, and head. The overall structure of
YOLOv8 is illustrated in Figure 1. The following detailed explanation focuses on each of
the three components of YOLOv8.
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Backbone: The backbone of YOLOv8 draws on the principles of CSPDarkNet (Cross
Stage Partial DarkNet) [26] and is primarily composed of three modules: Conv (convolu-
tion), C2f (CSPNet with 2 fused layers), and SPPF (Spatial Pyramid Pooling Fusion). The
Conv module consists of Conv2d, BN (BatchNorm2d), and the SiLU (Sigmoid Linear Unit).
Inspired by the ELAN (Efficient Layer Aggregation Network) design of YOLOv7, the C2f
module offers fewer parameters and superior feature extraction capabilities compared
to the C3 (CSP Bottleneck with 3 convolutions) module in YOLOv5, and C2f is shown
in Figure 1. The SPPF module employs a cascade of small pooling kernels, which more
effectively extracts image features.

Neck: The neck of YOLOv8 integrates concepts from FPNs (Feature Pyramid Net-
works) [27] and PANs (Path Aggregation Networks) [28]. FPNs convey strong semantic
features top-down, facilitating feature extraction from images at various scales. PANs intro-
duce a bottom-up pyramid following the FPN, enhancing multi-scale feature representation
capabilities by combining the strengths of both FPN and PAN structures.

Head: YOLOv8 adopts a decoupled head structure, separating classification and
detection heads, as illustrated in Figure 1. Additionally, it transitions from anchor-based to
anchor-free bounding boxes, improving detection speed and accuracy.

2.2. LPA-YOLOv8 Detection Model

The objective of field obstacle detection is to recognize and locate various classic
obstacles (examples include persons, livestock, agricultural machinery, poles, and stones)
in agricultural fields. This study proposes an LPA-YOLOv8n detection model based on
YOLOv8. The LPA-YOLOv8n model improves the SPPF module in the backbone, and the
Bottleneck module in C2f, and introduces an auxiliary detection head in the head section.
The modified model’s network architecture is illustrated in Figure 2.
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Agriculture 2024, 14, 1493 5 of 18

2.2.1. SPPF-LSKA

The Vision Attention Network (VAN) [29] with the LKA module has demonstrated
exceptional performance across various vision-based tasks. The original LKA module does
not utilize dilated depth convolutions but instead employs large convolution kernels in 2D
depth convolutions, as illustrated in Figure 3a. To mitigate the high computational cost
associated with large kernel sizes in depth convolutions, the large-kernel depth convolu-
tions are decomposed into smaller-kernel depth convolutions, effectively using dilated
depth convolutions with relatively large kernel sizes, as shown in Figure 3b. Despite
these significant improvements, issues with computational complexity and memory usage
persist. Consequently, Lau et al. [30] proposed a novel Large Separable Kernel Attention
(LSKA) module, which fundamentally decomposes the 2D convolution kernels of depth
convolution layers into cascaded horizontal and vertical 1-D convolution kernels, as de-
picted in Figure 3c. Specifically, the first two layers of LKA are decomposed into four layers,
each consisting of two 1-D convolution layers, as demonstrated in Figure 3d. Compared
to the standard LKA design, the LSKA module maintains comparable performance while
offering higher computational efficiency and reduced memory usage.
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The forward propagation process of the LSKA module primarily involves the following
steps: Initially, two convolution layers independently extract features from the input feature
map in the horizontal and vertical directions, allowing for a more detailed handling of
image features. Subsequently, LSKA employs spatial expansion convolutions with different
dilation rates to further extract features. Finally, after a series of convolution operations,
a 1 × 1 convolution fuses the extracted features to generate the final attention map. This
attention map is then multiplied element-wise with the original input feature map to
enhance the network’s focus on important features.

In this study, we integrate the LSKA module into the SPPF module, positioning it after
all max-pooling operations and before the second convolutional layer, as shown in Figure 3e.
This placement is strategic to leverage large kernel convolutions and spatial expansion
convolutions at critical points of feature extraction and fusion, thereby maximizing feature
representation capability while controlling the computational load and complexity of
the model.

In summary, the LSKA module enhances the model’s robustness against variations in
the shapes of different field obstacles by capturing extensive contextual information using
large separable convolutional kernels and spatially dilated convolutions. By performing
operations in both horizontal and vertical directions, LSKA allows for more detailed pro-
cessing of image features. The attention maps generated through a series of convolutional
operations are then used to weight the original features, thereby increasing the network’s
focus on critical elements. This approach effectively mitigates potential issues related to
the model’s robustness in dealing with diverse shapes of field obstacles.
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2.2.2. C2f-PKI

In the previous subsection, we introduced the LSKA module, which, while expanding
the receptive field, introduces significant background noise and overly sparse feature
representations. These issues adversely affect the accurate detection of small targets. To
address these concerns, we replace the Bottleneck module in the backbone’s C2f module
with the PKI (Poly Kernel Inception) Block from PKINet [31]. This substitution effectively
resolves the aforementioned problems while enhancing multi-scale feature extraction
capabilities, emphasizing important features, and ensuring that small target features are
not overlooked, thereby improving detection performance. Modifying the backbone allows
us to leverage the PKI Block’s multi-scale feature learning ability during the initial extraction
phase, enhancing the quality of the foundational features.

A PKI Block consists of a PKI module and a CAA module, as shown in Figure 4a. The
PKI module utilizes a non-dilated Inception-style depth convolution structure, depicted in
Figure 4b. It first employs a small kernel convolution to capture local information, followed
by a series of parallel depth convolutions to extract multi-scale texture features at different
receptive fields. Finally, a 1 × 1 convolution integrates features with varying receptive
field sizes.
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The CAA module aims to establish dependencies between distant pixels, as shown
in Figure 4c. It first applies average pooling followed by a 1 × 1 convolution to capture
local region features. Next, it fuses the feature maps generated by two depthwise separable
convolutions with the original feature map. Finally, the CAA module produces an attention
weight to enhance important features by weighting the feature maps at each scale.

In summary, the PKI module focuses on extracting multi-scale local contextual informa-
tion, while the CAA module captures long-range contextual information. The collaboration
of these two components enhances the model’s capability to extract feature information in
complex field environments and improves the detection of small or hard-to-detect targets.

2.2.3. Aux Head

An Aux head is an auxiliary head added to the intermediate layers before the feature
output, as shown in Figure 5a. Its primary purpose is to enable the intermediate layers to
learn more information, providing richer gradient information to aid training [32]. In the
YOLOv8 model, the Lead head focuses on global features, but it may struggle to effectively
handle partially visible features of occluded targets. The Aux head, by performing detection
at shallower layers, captures more detailed and local information, enhancing the recognition
of occluded targets and compensating for the Lead head’s limitations.

During loss computation, the Lead head generates the primary detection results and
independently calculates its loss. Meanwhile, the Aux head also contributes to the loss
function calculation and assists in backpropagation, updating preceding parameters. The
Aux head uses the positive samples matched by the Lead head as its own positive samples
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to calculate the corresponding loss. Finally, the losses from the Lead head and Aux head
are weighted and combined to form the total loss function, as illustrated in Figure 5b.
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3. Experimental Setup
3.1. Dataset

For field operations, it is crucial that the training data used for obstacle detection
accurately reflect the real-world perspectives encountered by agricultural machinery in the
field, ensuring appropriate realism and feasibility. Our dataset comprises images from two
sources. The first set of images was captured using an Intel Realsense D435i RGB-D camera
(Intel Corporation, Santa Clara, CA, USA), with video sliced into frames using Python
scripts, allowing for the acquisition of images from various perspectives and scenes. These
images were collected in October 2023 from rice and wheat fields in Huishan District, Wuxi,
Jiangsu Province, China, at multiple times during the day, including early morning, noon,
and dusk, ensuring a diversity of lighting conditions. The second part of the dataset was
assembled using images of various types of obstacles sourced from search engines such as
Google and Baidu. These images come from a wide range of backgrounds, resolutions, and
shooting angles, thereby increasing the dataset’s diversity. Combining these two sources,
we assembled a raw dataset of 2378 images, each with a resolution of 640 × 480 pixels.
Every image contains at least one target object, ensuring that the model can reliably learn
and validate across different datasets. The dataset primarily includes five types of typical
field obstacles: person, livestock, agricultural machinery, pole, and stone. Sample images
from the dataset are shown in Figure 6a. The raw dataset was randomly split into training,
validation, and test sets in an 8:1:1 ratio.

3.2. Data Augmentation

The obstacles were categorized into five types: agricultural machinery, person, live-
stock, stone, and pole. Using the labeling tool, obstacles in the images were annotated
by type, and the resulting txt files were used to store the data label information for each
category. Table 1 shows the dataset quantities and label counts for the five categories. Before
training the model, we performed image processing on the training set to enhance the
model’s generalization and robustness. We added weather and environmental effects such
as fog, rain, glare, and darkening. Some processed images are shown in Figure 6b. Simu-
lating image processing under various weather conditions enables the model to maintain
high detection performance in adverse environments. For example, under low visibil-
ity conditions such as dense fog or heavy rain, the model remains capable of effectively
identifying field obstacles, thereby ensuring the safe operation of agricultural machinery.
Furthermore, the model’s adaptability to different lighting conditions, including shadows
and reflections, enhances its robustness across various times of day and weather conditions.
The classification quantities of the preprocessed dataset are detailed in Table 2.
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Table 1. The number of images and labels for the five categories.

Class Image
Instance

Person Livestock Agricultural
Machinery Pole Stone All

train 1904 1501 1383 641 627 546 4698
val 237 200 205 67 84 59 615
test 237 182 87 75 116 48 508
all 2378 1883 1675 783 827 653 5821

Table 2. The classification quantities of the preprocessed dataset.

Processing Method Original Fogging Raining Sunlight Darkening

Image 878 375 375 375 375

3.3. Obstacle Detection and Localization System
3.3.1. System Framework

Using a binocular camera system to detect and locate obstacles in agricultural fields
involves the following specific operational steps: Firstly, RGB images and depth maps of the
agricultural field environment ahead of the agricultural machinery operation are captured
separately using the RGB camera and two infrared cameras (left and right). Subsequently,
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the improved LPA-YOLOv8n detection algorithm is applied to the RGB images to detect
obstacles and obtain pixel coordinates of their location points. Using depth information,
the three-dimensional coordinates of the obstacle’s location points in the camera coordinate
system are calculated. These coordinates are then transformed to obtain the absolute
coordinates of the obstacles in the world coordinate system, facilitating the detection and
localization of typical field obstacles during agricultural machinery operations. A Block
diagram of the field obstacle detection and localization system is shown in Figure 7.
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3.3.2. Localization Principle

In the process of distance measurement, the accuracy may vary due to differences in
the specifications of binocular cameras. The binocular camera used in this experiment is
the Intel RealSense D435i, which measures depth by calculating the distance based on the
disparity generated on the imaging planes of the left and right infrared cameras [28]. The
principle of disparity is illustrated in Figure 8, where the imaging points of the obstacle’s
center P(x c, yc, zc

)
in the left and right cameras are Pl(xl, yl) and Pr(xr, yr). Since the left

and right cameras are on the same horizontal plane, the Y-coordinates in the horizontal
direction are identical, Yl = Yr = Y; f denotes the focal length of the cameras, and B
represents the baseline, which is the distance between the origins of the two cameras.
According to the principles of triangulation, we derive the equation below.

Xl = f
xc

zc
(1)

Xr = f
(xc − B)

zc
(2)

Y = f
yc

zc
(3)

Disparity is defined as the deviation of the same point in the X-direction between the
left and right cameras. To obtain the disparity information D = Xl − Xr, the position of
point P in the coordinate system of the left camera can be expressed as follows:

xc =
B·Xl

D
(4)

yc =
B·Y
D

(5)
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zc =
B· f
D

(6)

The transformation from the camera coordinate system to the world coordinate system
is a rigid body transformation, achieved through rotation and translation. The transforma-
tion formula is as follows: 

xw
yw
zw

1

 =

[
R T
0 1

]−1


xc
yc
zc
1

 (7)

where R is the product of the rotation matrices in the X, Y, and Z directions, and T is the
translation matrix. In summary, for any point in space, if its imaging points can be found
in two cameras, its three-dimensional coordinates and thus the distance to the obstacle can
be computed.
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4. Experimental Results and Analysis
4.1. Implementation Details

This study employed Python 3.8 with PyTorch 1.12.1 as the deep learning framework,
utilizing Python as the programming language platform. The experiments were conducted
on a desktop computer equipped with an Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz
(Intel Corporation, Santa Clara, CA, USA) and NVIDIA RTX A4000 (NVIDIA Corporation,
Santa Clara, CA, USA), running Windows 11. CUDA 11.3 and CUDNN 8.2.1 were installed
for parallel computing and deep neural network libraries, respectively. Hyperparameters
were configured with a Batch Size of 32, training epochs set to 300, and a Learning Rate set
to 0.001. These settings were chosen to ensure efficient training and validation of the model,
aiming to maximize performance and accuracy. It is noteworthy that to prevent overfitting
during training, an early stopping mechanism was implemented. Training ceases if the
accuracy of the validation set does not improve after a specified number of training epochs.

4.2. Evaluation Metrics

To evaluate the performance of our LPA-YOLOv8 model in detecting field obstacles,
we employed three common metrics used in object detection tasks: Recall (R), Precision (P),
and mean Average Precision (mAP).

Recall measures the proportion of actual positive samples correctly predicted as
positive by the model among all positive samples. Precision indicates the proportion of
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samples predicted as positive by the model that are actually positive. Their respective
formulas are as follows:

R =
TP

TP + FN
(8)

P =
TP

TP + FP
(9)

In the formulas, TP (True Positive), FP (False Positive), and FN (False Negative), re-
spectively, denote the number of correctly predicted positive samples, incorrectly predicted
negative samples, and incorrectly predicted positive samples.

Average Precision (AP) represents the average precision corresponding to the variation
of recall from 0 to 1. mAP is the mean of AP across all categories. mAP@0.5 denotes the
average precision across all categories when the IoU threshold is 0.5. The calculation
formulas are as follows:

AP =
∫ 1

0
P(R)dR (10)

mAP =
1
m∑m

⟩=1 AP⟩ (11)

4.3. Ablation Experiment

To evaluate the effectiveness and feasibility of the improved YOLOv8 algorithm,
we conducted ablation experiments. This study introduced three improvements to the
baseline YOLOv8 model: Improvement A: integrating the LSKA into the SPPF module;
Improvement B: replacing the Bottleneck with the PKI Block; and Improvement C: adding
an Aux head to the head section. By incorporating each improvement module individually
into the baseline model, we could compare the impact of adding or replacing modules
in the original model. The experimental results are shown in Table 3. Due to the early
stopping mechanism, the baseline model stopped at 290 epochs, while the other models
completed 300 epochs of training.

Table 3. Comparison results of ablation experiments.

A B C P (%) R (%) mAP@0.5 (%) Params (M) FLOPs (G)

0.884 0.86 0.891 3.01 8.1√
0.927 0.836 0.913 3.28 8.3√ √
0.916 0.847 0.909 3.04 7.9√ √ √
0.918 0.86 0.917 3.04 7.9

By integrating the LSKA into the SPPF module, precision increased by 4.3%, and
mAP@0.5 improved by 2.2%. The inclusion of an attention mechanism effectively enhanced
the network’s focus on crucial features while suppressing irrelevant information interfer-
ence. However, recall experienced a slight decrease, and the results for Params and FLOPs
indicated a slight increase in model complexity. Conversely, integrating the PKI Block
maintained detection accuracy without decline, reducing Params by 8% and FLOPs by 5%,
thereby effectively shrinking the model size. Additionally, incorporating the Aux head
increased mAP@0.5 by 2.6% without increasing parameter or computational load, and
recall improved to match the original model. Compared to the baseline YOLOv8, while
the overall parameter count saw a slight increase, actual floating-point operations were
reduced. In summary, all three methods positively influenced the detection performance
of YOLOv8, validating these improvements through ablation experiments as shown in
Figure 9.
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4.4. Comparative Analysis with Other Models

To evaluate the improved algorithm, we compared the LPA-YOLOv8 model with state-
of-the-art object detection models including two-stage Faster R-CNN, Cascade R-CNN,
and one-stage RetinaNet, as well as YOLO series models (YOLOv5n, YOLOv6n, YOLOv7,
and YOLOv8n). Experimentation and validation were conducted on a custom agricultural
obstacle dataset. The results are shown in Table 4, which compares these popular object
detection models in terms of average precision (mAP), Floating-Point Operations per
Second (FLOPs), and parameter count.

Table 4. Comparison with other popular models.

Model Backbone mAP Params FLOPs FPS

Two-stage Faster R-CNN ResNet50 0.636 41.37M 211.9 G 16.2
Cascade R-CNN ResNet50 0.72 69.21M 240.6 G 13.6

One-stage

RetinaNet ResNet50 0.703 36.41M 211.9 G 18.6
YOLOv5n CSPDarknet53 0.831 2.50 M 7.1 G 66.7
YOLOv6n CSPDarknet53 0.923 4.23 M 11.8 G 69.3
YOLOv7 CSPDarknet53 0.888 37.22 M 105.2 G 52.1

YOLOv8n CSPDarknet53 0.884 3.01M 8.1 G 73.9

Ours LPA-YOLOv8n CSPDarknet53 0.918 3.04 M 7.9 G 71.5

From the table, it is evident that despite using the ResNet50 backbone network, two-
stage object detection algorithms such as Faster R-CNN and Cascade R-CNN did not
achieve high accuracy. Instead, they significantly increased the number of parameters
and floating-point operations. RetinaNet, a classic one-stage model utilizing the ResNet50
backbone, exhibits lower accuracy and higher parameter counts compared to YOLO series
models. Among commonly used lightweight algorithms, YOLOv5 demonstrates certain
advantages in model deployment but lacks prominent detection accuracy. Although
YOLOv7 shows relatively good detection accuracy, its large model size makes it less suitable
for deployment in perception systems. YOLOv6 manages to reduce model complexity
while maintaining good detection accuracy; however, its parameter count and floating-
point operations still exceed those of the YOLOv8 model. For an effective object detection
system, it is crucial to ensure both accuracy and speed. Therefore, our proposed LPA-
YOLOv8n model strikes a better balance between accuracy and model size compared to
the aforementioned types of detection models.
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To visually assess the performance of the improved algorithms in terms of detec-
tion accuracy and robustness, we evaluated lightweight models YOLOv5n, YOLOv6n,
YOLOv8n, and LPA-YOLOv8n on the test set of our dataset. The results of the evaluations
are presented in Figure 10.
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Figure 10. Detection results of five types of field obstacles across different models. (a) YOLOv5n;
(b) YOLOv6n; (c) YOLOv8n; and (d) LPA-YOLOv8n.

From the comparative results shown in Figure 10, YOLOv5n exhibits relatively lower
accuracy in rainy or snowy weather conditions with low visibility. It also shows certain
instances of missed detections in livestock images where features are partially obscured.
YOLOv6n improves detection accuracy compared to YOLOv5n; however, it demonstrates
noticeable false detections in stone images, misidentifying tree trunks as poles. Moreover, it
shows errors in detecting agricultural machinery during rainy or snowy weather. YOLOv8,
overall, avoids false detections but still has instances of missed detections for obstacles
partially obscured. In contrast, the improved LPA-YOLOv8n model accurately detects
obstacles in dim lighting, rainy or snowy conditions, and environments with partially
obscured features, significantly enhancing precision.

4.5. Accuracy Experiment of Localization System

To further validate the accuracy and robustness of the localization model, we con-
ducted field tests in a real agricultural environment. The experiments were conducted at
the Innovation Experimental Base of Academician Zhang Hongcheng in Guangling District,
Yangzhou City, Jiangsu Province, China, on 1 June 2024, under partly cloudy to clear
weather conditions. During the experiments, the binocular camera lenses were oriented
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towards the forward agricultural field to detect and locate obstacles within a distance range
of 2 to 10 m. Upon successful detection of obstacles, the three-dimensional coordinates of
the obstacle centers were recorded. Actual distances Zt were used as measurement data for
evaluation and analysis. A high-precision laser rangefinder was used to verify and read
the real distances Za. Distances were varied continuously, with measurements taken at
intervals of 0.5 m within the 2 to 10 m range, and the above experiments were repeated and
recorded. Finally, absolute errors and relative errors for the five sets of data obtained were
analyzed, as shown in Table 5.

Table 5. Test results of locating accuracy of obstacles in field.

Za
Person Livestock Agricultural Machinery Pole Stone

Zt EZ EZr Zt EZ EZr Zt EZ EZr Zt EZ EZr Zt EZ EZr

2.0 2.00 0.00 0.00 2.01 0.01 0.50 1.99 0.01 0.50 2.01 0.01 0.50 2.00 0.00 0.00
2.5 2.52 0.02 0.80 2.53 0.03 1.20 2.50 0.00 0.00 2.48 0.02 0.80 2.51 0.02 0.80
3.0 2.99 0.01 0.33 2.96 0.04 1.33 3.02 0.03 0.67 3.00 0.00 0.00 3.02 0.01 0.33
3.5 3.53 0.03 0.86 3.55 0.05 1.43 3.52 0.02 0.57 3.54 0.04 1.14 3.55 0.06 1.71
4.0 4.06 0.06 1.50 4.08 0.08 2.00 4.04 0.04 1.00 4.03 0.03 0.75 4.02 0.02 0.50
4.5 4.61 0.11 2.44 4.65 0.15 3.33 4.58 0.01 1.78 4.57 0.07 1.56 4.50 0.10 2.22
5.0 5.09 0.09 1.80 5.07 0.07 1.40 5.13 0.13 2.60 5.10 0.10 2.00 5.17 0.16 3.20
5.5 5.65 0.15 2.72 5.68 0.18 3.27 5.66 0.16 2.91 5.64 0.14 2.55 5.64 0.14 2.55
6.0 6.17 0.17 2.83 6.18 0.18 3.00 6.11 0.11 1.83 6.09 0.09 1.50 6.19 0.19 3.17
6.5 6.70 0.20 3.08 6.75 0.25 3.85 6.71 0.21 3.23 6.72 0.22 3.38 6.75 0.25 3.85
7.0 7.23 0.23 3.29 7.22 0.22 3.14 7.17 0.17 2.43 7.21 0.21 3.00 7.24 0.24 3.43
7.5 7.77 0.27 3.60 7.79 0.29 3.87 7.76 0.26 3.47 7.75 0.25 3.33 7.78 0.28 3.73
8.0 8.29 0.29 3.63 8.34 0.34 4.25 8.32 0.31 3.88 8.30 0.30 3.75 8.27 0.27 3.38
8.5 8.81 0.31 3.65 8.83 0.43 5.06 8.80 0.30 3.75 8.82 0.32 3.76 8.85 0.35 4.12
9.0 9.33 0.33 3.67 9.39 0.39 4.33 9.34 0.34 3.78 9.35 0.35 3.89 9.38 0.38 4.22
9.5 9.87 0.37 3.89 9.95 0.45 4.74 9.85 0.35 3.68 9.86 0.36 3.79 9.91 0.41 4.32

10.0 10.39 0.39 3.90 10.51 0.51 5.30 10.38 0.38 3.80 10.41 0.41 4.10 10.45 0.45 4.50

Mean value 0.18 2.47 0.22 3.06 0.17 2.35 0.17 2.34 0.20 2.71
Max value 0.39 3.90 0.53 5.30 0.38 3.88 0.41 4.10 0.45 4.50

Note: Za is the actual distance; Zt is the test distance; EZ is the absolute error; and EZr is the relative percentage
of error.

The experimental results were plotted to create comparative statistical graphs, as
shown in Figure 11. The results indicate that within the range of 2 to 10 m, the maximum
average absolute error and maximum average relative error in measured distances were
0.22 m and 3.06%, respectively. The maximum absolute error and maximum relative error
in measured distances were 0.53 m and 5.30%, respectively. Higher relative errors were
observed in the positioning of livestock and stones, primarily due to occlusion by crops
and the greater mobility of livestock. Additionally, Table 5 shows that measurement results
are relatively accurate at close to medium distances from obstacles, with errors increasing
gradually as the distance between obstacles and the camera increases.

Based on the field obstacle localization accuracy test results in Table 5, a comparative
statistical graph was plotted as shown in Figure 11. From Figure 11a, it is evident that the
test distances for the five types of obstacles fluctuate above the actual distances, and as the
distance between obstacles and the camera increases, measurement errors also increase.
This is primarily due to the limitations of camera resolution, which results in less precise
depth information capture of distant obstacles. Additionally, outdoor lighting conditions
affect the camera, leading to some background noise and partial loss of obstacle details,
thereby affecting ranging accuracy. As depicted in Figure 11b, the relative error is less than
3% within a range of 5 m and less than 4% within 8 m, indicating that overall measurement
errors meet real-time ranging requirements.
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5. Discussion

In this study, we developed the LPA-YOLOv8n model based on the YOLOv8 archi-
tecture. The improvements include incorporating the LSKA attention mechanism into the
SPPF module of the backbone, replacing the Bottleneck block in the C2f module with the
PKI Block, and introducing an auxiliary detection head in the head part. We also utilized
binocular cameras to obtain the position information of obstacles. The experimental results
demonstrate that compared to the baseline YOLOv8n model, LPA-YOLOv8n improved
the precision of obstacle detection in agricultural fields by 3.4%. The issues of missed
detections and false positives were effectively mitigated. Measured by mAP@0.5, the
model’s performance increased from 89.1% to 91.7%, indicating an improvement in the
recognition accuracy of five types of obstacles. Furthermore, in the obstacle localization
accuracy test, the average absolute error and average relative error for distances between 2
to 10 m were 0.22 m and 3.06%, respectively, confirming that the designed detection and
localization system can meet the requirements for detecting and locating common obstacles
in agricultural environments.

The LPA-YOLOv8n model presented in this paper demonstrates effective detection
and localization accuracy for field obstacles. However, there is still room for improvement
and refinement in the system’s performance. Currently, the main sources of potential errors
and limitations are as follows:

(1) Limited Interpretability. The black-box nature of convolutional neural networks
(CNNs) results in a lack of transparency in the model’s decision-making process,
making it difficult to explain misclassifications and omissions in specific scenarios.
This limitation hampers the precise identification of areas for model improvement.

(2) Model Complexity and Computational Resources. Although the model shows improve-
ments in detection accuracy, its high computational complexity may hinder efficient op-
eration on resource-constrained devices. This could impact the real-time performance
and deployment feasibility of the model, particularly in autonomous agricultural
machinery systems, where real-time obstacle avoidance might not be achievable.

(3) Insufficient Data Diversity. The dataset may lack sufficient diversity in lighting
conditions, weather, and seasons, leading to limited generalization ability of the
model under various environmental conditions. This can result in decreased detection
performance in certain specific environments, affecting the reliability of the model in
practical applications.

To address these issues and further enhance the performance and applicability of
LPA-YOLOv8n, future research directions include the following aspects:

(1) Enhancing the interpretability of the model. Convolutional neural networks (CNNs)
have limited interpretability; thus, heatmaps are utilized to evaluate the pros and cons
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of different positions in the field obstacle detection process, as shown in Figure 12. The
intensity of red in the heatmap indicates the extent of its impact on target localization.
Additionally, heatmaps can be used to analyze the specific impact of enhancement
modules on model performance.

(2) Model lightweighting. In the next step, we will deploy the algorithm in an au-
tonomous agricultural machinery system, providing a reference for future research on
autonomous obstacle avoidance in uncrewed agricultural vehicles. Thus, the model
requires lightweighting. The improved model in this study emphasizes enhanced
accuracy, but in resource-constrained environments, the model must be optimized
for computational efficiency and reduced memory usage while maintaining high
precision and real-time performance.

(3) Expanding dataset quantity. In real-world applications, LPA-YOLOv8n may encounter
missed detections, particularly in scenarios with multiple overlapping targets. In such
cases, occlusion between targets can prevent the model from accurately detecting and
recognizing all targets, thereby affecting detection precision and reliability. Therefore,
enriching and expanding the dataset is crucial.

Agriculture 2024, 14, x FOR PEER REVIEW 17 of 19 
 

 

   
(a) (b) (c) 

Figure 12. Heatmap: (a) livestock area visualization; (b) agricultural machinery area visualization; 
and (c) pole area visualization. 

6. Conclusions 
This paper presents a field obstacle detection algorithm, LPA-YOLOv8n, based on an 

enhanced YOLOv8 framework, tailored for detecting typical field obstacles in complex 
agricultural environments. The algorithm integrates LSKA, PKI, and Aux head structures. 
The results from model training and validation substantiate the effectiveness of the pro-
posed approach. The improved model utilizes color images captured by RealSense D435i 
binocular cameras to detect obstacles and obtain their three-dimensional coordinates in 
the field coordinate system. Experimental findings demonstrate that the LPA-YOLOv8n 
model achieves an optimal balance between parameter count, computational load, and 
detection accuracy. It significantly enhances detection precision without increasing pa-
rameters, thus reducing computational demands. Moreover, the improved model exhibits 
promising results in localization accuracy tests, meeting real-time detection and position-
ing requirements for typical field obstacles in challenging environments with limited com-
putational resources. The enhanced LPA-YOLOv8 model developed in this study signifi-
cantly improves the autonomous obstacle avoidance capabilities of driverless agricultural 
machinery, reducing the need for human intervention while increasing operational effi-
ciency and safety. This advancement facilitates the smart and modernized development 
of agricultural production. The refined model can also be extended to applications in field 
environment monitoring, such as pest and disease detection and crop growth monitoring, 
providing intelligent solutions for agricultural management. Furthermore, the designed 
detection and localization system not only achieves cost savings and efficiency improve-
ments but also reduces the complexity of operating driverless agricultural machinery for 
farmers. Additionally, it offers valuable insights for obstacle detection and localization in 
other scenarios. 

Author Contributions: Conceptualization, Y.Z. and Q.X.; methodology, Y.Z., K.T. and Q.X.; soft-
ware, Y.Z. and Q.X.; validation, Y.Z. and B.Z.; formal analysis, Y.Z., B.Z. and Q.X.; investigation, Y.Z. 
and B.Z.; resources, Y.Z., Q.X., K.T. and J.H.; data curation, Y.Z., K.T. and J.H.; writing—original 
draft preparation, Y.Z.; writing—review and editing, Y.Z. and K.T.; visualization, Y.Z. and Z.W.; 
supervision, Z.W. and J.H.; project administration, B.Z. and Q.X.; funding acquisition, B.Z. and Q.X. 
All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the Agricultural Science and Technology Innovation Pro-
gram of the Chinese Academy of Agricultural Sciences (31-NIAM-05) and The Jiangsu Province Sci-
ence and Technology Support Program, China (BE2023332-2) and The National Key Research and 
Development Program of China (2022YFD2001404). 

Institutional Review Board Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available in the article. 

Acknowledgments: The authors thank the editor and anonymous reviewers for providing helpful 
suggestions for improving the quality of this manuscript. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Figure 12. Heatmap: (a) livestock area visualization; (b) agricultural machinery area visualization;
and (c) pole area visualization.

6. Conclusions

This paper presents a field obstacle detection algorithm, LPA-YOLOv8n, based on an
enhanced YOLOv8 framework, tailored for detecting typical field obstacles in complex agri-
cultural environments. The algorithm integrates LSKA, PKI, and Aux head structures. The
results from model training and validation substantiate the effectiveness of the proposed ap-
proach. The improved model utilizes color images captured by RealSense D435i binocular
cameras to detect obstacles and obtain their three-dimensional coordinates in the field coor-
dinate system. Experimental findings demonstrate that the LPA-YOLOv8n model achieves
an optimal balance between parameter count, computational load, and detection accuracy.
It significantly enhances detection precision without increasing parameters, thus reducing
computational demands. Moreover, the improved model exhibits promising results in
localization accuracy tests, meeting real-time detection and positioning requirements for
typical field obstacles in challenging environments with limited computational resources.
The enhanced LPA-YOLOv8 model developed in this study significantly improves the
autonomous obstacle avoidance capabilities of driverless agricultural machinery, reducing
the need for human intervention while increasing operational efficiency and safety. This
advancement facilitates the smart and modernized development of agricultural production.
The refined model can also be extended to applications in field environment monitoring,
such as pest and disease detection and crop growth monitoring, providing intelligent solu-
tions for agricultural management. Furthermore, the designed detection and localization
system not only achieves cost savings and efficiency improvements but also reduces the
complexity of operating driverless agricultural machinery for farmers. Additionally, it
offers valuable insights for obstacle detection and localization in other scenarios.



Agriculture 2024, 14, 1493 17 of 18

Author Contributions: Conceptualization, Y.Z. and Q.X.; methodology, Y.Z., K.T. and Q.X.; software,
Y.Z. and Q.X.; validation, Y.Z. and B.Z.; formal analysis, Y.Z., B.Z. and Q.X.; investigation, Y.Z.
and B.Z.; resources, Y.Z., Q.X., K.T. and J.H.; data curation, Y.Z., K.T. and J.H.; writing—original
draft preparation, Y.Z.; writing—review and editing, Y.Z. and K.T.; visualization, Y.Z. and Z.W.;
supervision, Z.W. and J.H.; project administration, B.Z. and Q.X.; funding acquisition, B.Z. and Q.X.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Agricultural Science and Technology Innovation Program
of the Chinese Academy of Agricultural Sciences (31-NIAM-05) and The Jiangsu Province Science and
Technology Support Program, China (BE2023332-2) and The National Key Research and Development
Program of China (2022YFD2001404).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Acknowledgments: The authors thank the editor and anonymous reviewers for providing helpful
suggestions for improving the quality of this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Li, S.; Xu, H.; Ji, Y.; Cao, R.; Zhang, M.; Li, H. Development of a following agricultural machinery automatic navigation system.

Comput. Electron. Agric. 2019, 158, 335–344. [CrossRef]
2. Shang, Y.H.; Wang, H.; Qin, W.C.; Wang, Q.; Liu, H.Y.; Yin, Y.X.; Song, Z.H.; Meng, Z.J. Design and Test of Obstacle Detection and

Harvester Pre-Collision System Based on 2D Lidar. Agronomy 2023, 13, 388. [CrossRef]
3. Shang, Y.H.; Zhang, G.Q.; Meng, Z.J.; Wang, H.; Su, C.H.; Song, Z.H. Field Obstacle Detection Method of 3D LiDAR Point Cloud

Based on Euclidean Clustering. Trans. CSAM 2022, 53, 23–32.
4. Xue, J.L.; Cheng, F.; Li, Y.Q.; Song, Y.; Ma, T.H. Detection of Farmland Obstacles Based on an Improved YOLOv5s Algorithm by

Using CIoU and Anchor Box Scale Clustering. Sensors 2022, 22, 1790. [CrossRef] [PubMed]
5. Skoczeń, M.; Ochman, M.; Spyra, K.; Nikodem, M.; Krata, D.; Panek, M.; Pawłowski, A. Obstacle Detection System for Agricultural

Mobile Robot Application Using RGB-D Cameras. Sensors 2021, 21, 5292. [CrossRef]
6. Wen, Y.; Xue, J.L.; Sun, H.; Song, Y.; Lv, P.F.; Liu, S.H.; Chu, Y.Y.; Zhang, T.Y. High-precision target ranging in complex orchard

scenes by utilizing semantic segmentation results and binocular vision. Comput. Electron. Agric. 2023, 215, 108440. [CrossRef]
7. Yang, W.J.; Wu, J.C.; Zhang, J.L.; Gao, K.; Du, R.H.; Wu, Z.; Firkat, E.; Li, D.W. Deformable convolution and coordinate attention

for fast cattle detection. Comput. Electron. Agric. 2023, 211, 108006. [CrossRef]
8. Cao, Y.K.; Pang, D.D.; Zhao, Q.C.; Yan, Y.; Jiang, Y.Q.; Tian, C.Y.; Wang, F.; Li, J.Y. Improved YOLOv8-GD deep learning model for

defect detection in electroluminescence images of solar photovoltaic modules. Eng. Appl. Artif. Intel. 2024, 131, 107866. [CrossRef]
9. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

10. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13
December 2015; pp. 1440–1448.

11. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE
TPAMI 2017, 39, 1137–1149. [CrossRef]

12. Cai, Z.; Vasconcelos, N. Cascade R-CNN: High quality object detection and instance segmentation. IEEE TPAMI 2019, 43,
1483–1498. [CrossRef]

13. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

14. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, D.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Singleshot Multibox Detector; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 21–37.

15. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007.

16. Liu, H.; Zhang, L.; Chen, Y.; Zhang, J.; Wu, B. Real-time Pedestrian Detection in Orchard Based on Improved SSD. Trans. Chin.
Soc. Agri. Mach. 2019, 50, 29–35.

17. Peng, H.X.; Chen, H.; Zhang, X.; Liu, H.N.; Chen, K.Y. Retinanet_G2S: A multi-scale feature fusion-based network for fruit
detection of punna navel oranges in complex field environments. Precis. Agric. 2024, 25, 889–913. [CrossRef]

18. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
19. Glenn, J. YOLOv5 Release v6.1. 2022. Available online: https://github.com/ultralytics/yolov5/releases/tag/v6.1 (accessed on 9

June 2023).

https://doi.org/10.1016/j.compag.2019.02.019
https://doi.org/10.3390/agronomy13020388
https://doi.org/10.3390/s22051790
https://www.ncbi.nlm.nih.gov/pubmed/35270935
https://doi.org/10.3390/s21165292
https://doi.org/10.1016/j.compag.2023.108440
https://doi.org/10.1016/j.compag.2023.108006
https://doi.org/10.1016/j.engappai.2024.107866
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2019.2956516
https://doi.org/10.1007/s11119-023-10098-6
https://github.com/ultralytics/yolov5/releases/tag/v6.1


Agriculture 2024, 14, 1493 18 of 18

20. Li, C.Y.; Li, L.L.; Jiang, H.L.; Weng, K.H.; Geng, Y.F.; Li, L.; Ke, Z.D.; Li, Q.Y.; Cheng, M.; Nie, W.Q.; et al. YOLOv6: A Single-Stage
Object Detection Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976.

21. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors. arXiv 2022, arXiv:2207.02696.

22. Glenn, J. Ultralytics YOLOv8. 2022. Available online: https://github.com/ultralytics/ultralytics (accessed on 26 May 2023).
23. Li, W.T.; Zhang, Y.; Mo, J.Q.; Li, Y.M.; Liu, C.L. Detection of Pedestrian and Agricultural Vehicles in Field Based on Improved

YOLOv3—Tiny. Trans. CSAM 2020, 51 (Suppl. S1), 1–8+33.
24. Khow, Z.J.; Tan, Y.F.; Karim, H.A.; Rashid, H.A.A. Improved YOLOv8 Model for a Comprehensive Approach to Object Detection

and Distance Estimation. IEEE Access 2024, 12, 63754–63767. [CrossRef]
25. Yan, X.; Chen, B.; Liu, M.; Zhao, Y.; Xu, L. Inclined Obstacle Recognition and Ranging Method in Farmland Based on Improved

YOLOv8. World Electr. Veh. J. 2024, 15, 104. [CrossRef]
26. Mish, M.D. A self regularized non-monotonic neural activation function. arXiv 2019, arXiv:1908.08681.
27. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.M.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp.
936–944.

28. Liu, S.; Qi, L.; Qin, H.F.; Shi, J.P.; Jia, J.Y. Path aggregation network for instance segmentation. In Proceedings of the 2018,
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp.
8759–8768.

29. Guo, M.H.; Lu, C.Z.; Liu, Z.N.; Cheng, M.M.; Hu, S.M. Visual Attention Network. arXiv 2022, arXiv:2202.09741. [CrossRef]
30. Lau, K.W.; Po, L.M.; Rehman, Y.A.U. Large Separable Kernel Attention: Rethinking the Large Kernel Attention design in CNN.

Expert. Syst. Appl. 2023, 236, 121352. [CrossRef]
31. Cai, X.H.; Lai, Q.X.; Wang, Y.W.; Wang, W.G.; Sun, Z.R.; Yao, Y.Z. Poly Kernel Inception Network for Remote Sensing Detection.

arXiv 2024, arXiv:2403.06258.
32. Jiang, T.Y.; Li, Z.; Zhao, J.; An, C.G.; Tan, H.; Wang, C.L. An Improved Safety Belt Detection Algorithm for High-Altitude Work

Based on YOLOv8. Electronics 2024, 13, 850. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/ultralytics/ultralytics
https://doi.org/10.1109/ACCESS.2024.3396224
https://doi.org/10.3390/wevj15030104
https://doi.org/10.1007/s41095-023-0364-2
https://doi.org/10.1016/j.eswa.2023.121352
https://doi.org/10.3390/electronics13050850

	Introduction 
	Proposed Improvement Methods 
	The YOLOv8 Algorithm 
	LPA-YOLOv8 Detection Model 
	SPPF-LSKA 
	C2f-PKI 
	Aux Head 


	Experimental Setup 
	Dataset 
	Data Augmentation 
	Obstacle Detection and Localization System 
	System Framework 
	Localization Principle 


	Experimental Results and Analysis 
	Implementation Details 
	Evaluation Metrics 
	Ablation Experiment 
	Comparative Analysis with Other Models 
	Accuracy Experiment of Localization System 

	Discussion 
	Conclusions 
	References

