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Abstract: The detection of the impurity rate in machine-picked seed cotton is crucial for precision
agriculture. This study proposes a novel Cotton-YOLO-Seg cotton-impurity instance segmentation
algorithm based on the you only look once version 8 small segmentation model (Yolov8s-Seg). The
algorithm achieves precise pixel-level segmentation of cotton and impurities in seed cotton images
and establishes a detection model for the impurity rate, enabling accurate detection of the impurity
rate in machine-picked cotton. The proposed algorithm removes the Pyramid 4 (P4) feature layer and
incorporates Multi-Scale Convolutional Block Attention (MSCBCA) that integrates the Convolutional
Block Attention Module (CBAM) and Multi-Scale Convolutional Attention (MSCA) into the Faster
Implementation of Cross Stage Partial Bottleneck with 2 Convolutions (C2f) module of the feature
extraction network, forming a novel C2f_MSCBCA module. The SlimNeck structure is introduced
in the feature fusion network by replacing the P4 feature layer with the small-target detection layer
Pyramid 2 (P2). Additionally, transfer learning is employed using the Common Objects in Context
(COCO) instance segmentation dataset. The analysis of 100 groups of cotton image samples shows
that the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage
Error (MAPE) for impurity rate detection are 0.29%, 0.33%, and 3.70%, respectively, which are reduced
by 52.46%, 48.44%, and 53.75% compared to the Yolov8s-seg model. The Precision (P), Recall (R),
and mean Average Precision at an intersection over union of 0.5 (mAP@0.5) are 85.4%, 78.4%, and
80.8%, respectively, which are improved by 4.2%, 6.2%, and 6.4% compared to Yolov8s-seg model,
significantly enhancing the segmentation performance of minor impurities. The Cotton-YOLO-Seg
model demonstrates practical significance for precisely detecting the impurity rate in machine-picked
seed cotton.

Keywords: impurity rate of machine-picked seed cotton; machine vision; impurity instance segmen-
tation; Yolov8s-seg improvements

1. Introduction

Cotton is a vital agricultural and strategic commodity worldwide [1]. In 2023, Xin-
jiang’s cotton sown area reached 2.37 million hectares, with a production output of 5.11 mil-
lion tons, representing 91% of China’s total cotton production. Mechanized cotton harvest-
ing has become the mainstream trend, with the machine harvesting rate in the Xinjiang
region surpassing 85%. However, machine-picked seed cotton contains significant impuri-
ties, with an uneven size and mass distribution. The impurity rate of machine-picked seed
cotton is a crucial indicator for evaluating the quality of cotton harvesting and grading.
Quantitative detection of the impurity rate in machine-picked seed cotton can reflect the
harvesting performance of the cotton picker and guide subsequent operations, such as
cotton purchasing, processing, and grading [2,3].
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The primary methods for quantitatively detecting the impurity rate of cotton include
the manual separation and measurement of impurities, mechanical separation using raw
cotton impurity analyzers [4], spectral analysis [3,5], and machine vision detection [6,7].
Manual separation and measurement are time-consuming and subjective. The method
using raw cotton impurity analyzers is the current standardized approach for measuring
the cotton impurity rate. However, it has limited cleaning efficiency, is costly, and can
easily damage the cotton fibers [3,5,8]. The spectral analysis involves extracting spectral
features using a spectrometer, followed by the analysis, processing, and modeling of the
spectra. This method requires a high level of expertise from the operator [3]. Machine
vision detection is characterized by high accuracy, fast detection speed, and versatility.
By segmenting impurities in cotton images and calculating the impurity rate [1], it has
been widely used in various agricultural fields, including fish [9,10], fruits [11–13], veg-
etables [14–16], beans, and grains [17–19]. Few studies directly employ machine vision
technology to detect the impurity rate in machine-harvested seed cotton. Most exist-
ing research relies on traditional image-processing and convolution-based deep learning
methods for detecting and classifying impurities in machine-picked seed cotton [3,6,7].
Traditional image-processing methods involve converting cotton images into a specific
color space, setting segmentation thresholds to extract features, and separating impuri-
ties from the cotton images. Taylor [20,21] utilized video impurity scanners to measure
the area and quantity of impurities in cotton and subsequently graded the cotton quality
based on the impurity content. Wan et al. [4] used Red–Green–Blue (RGB) double-sided
imaging technology to obtain the impurity pixel area in seed cotton sample images and
established a correlation model between the impurity pixel area and the impurity quality,
enabling accurate detection of impurity rate in machine-picked seed cotton. Zhang et al. [8]
proposed a method that combines the Genetic Algorithm-Support Vector Machine (GA-
SVM) classification technique with morphological segmentation to segment impurities in
machine-picked seed cotton images. Li et al. [1] achieved seed cotton grading by evaluating
the color of seed cotton using machine vision technology. Yang et al. [22,23] identified
and segmented foreign fibers in cotton images using Otsu’s method (Otsu) combined with
morphological-processing methods. Traditional image-processing methods rely on manual
feature selection, which necessitates complex preprocessing operations on the original
image. Additionally, the selected features often lack robustness and the ability to generalize
to environmental changes. Due to the limitations of manual feature-extraction techniques,
lower-dimensional feature information is typically obtained. This makes it challenging
to adequately capture and distinguish the high-dimensional key features necessary for
recognizing impurities in complex backgrounds [24,25]. Additionally, the method struggles
with segmenting impurities in machine-picked seed cotton images, requiring significant
human intervention and reliance on expert experience.

Convolutional neural networks (CNNs) can autonomously extract high-dimensional
features and excel at segmenting regions of interest in complex background images [24–26].
Zhang et al. [6,7] combined traditional image-segmentation techniques with the you only
look once (YOLO) detection algorithm, employing a multi-channel fusion Otsu algorithm
and an improved Canny algorithm to segment impurities in cotton images. The YOLO
model was then used to classify and recognize both cotton and impurities. Wei et al. [27]
improved the U-shaped Network (U-Net) model to segment raw foreign cotton fibers in
cotton images, achieving a Root Mean Square Error (RMSE) of 4% between the predicted
and actual sizes. Li et al. [28] proposed the Cotton-YOLO model for detecting and classify-
ing foreign fibers in cotton images by integrating ConvNext and SwinTransformer modules
based on Yolov7. The detection accuracy improved from 94.53% to 96.14% compared to the
baseline model. Xu et al. [29] utilized a high-speed Charge-Coupled Device (CCD) camera
to capture images of cotton stream. They detected and classified foreign impurities using
the WFF-YOLO model, which incorporated a Weighted Feature Fusion (WFF) strategy
and employed a decoupled detector head without anchor frames based on YOLO v4-tiny.
The foreign impurity detection achieved an accuracy of 98.0%. Deep learning algorithms
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exhibit significant advantages over traditional image-processing methods for detecting
impurities in machine-picked seed cotton. These advantages include higher detection
accuracy, faster detection speeds, greater robustness, and generalization capabilities in
response to environmental changes [29]. The above research primarily focuses on detecting
and segmenting sizable foreign fibers in cotton images, with fewer studies on directly using
instance-segmentation methods to segment minute impurities in machine-picked seed
cotton and calculate the impurity rate, and the aforementioned algorithms are difficult to
segment small impurities in machine-picked seed cotton.

Machine-picked seed cotton exhibits a high impurity rate, characterized by small-
sized impurities that are diverse in type and randomly distributed. This complexity
makes detecting and segmenting impurities in cotton images particularly challenging,
especially for small-target impurities [5,8]. Zhang et al. [30,31] enhanced the feature-
extraction capability for small targets by incorporating an attention mechanism and a
small target detection layer into the YOLO network. Zhu et al. [32] improved feature
information fusion by incorporating a Path Aggregation Network with Bi-directional
Feature Pyramid (Bi-PAN) structure with bi-directional feature connectivity, compensating
for the loss of target features and positional information caused by network deepening.
Tian et al. [33] employed the Densely Connected Convolutional Network (DenseNet)
architecture, integrating data augmentation techniques and an Adaptive Attention Module
(AAM) to enhance the extraction and fusion capabilities for small target features. The
aforementioned improvement strategy for small-target-dense object detection broadens the
scope for optimizing the network model discussed in this study.

This study employs an instance-segmentation method based on deep convolutional
neural networks to segment small-target impurities in machine-picked cotton images and
utilize the mask pixel areas of cotton and impurities to calculate the impurity rate. There
are currently two primary algorithmic approaches to instance segmentation using deep
convolutional neural networks. The first is a two-stage instance segmentation algorithm
characterized by high detection accuracy but slower speed, typically represented by a
Mask Region-based Convolutional Neural Network (Mask R-CNN) [34]. The second is a
one-stage instance segmentation algorithm, which offers slightly lower detection accuracy
compared to the two-stage algorithm but operates several times faster, enabling real-
time detection. This approach is typically represented by You Only Look At Coefficients
(YOLACT) [35] and YOLO-Seg. This study chooses Yolov8-Seg as the foundational model
owing to its optimal balance between detection accuracy and speed. Its compact model
size makes it suitable for deployment on devices with limited computational resources.

2. Materials and Methods
2.1. Datasets for Machine-Picked Seed Cotton

The image acquisition of machine-picked seed cotton is conducted using a portable
mobile camera mounted on a bracket for vertical downward-shooting. Figure 1 illuminates
the image-acquisition system, which consists of a computer, a camera (Xiaomi Corporation,
Beijing, China), a light source (CRENOV, Shenzhen, China), a height-adjustable operating
platform, pieces of seed cotton (Shihezi, China), tweezers, electronic balance (CHANGXIE,
Dongguan, China), and calibration weight. The seed cotton is placed in its natural state
on top of black velvet on the base plate. The shooting distance is approximately 0.25 m
directly above the seed cotton. Illumination is provided by a 26 cm diameter, 10 W ring-
shaped Light Emitting Diode (LED) white light source. The images are captured using a
12-megapixel rear wide-angle lens of the XiaoMI8 phone, featuring a 4 mm focal length,
an aperture set at f/1.8, an exposure time of 1/50 s, and stored in the Joint Photographic
Experts Group (JPG) format.
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Figure 1. Schematic diagram of image collection.

In this study, the actual impurity rate of machine-picked seed cotton samples is
measured using manual separation of impurities. Randomly selected samples of machine-
picked seed cotton are used, with each sample’s weight and impurity rate being random-
ized. The mass of each sample is in the range of 5~40 g. In this study, n cotton image
samples (n = 100) are captured using an image-collection device. Each cotton sample is pho-
tographed from both the front and back, yielding two images per sample. After capturing
each image, the images are manually numbered. The total weight of the machine-picked
seed cotton samples mcotton is measured using a calibrated electronic balance with a range
of 0~500 g and an accuracy of 0.01 g. The impurities in the machine-picked seed cotton sam-
ples are manually removed using tweezers. The mass of these impurities mimpurity is then
measured with a calibrated electronic balance. This process allows for the determination of
the actual impurity rate of the cotton samples.

Owing to the limited cotton quality in each individual machine-picked seed cotton
sample, it is necessary to increase the quality of these samples and reduce the randomness
of impurity rates caused by different types and densities of impurities. In this study, x
samples are randomly selected to form a new sample group (x = 50), divided into a total
of N groups of machine-picked seed cotton samples (N = 100). The total cotton mass of
each group in in the range of 770~890 g, significantly increasing the sample capacity and
enhancing the accuracy of impurity rate detection. The actual impurity rate pactual for each
set of samples is given in Equation (1):

pactual =

x
∑

i=1
mimurity

x
∑

i=1
mcotton

(1)

The detected impurity rate pdetect for each set of samples is computed and shown in
Formula (2), where the number of impurity pixels pixelimpurity and the number of cotton
pixels pixelcotton are calculated for each image using the segmentation algorithm.

pdetect =

2x
∑

i=1
pixelimpurity

2x
∑

i=1
pixelimpurity +

2x
∑

i=1
pixelcotton

(2)
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We employed the Cotton-YOLO-Seg model to accurately segment cotton and impurity
pixels and to detect the impurity rate in machine-picked seed cotton images. Finally, the
deviation between the actual impurity rate pactual and the detected impurity rate pdetect
of the cotton samples was evaluated. The flowchart illustrating the entire experimental
concept is shown in Figure 2.
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Figure 2. Flowchart of experimental concepts.

To enhance the diversity of the machine-picked seed cotton image dataset, we col-
lected cotton images with varying resolutions, light intensities, seed cotton quantities,
and impurity rates. After data cleaning, identical, structurally similar, or blurry cotton
images were removed, resulting in a total of 320 images in the cotton-impurity dataset.
The number of images with resolutions of 2268 × 4032 pixels and 3024 × 3024 pixels was
80 and 240, respectively. Among these images, the number of impurities accounted for
approximately 95% of the total targets. Figure 3 depicts various complex scenarios in cotton
images, encompassing variations in light intensity, mutual occlusion, and the overlapping
of seed cotton and impurities.
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Figure 3. Sample images of machine-picked seed cotton.

The precision of dataset labeling directly influences the segmentation accuracy of both
cotton and impurities. Constructing a dataset of cotton-impurity images and accurately
labeling them is both time-consuming and labor-intensive. This study develops a small
dataset of 320 images and enhances it using data-augmentation techniques to bolster
the model’s robustness. We utilize Labelme to categorize targets in the cotton images
into two classes: cotton and impurity. The polygonal areas of cotton and impurities
are manually annotated, and the labeled files are saved in JavaScript Object Notation
(JSON) format. Figure 4 illustrates the enhancement of image data through flipping,
grayscale adjustment, brightness adjustment, contrast adjustment, and noise addition.
By combining the original images with the data-enhanced images and their labels, the
manuscript creates the cotton-impurity dataset, which contains a total of 1920 images and
1920 JSON-labeled files. Subsequently, the JSON annotation files are converted to a Text
(TXT) format compatible with YOLO and randomly partitioned the dataset into training,
validation, and test sets in a ratio of 8:1:1, yielding 1536, 192, and 192 images, respectively.
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2.2. Cotton-YOLO-Seg Model

The Yolov8-Seg instance-segmentation algorithm provides high detection accuracy,
fast processing speed, a relatively small model size, and ease of deployment on devices with
limited computing resources. Although Yolov9-Seg [36] and Yolov10-Seg [37] have been
released, the current version of Yolov9-Seg is incomplete and possesses a relatively large
model size, while Yolov10-Seg represents minor modular improvements over Yolov8-Seg.
The Yolov8-Seg network architecture is primarily divided into four parts: Input, Backbone,
Neck, and Segment Head.

The machine-picked seed cotton dataset contains various types of impurities, in-
cluding leaves, shells, and branches. These impurities are numerous, irregularly shaped,
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densely distributed, and mostly small targets, whereas cotton consists of a small number of
large targets.

The original Yolov8-Seg algorithm exhibits poor detection and segmentation accuracy
for the cotton-impurity dataset, especially for small-target impurities with more obvi-
ous missed detections. The improved network structure is illustrated in Figure 5. This
manuscript introduces a novel C2f_MSCBCA module, incorporating Multi-Scale Convolu-
tional Block Attention (MSCBCA) mechanism that integrates Convolutional Block Attention
Module (CBAM) and Multi-Scale Convolutional Attention (MSCA) within the Faster Im-
plementation of Cross Stage Partial Bottleneck with 2 Convolutions (C2f) module of the
feature extraction network in Yolov8s-Seg while eliminating the Pyramid 4 (P4) feature
layer. Additionally, this work incorporates the SlimNeck structure into the feature-fusion
network, adds the Pyramid 2 (P2) small target detection layer, and removes the P4 feature
layer. The improved Cotton-YOLO-Seg model for cotton-impurity segmentation is then
subjected to transfer learning using the Common Objects in Context (COCO) [38] instance
segmentation dataset.
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2.2.1. A Novel MSCBCA Attention Module

As illustrated in Figure 6, the Cotton-YOLO-Seg segmentation model integrates the
CBAM [39] and MSCA [40] to create the new MSCBCA attention module. The CBAM
module guides the network in focusing on critical regions in the input feature map by
computing both channel and spatial attention. The MSCA module captures multi-scale
features using convolutional kernels of various sizes and fuses features from different
scales, enhancing the detection and segmentation of small-target impurities of varying
sizes. In the original MSCA module, the multi-branch depth-wise strip convolution kernels
are sized at 7, 11, and 21, respectively, to extract feature information and allocate weights
to small, medium, and large targets. To better emphasize small-target impurities, the
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depth-wise strip convolution with a kernel size of 21 is removed, and additional weight is
allocated to small-target impurities.
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The mathematical formula for the MSCBCA module is presented in Equations (3)–(6).

F′ = MC(F)⊗ F (3)

F′′ = MS(F′)⊗ F′ (4)

AttMSCA = Conv1×1

(
2

∑
i=0

Scalei
(
DW − Conv

(
F′′))) (5)

Out = Att ⊗ F′′ (6)

where F represents the input features, F′ denotes the feature map obtained by channel
attention weighting, Mc(F) stands for the channel attention output weights, F′′ means the
feature map obtained by spatial attention weighting, Ms(F) refers to the spatial attention
output weights, AttMSCA indicates the MSCA attention output weights, Out signifies the
output features, ⊗ is the element-wise matrix multiplication operation, DW-Conv denotes
the deep-wise convolution, Scalei represents the ith branch in the MSCA attention map,
with i ∈ {0,1,2}, and Scale0 symbolizes the identity connection.

2.2.2. Neck Network Improvements

The Yolov8 base model employs three scale feature layers within its Neck network
structure. For an image with an input size of 640 × 640 pixels, feature layers with down-
sampling factors of 8, 16, and 32 are used to detect and segment target objects of different
sizes, corresponding to small, medium, and large targets, respectively. However, since
most impurities in cotton images are smaller than one-tenth of the input image size and
are numerous and densely distributed, the original Neck network structure fails to meet
the required detection and segmentation accuracy. Figure 7 illustrates a comparison of the
neck network structure pre- and post-improvement. Introducing the SlimNeck network
structure, which consists of the Group Shuffle Convolution (GSConv) module and the
VoV-Group Sparse and Cross-Stage Partial Network (VoVGSCSP) module, reduces the
model’s complexity while maintaining accuracy [41]. The increase in network downsam-
pling multiplicity and the gradual deepening of the network reduce the pixel percentage
of small targets, potentially leading to the complete loss of pixel information for small-
target impurities. The shallow network can retain more feature information and details of
small-target impurities. This study adds the small-target detection layer P2 to the SlimNeck
feature fusion network, with a downsampling factor of 4 for the corresponding feature
layer. This addition maximizes the retention of pixel information of small-target impu-
rities. It effectively fuses the detailed feature information of small-target impurities in
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the shallow features, thereby improving the accuracy of small-target impurity detection
and segmentation.
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Figure 8 depicts the architecture of the GSConv module and the VoVGSCSP mod-
ule, collectively attaining an improved equilibrium between model accuracy and speed.
GSConv integrates Spatial Convolution (SC), Depthwise Separable Convolution (DSC),
and Shuffle operations, blending the information generated by SC and DSC through the
Shuffle operation to facilitate the exchange of local feature information across different
channels and enhance nonlinear expression capabilities. Compared to standard convolu-
tion, GSConv has a computational cost of only 60% to 70%, maintaining accuracy while
achieving a balance between precision and speed. The VoVGSCSP module is designed
using a one-time aggregation approach, offering a simple and clear structure with faster
inference speeds. It effectively reduces computational and structural complexity while
retaining sufficient accuracy [42,43].
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2.2.3. Backbone Network Lightweight

Based on the analysis of the cotton-impurity dataset, the detected objects can be
categorized into two main types: large targets (cotton) and small targets (impurity). Figure 9
illustrates a comparison of the backbone network structure pre- and post-improvement. To
minimize the number of parameters and computational load of the model while optimizing
detection and segmentation accuracy, this study eliminates the P4 feature layer from the
backbone network and integrates MSCBCA attention into the C2f module, thereby creating
the novel C2f_MSCBCA module. This modification enables the feature extraction network
to concentrate more effectively on the feature information of small-target impurities.
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2.2.4. Transfer Learning from the COCO Dataset

Transfer learning suppresses overfitting to a certain extent and improves the model’s
accuracy metrics and generalization ability on limited data [44]. Figure 10 illustrates the
transfer-learning process in this study. The COCO2017 instance segmentation dataset serves
as the source domain, and the improved Cotton-YOLO-Seg model is trained to fully learn
its complex features. The cotton-impurity dataset created in this study is used as the target
domain. The weight parameters obtained from training on the COCO dataset are transferred
to the Cotton-YOLO-Seg model for further training. This process results in a cotton-impurity
instance-segmentation model with high detection and segmentation accuracy.
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3. Results
3.1. Experimental Environment Configuration

We trained the improved Cotton-YOLO-Seg model and all comparison models on a
Graphics Processing Unit (GPU) server. Table 1 provides the detailed hardware configura-
tion and software environment.

Table 1. Experimental test platform.

Hardware Platform or
Software Environment Model Identity or Designation Parametric or Version

CPU Intel Xeon E5-2695 v4 Frequency: 2.10 GHz
GPU NVIDIA GeForce RTX 3060M Memory: 12 GB

Computer system Windows 10 Professional RAM: 32GB
Deep learning framework Pytorch 2.0.0
Computational platform CUDA 11.7

Integrated development environment PyCharm Community 2022.3.3
Programming language Python 3.10.11

This study conducted all comparison experiments on the created cotton-impurity
dataset within the same environment and trains from scratch. Based on recommendations
from computer hardware specifications and literature [44], a small batch size with a low
learning rate is used. The training parameters are set as follows: the network input image
size is 640 × 640 pixels, with a batch size of 8 and 300 epochs. The optimizer is Stochastic
Gradient Descent (SGD), the initial learning rate is 0.01, the weight decay is 0.0005, the
number of workers is 16, and the momentum is 0.937. All other parameters are set to their
default values.

3.2. Precision Evaluation Indicators

To compare the detection performance of different models on the cotton-impurity
dataset in this study, Precision (P), Recall (R), mean Average Precision (mAP), Parameters
(Params), Model Size, Giga Floating-Point Operations Per Second (GFLOPs), and Frames
Per Second (FPS) are used as evaluation metrics. The relevant calculation formulas are
provided below in (7)–(10):

P =
TP

TP + FP
× 100% (7)

R =
TP

TP + FN
× 100% (8)

AP =

1∫
0

P · dR (9)

mAP =
1
N

N

∑
i=1

APi (10)

where TP denotes the number of correctly predicted positive samples, FN represents the
number of actual positive samples that are incorrectly predicted as negative, FP indicates
the number of actual negative samples that are incorrectly predicted as positive, and N
stands for the number of target categories.

The accuracy of the impurity rate detection across different models is evaluated
using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute
Percentage Error (MAPE). The corresponding formulas are shown in Formulas (11)–(13):

MAE =

N
∑
1
|pdetect − pactual |

N
(11)
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RMSE =

√√√√ 1
N

N

∑
i
(pdetect − pactual)

2 (12)

MAPE =
1
N

N

∑
1

∣∣∣∣ pdetect − pactual
pactual

∣∣∣∣ (13)

where N represents the number of groups of machine-picked seed cotton samples, and in
this study, N is set to 100.

3.3. Comparison of Model Experiments
3.3.1. Comparative Experiments on Improving MSCBCA Attention

To verify the effectiveness of integrating CBAM and MSCA attention, we conducted
comparative experiments using the original Yolov8s-seg model. Detailed comparative
performance results are presented in Table 2. The baseline is the original Yolov8s-seg model,
while +MSCA, +CBAM, and +MSCBCA represent the addition of MSCA, CBAM, and the
improved MSCBCA attention to the C2f module of the baseline, respectively.

Table 2. Performance comparison of attention improvements.

Method P/% R/% mAP@0.5/% Params/M Model Size/MB GFLOPs

Baseline 81.2 72.2 74.4 11.78 23.9 42.4
Baseline +MSCA 80.7 72.5 74.6 12.13 24.7 43.6
Baseline +CBAM 82.1 71.7 74.3 11.99 24.3 42.5

Baseline +MSCBCA 81.9 72.3 74.9 12.28 25.0 43.4

Given the data in Table 2, it is evident that the addition of MSCA, CBAM, and the
improved MSCBCA attention to the original Yolov8s-seg model enhances the model’s
segmentation performance for small-target impurities. Specifically, the addition of the
improved MSCBCA attention resulted in increases of 0.7%, 0.1%, and 0.5% in P, R, and
mAP@0.5, respectively, compared to the original model. Compared to the MSCA attention,
P and mAP@0.5 increased by 1.2% and 0.3%, respectively. Relative to the CBAM attention,
R and mAP@0.5 both increased by 0.6%. These results indicate that the improvements in
the MSCBCA attention are effective.

3.3.2. Ablation Experiments

To validate the effectiveness of each improved module, we conducted ablation ex-
periments, where a “✓” denotes the activation of the corresponding method or module.
Table 3 performance comparisons of the improved model after adding different modules
show that the addition of the improved MSCBCA attention module results in increases of
0.7%, 0.1%, and 0.5% in the accuracy indices P, R, and mAP@0.5, respectively. With the
addition of the improved SlimNeck network structure, the model’s accuracy significantly
improves, with the accuracy indices P, R, and mAP@0.5 increasing by 4.7%, 5.2%, and
6.0%, respectively. This indicates that most of the target objects in this dataset are small
objects. After removing the feature layer P4 from the backbone network, the accuracy
index mAP@0.5 increases by 0.4%, indicating that the improvement method is effective.
Finally, after using the COCO2017 dataset for transfer learning, the accuracy indices P, R,
and mAP@0.5 of the model reach 85.4%, 78.4%, and 80.8%, respectively. These values are
4.2%, 6.2%, and 6.4% higher than those of the original model. This network significantly
enhances the detection and segmentation accuracy of the cotton-impurity dataset. Figure 11
shows the comparison of model performance data pre- and post-improvement.
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Table 3. Performance comparison of the improved model after adding different modules.

MSCBCA SlimNeck Remove P4 Transfer Learning P/% R/% mAP@0.5/%

81.2 72.2 74.4
✓ 81.9 (+0.7) 72.3 (+0.1) 74.9 (+0.5)
✓ ✓ 85.9 (+4.7) 77.4 (+5.2) 80.4 (+6.0)
✓ ✓ ✓ 85.2 (+4.0) 78.1 (+5.9) 80.8 (+6.4)
✓ ✓ ✓ ✓ 85.4 (+4.2) 78.4 (+6.2) 80.8 (+6.4)
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Figure 12 compares the segmentation performance of the Yolov8s-seg and Cotton-
YOLO-Seg for cotton and impurities in the same seed cotton images. Under identical
environmental conditions, the final improved Cotton-YOLO-Seg model exhibits obviously
better detection and segment performance on the cotton-impurity dataset compared to
the original Yolov8s-seg model. The original Yolov8s-seg model is unable to detect and
segment small-target impurities effectively, leading to higher rates of missed detections
and under-segmentation for these small targets, which consequently results in the overall
detected impurity rate in seed cotton images being underestimated.

Agriculture 2024, 14, x FOR PEER REVIEW 14 of 20 
 

 

(2) Segmentation of cotton and impurities in Cotton-YOLO-Seg

(1) Segmentation of cotton and  impurities in baseline

(a) Original image (c) Cotton segmention (d) Impurities segmention(b) Cotton and impurities' masks

(a) Original image (c) Cotton segmention (d) Impurities segmention(b) Cotton and impurities' masks

Cotton Impurity

Cotton Impurity

 

Figure 12. Comparison of the segmentation result of the Yolov8-seg model and Cotton-YOLO-Seg 

model for cotton and impurities (where the red circles in (1b,1d) indicate the missed detections of 

impurities by the Yolov8-seg model). 

3.3.3. K-Fold Cross-Validation Experiments 

Since the original dataset in this paper is divided into training, validation, and test 

sets in a ratio of 8:1:1, we fixed the original test set for all K-fold cross-validation experi-

ments to ensure they are evaluated on the same test set. To maintain consistent training 

conditions, the training and validation sets are also set in a ratio of 8:1. Therefore, this 

study conducted 9-fold cross-validation experiments on the training and validation sets 

by randomly selecting a subset as the validation set and the rest as the training set. The 

partitioning of the dataset in k-fold cross-validation can be seen in Figure 13. This process 

is repeated until the 9th experiment is completed. Finally, the results of the nine valida-

tions are averaged to assess the stability and reliability of the final model’s performance. 

The results of our K (K = 9) fold cross-validation experiments for the improved model 

Cotton-YOLO-Seg are shown below. 

Figure 12. Comparison of the segmentation result of the Yolov8-seg model and Cotton-YOLO-Seg
model for cotton and impurities (where the red circles in (1b,1d) indicate the missed detections of
impurities by the Yolov8-seg model).



Agriculture 2024, 14, 1499 14 of 19

3.3.3. K-Fold Cross-Validation Experiments

Since the original dataset in this paper is divided into training, validation, and test sets
in a ratio of 8:1:1, we fixed the original test set for all K-fold cross-validation experiments to
ensure they are evaluated on the same test set. To maintain consistent training conditions,
the training and validation sets are also set in a ratio of 8:1. Therefore, this study conducted
9-fold cross-validation experiments on the training and validation sets by randomly select-
ing a subset as the validation set and the rest as the training set. The partitioning of the
dataset in k-fold cross-validation can be seen in Figure 13. This process is repeated until
the 9th experiment is completed. Finally, the results of the nine validations are averaged to
assess the stability and reliability of the final model’s performance. The results of our K
(K = 9) fold cross-validation experiments for the improved model Cotton-YOLO-Seg are
shown below.
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The experimental data in Table 4 reveal that the precision metrics from the nine
cross-validation experiments on the test set are remarkably similar, with average precision
indices of 85.2%, 78.4%, and 80.8%, respectively. Compared to the precision metrics of
85.4%, 78.4%, and 80.8% obtained from the test set of the Cotton-YOLO-Seg model with
a randomly split dataset in an 8:1:1 ratio, the validation results indicate that our Cotton-
YOLO-Seg model exhibits commendable stability and reliability on the self-constructed
cotton-impurity dataset.

Table 4. Evaluation of Cotton-YOLO-Seg model for K-fold cross-validation.

K-Fold P/% R/% mAP@0.5/%

Fold-1 85.7 78.1 80.9
Fold-2 85.1 78.4 80.8
Fold-3 85.4 78.4 81.0
Fold-4 85.2 78.5 80.8
Fold-5 85.4 78.4 80.8
Fold-6 85.0 78.5 81.0
Fold-7 85.3 78.3 80.7
Fold-8 85.0 78.4 80.7
Fold-9 85.0 78.5 80.8

Average 85.2 78.4 80.8
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3.3.4. Comparative Experiments with Different Models

To illustrate the advantages of the improved Cotton-YOLO-Seg model, this study com-
pares its instance-segmentation performance with other YOLO instance-segmentation algo-
rithms, as well as instance-segmentation algorithms based on Mask R-CNN, Segmenting
Objects by Locations (SOLO) [45], SOLOV2 [46], and YOLACT, using the Open-MMlab De-
tection Toolbox and Benchmark (MMdetection) [47] toolkit on the cotton-impurity dataset.

Table 5 and Figure 14 present the comparison results. The Yolov8-seg model demon-
strates higher accuracy metrics compared to Yolov5-seg, Yolov9-seg, and Yolov10s-seg,
highlighting its advanced capabilities. Among the five versions of Yolov8-seg (n, s, m,
l, and x), the depth and width of the models progressively increase, leading to greater
model complexity and computational demands. This study selects Yolov8s-seg as the base
model for improvement due to its strong feature-extraction capability, higher accuracy
metrics, and lighter weight. The n version of Yolov8-seg shows insufficient segmentation
performance for small impurities. The m, l, and x versions of Yolov8-seg show only minor
improvements compared to the Yolov8s-seg model, but they significantly increase the
model size, parameter count, and computational requirements, making them less suitable
for edge devices with limited computational resources. YOLACT, SOLO, SOLOV2, and
Mask R-CNN perform poorly on the self-constructed cotton-impurity dataset presented in
this study. These models exhibit insufficient feature-extraction capabilities for small-target
impurities, relatively low accuracy metrics, large model sizes, high parameter counts, and
significant computational demands, resulting in slow detection speeds. Consequently, they
are not suitable for deployment on edge devices with limited computational resources. As
shown in Table 5, the improved Cotton-YOLO-Seg model achieves the highest accuracy
metrics. Although the addition of the small target detection layer P2 to the SlimNeck
neck network structure slightly increases computational demands, the model’s accuracy
metrics significantly improve compared to other models. Additionally, the Cotton-YOLO-
Seg model maintains lower complexity and fewer parameters, making the improvements
acceptable and beneficial.

Table 5. Performance comparison of different models.

Model P/% R/% mAP@0.5/% Params/M Model Size/MB GFLOPs FPS

Baseline 81.2 72.2 74.4 11.78 23.9 42.4 139.4
Yolov5s-seg 80.0 71.5 73.8 9.77 19.9 37.8 145.5
Yolov8n-seg 78.8 71.5 72.9 3.26 6.8 12.0 302.2
Yolov8m-seg 81.5 72.2 74.8 27.22 54.8 110.0 59.2
Yolov8l-seg 82.0 72.6 75.4 45.91 92.3 220.1 37.2
Yolov8x-seg 83.2 72.4 75.8 71.72 144.0 343.7 22.1

Yolov9-gelan-c-seg 80.6 72.1 74.0 27.36 55.7 144.2 37.3
Yolov10s-seg 80.9 72.4 74.1 9.17 18.8 40.5 135.7

YOLACT 87.1 60.3 56.9 34.73 133.0 81.5 8.3
SOLO 89.5 63.1 61.6 36.12 138.0 143.0 7.6

SOLOV2 91.8 64.2 63.0 46.23 177 132.0 7.9
Mask R-CNN 88.9 67.7 68.2 43.98 169.0 135.0 6.4

Cotton-YOLO-Seg 85.4 78.4 80.8 4.82 10.1 45.9 85.1
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Figure 14. Histogram comparing the performance of different models. Figure 14. Histogram comparing the performance of different models.

4. Discussion

This study conducts impurity rate detection on 100 groups of machine-picked seed
cotton image samples. The impurity rate is determined by directly detecting the number
of impurities and cotton pixels in each sample group. Figure 15 presents the correlation
analysis between the detected and actual impurity rates for each group of cotton samples
using different models. The equation relating the detected impurity rate to the actual
impurity rate for the Cotton-YOLO-Seg model is y = 1.12x − 0.65, which is closest to y = x.
Therefore, the detected and actual impurity rates of the Cotton-YOLO-Seg model are nearly
identical. In contrast, the equation for the original Yolov8s-seg model is y = 1.15x − 0.47,
indicating a significant deviation from y = x. Table 6 presents the performance evaluation
of impurity rate detection across different models. The MAE, RMSE, and MAPE for the
Cotton-YOLO-Seg model are 0.29%, 0.33%, and 3.70%, respectively, representing reductions
of 52.46%, 48.44%, and 53.75% compared to the original Yolov8s-Seg model. The data
indicate that the Cotton-YOLO-Seg model has significantly reduced the deviation between
the detected and actual impurity rates. These data demonstrate the advancement of the
yolov8s-seg segmentation model in machine-harvested seed cotton compared to yolov5s-
seg and yolov10s-seg. They also validate the improvements in the Cotton-YOLO-Seg model
and echo the corresponding model data in Table 5 and Figure 14.
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Table 6. Performance evaluation of impurity rate detection for different models.

Model Average Actual
Impurity Rate/%

Average Detected
Impurity Rate/% MAE/% RMSE/% MAPE/%

Baseline 7.64 7.01 0.61 0.64 8.00
Cotton-YOLO-Seg 7.64 7.38 0.29 0.33 3.70

Yolov5s-seg 7.64 6.73 0.91 0.94 11.90
Yolov10s-seg 7.64 6.59 1.05 1.07 13.73

Figure 16 illustrates a line graph comparing the detected and actual impurity rates for
100 sets of cotton samples across different models. The figure clearly demonstrates that the
Cotton-YOLO-Seg model detections are more accurate and have smaller errors than other
models. The MAE between the detected and actual impurity rates for the Cotton-YOLO-Seg
model is only 0.29%, indicating that it fulfills the design requirements. The other models
indicate that the overall detected impurity rate in seed cotton images is underestimated.
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5. Conclusions

This study proposes a deep learning-based Cotton-YOLO-Seg algorithm for accurately
segmenting cotton and impurities in machine-picked seed cotton images. The algorithm
detects the impurity rate of machine-picked seed cotton by statistically counting the pixels
of cotton and impurities. The manuscript introduces the MSCBCA attention mechanism
by fusing CBAM and MSCA in the C2f module of Yolov8s-seg’s feature-extraction net-
work, constructing a new C2f_MSCBCA module, and removing the feature layer P4. The
SlimNeck structure is introduced in the feature-fusion network by adding a small target
detection layer P2 and removing feature layer P4. Using transfer learning with the COCO
instance-segmentation dataset, the Cotton-YOLO-Seg model significantly improves the
detection and segmentation performance of small-target impurities, remains robust in
complex environments, and accurately detects the impurity rate in cotton images. This
method has practical application value for quantitatively detecting the impurity rate of
machine-picked seed cotton, evaluating the harvesting quality of cotton pickers, assessing
the grade of cotton, and guiding cotton processing.

The Cotton-YOLO-Seg algorithm, as an instance-segmentation and pixel statistical
model, is not only suitable for small-target impurity segmentation and impurity rate detec-
tion in machine-picked seed cotton images but can also be extended to other application
areas, such as crop spot segmentation and area prediction. We plan to continue optimizing
and enhancing the Cotton-YOLO-Seg algorithm to achieve both lightweight and high
accuracy and embed it into portable devices such as mobile phones. This will enable cotton
farmers, purchasers, and processors to use mobile phones to detect the impurity rate of
machine-picked seed cotton. This method requires simple equipment, provides accurate
impurity detection results, and can be an effective tool for impurity rate detection.
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