Diversity of Thrips Species Associated with Soybean Grown in Different Plant Arrangements at Various Phenological Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experiment Layout
2.3. Insect Sampling
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pagano, M.C.; Miransari, M. The importance of soybean production worldwide. In Abiotic and Biotic Stresses in Soybean Production; Miransari, M., Ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization of the United Nations (FAO). 2021. Available online: https://www.fao.org/faostat/en/#home (accessed on 10 May 2024).
- ARiMR. Agencja Restrukturyzacji i Modernizacji Rolnictwa (Poland). The Agency for Restructuring and Modernisation of Agriculture (ARMA). 2024. Available online: https://www.gov.pl/web/arimr/agencja-restrukturyzacji-i-modernizacji-rolnictwa (accessed on 8 August 2024).
- Serafin-Andrzejewska, M.; Helios, W.; Białkowska, M.; Kotecki, A.; Kozak, M. Sowing Date as a Factor Affecting Soybean Yield–A Case Study in Poland. Agriculture 2024, 14, 970. [Google Scholar] [CrossRef]
- Cierpisz, M.; Twardowski, J.; Kozak, M. The effect of plant arrangement in soybean crop on more important herbivores–preliminary results. J. Res. Appl. Agric. Eng. 2016, 61, 48–52. [Google Scholar]
- Hanh, P.G.; Orrock, J.L. Spatial arrangement of canopy structure and land use history alter the effect that herbivores have on plant growth. Ecosphere 2015, 10, 1–16. [Google Scholar] [CrossRef]
- Mondal, M.M.A.; Puteh, A.B.; Malek, M.A.; Ismail, M.R. Determination of optimum seed rate for mungbean based on morpho-physiological criteria. Legume Res. 2012, 35, 126–131. [Google Scholar]
- Neves, D.V.C.; Lopes, M.C.; Sarmento, R.A.; Pereira, P.S.; Pires, W.S.; Peluzio, J.M.; Picanço, M.C. Economic injury levels for control decision-making of thrips in soybean crops (Glycine max (L.) Merrill). Res. Soc. Dev. 2022, 11, e52411932114. [Google Scholar] [CrossRef]
- Moritz, G.; Paulsen, M.; Delker, C.; Picl, S.; Kumm, S. Identification of Thrips Using ITS–RFLP Analysis. In Thrips and Tospoviruses: Proceedings of the 7th International Symposium on Thysanoptera; Australian National Insect Collection CSIRO: Canberra, Australia, 2002; pp. 365–367. [Google Scholar]
- Thekke-Veetil, T.; Lagos-Kutz, D.; McCoppin, N.K.; Hartman, G.L.; Ju, H.-K.; Lim, H.-S.; Domier, L.L. Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses. Viruses 2020, 12, 1376. [Google Scholar] [CrossRef]
- Kucharczyk, H.; Kucharczyk, M. Characteristic and diagnostic features of the most frequently occurring species of the Thripidae family (Insecta, Thysanoptera) in crown canopies of Central European forests. For. Res. Pap. 2013, 74, 5–11. [Google Scholar] [CrossRef]
- Sierka, W. Wciornastki, czyli thripsy (Insecta, Thysanoptera). Pol. Pismo Entomol. 2004, 1, 1–12. [Google Scholar]
- Mound, L.A. Thysanoptera. In Encyclopedia of insects (second edition); Resh, V.H., Cardé, R.T., Eds.; Elsevier/Academic Press: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Hurej, M.; Kucharczyk, H.; Twardowski, J.; Kozak, M. Thrips (Thysanoptera) associated with narrow-leafed lupin (Lupinus angustifolius L., 1753) intercropped with spring triticale (x Triticosecale Wittm. ex A. Camus, 1927). Rom. Agric. Res. 2014, 31, 337–345. [Google Scholar]
- Mound, L.A.; Wang, Z.; Lima, É.F.B.; Marullo, R. Problems with the Concept of “Pest” among the Diversity of Pestiferous Thrips. Insects 2022, 13, 61. [Google Scholar] [CrossRef]
- Gill, H.K.; Garg, H.; Gill, A.K.; Gillett-Kaufman, J.L.; Nault, B.A. Onion thrips (Thysanoptera: Thripidae) biology, ecology, and management in onion production systems. J. Integr. Pest Manag. 2015, 6. [Google Scholar] [CrossRef]
- Hurej, M.; Twardowski, J. Thrips (Thysanoptera) occuring in spring triticale intercropped with yellow lupine. Acta Sci. Pol. Agric. 2004, 3, 263–270. [Google Scholar]
- Hurej, M.; Kucharczyk, H.; Twardowski, J.; Kotecki, A. Thrips (Thysanoptera) associated with two morphological forms of Andean lupin (Lupinus mutabilis Sweet). Biologia 2015, 70, 935–942. [Google Scholar] [CrossRef]
- Łuczak, I.; Gaborska, M.; Pobożniak, M.; Świderski, A.; Kruczek, M. Occurrence of phytophagous thrips (Thysanoptera) and harmfulness of Thrips tabaci Lind. in carrot (Daucus carota L. ssp. sativus) cultivation (Daucus carota L. ssp. sativus). Prog. Plant Prot. 2014, 54, 198–204. [Google Scholar] [CrossRef]
- Olczyk, M.; Pobożniak, M. Thrips (Thysanoptera) associated with onion (Allium cepa L.) and Welsh onion (Allium fistulosum L.). Folia Hortic. 2020, 32, 319–335. [Google Scholar] [CrossRef]
- Trdan, S.; Andjus, L.; Raspudić, E.; Kač, M. Distribution of Aeolothrips intermedius Bagnall (Thysanoptera: Aeolothripidae) and its potential prey Thysanoptera species on different cultivated host plants. J. Pest Sci. 2005, 78, 217–226. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports; FAO: Rome, Italy, 2014; p. 106. [Google Scholar]
- Mound, L.A.; Morison, G.D.; Pitkin, B.R.; Palmer, J.M. Thysanoptera. In Handbooks for the Identification of British Insects; Part 11; Royal Entomological Society of London: St Albans, UK, 1976; Volume 1, pp. 1–79. [Google Scholar]
- Moritz, G.B. Pictorial key to the economically important species of Thysanoptera in Central Europe. Bull. OEPP/EPPO 1994, 24, 181–208. [Google Scholar] [CrossRef]
- Mound, L.A.; Kibby, G. Thysanoptera an Identification Guide; CAB International: Oxfordshire, UK, 1998; p. 70. ISBN 0851992110. [Google Scholar]
- Strassen, R.Z. Die Terebranten Thysanopteren Europas 74 Teils. In Die Tierwelt Deutschlands; Goecke and Evers: Keltern, Germany, 2003. [Google Scholar]
- Lewis, T. Thrips: Their Biology, Ecology and Economic Importance; Academic Press: London, UK, 1973. [Google Scholar]
- Kucharczyk, H.; Kucharczyk, M. Thrips (Thysanoptera) of the beech forests of south-eastern Poland. Leśne Pr. Badaw. 2011, 72, 329–337. [Google Scholar] [CrossRef]
- Zawirska, I.; Wałkowski, W. Fauna and importance of thrips (Thysanoptera) for rye and winter wheat in Poland. J. Plant Prot. Res. 2000, 40, 35–56. [Google Scholar]
- Pobożniak, M. The species composition, harmfulness and selected aspects of the occurrence and feeding preference of thrips (Thysanoptera) on pea (Pisum sativum L.) cultivars. Z. Nauk. Uniw. Rol. Krakowie. 2013, 514, 151. [Google Scholar]
- Wang, Z.; Mound, L.A.; Hussain, M.; Arthurs, S.P.; Mao, R. Thysanoptera as predators: Their diversity and significance as biological control agents. Pest Manag. Sci. 2022, 78, 5057–5070. [Google Scholar] [CrossRef] [PubMed]
- Pobożniak, M.; Sobolewska, A. Biodiversity of thrips species (Thysanoptera) on flowering herbs in Cracow, Poland. J. Plant Prot. Res. 2011, 51, 393–398. [Google Scholar] [CrossRef]
- Zvaríková, M.; Masarovič, R.; Prokop, P.; Fedor, P. An updated checklist of thrips from Slovakia with emphasis on economic species. Plant Prot. Sci. 2020, 56, 292–304. [Google Scholar] [CrossRef]
- Stanisławek, K.; Kucharczyk, H. Materiały do poznania wciornastków (Insecta: Thysanoptera) Sudetów. Wiad. Entomol. 2010, 29, 83–88. [Google Scholar]
- Karadjova, O.; Krumov, V. Thysanoptera of Bulgaria. ZooKeys 2015, 504, 93–131. [Google Scholar] [CrossRef]
- Mound, L.A.; Teulon, D.A.J. Thysanoptera as phytophagous opportunists. In Thrips Biology and Management; Parker, B.L., Skinner, M., Lewis, T., Eds.; Plenum: New York, NY, USA, 1995; pp. 3–19. [Google Scholar]
- Murai, T.; Loomans, A. Evaluation of an improved method for mass rearing of thrips and a thrips predator. Entomolog. Exp. Appl. 2001, 101, 281–289. [Google Scholar] [CrossRef]
- Loan, C.; Haldoway, F.G. Biology of the Red Clover Thrips, Haplothrips niger (Osborn) (Thysanoptera: Phloeothripidae); Cambridge University Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Kucharczyk, H.; Kucharczyk, M.; Winiarczyk, M.; Lubiarz, M.; Tchórzewska, D. Effects of temperature on the development of Thrips nigropilosus Uzel (Thysanoptera: Thripidae) on Mentha × piperita L. and the impact of pest on the host plant. Acta Sci. Polon. Hortorum Cultus 2019, 18, 219–233. [Google Scholar] [CrossRef]
- Nuss, H. Effect of Plant Density and Plant Architecture on the Abundance and Within–Plant Distribution of Stem Borers in Winter Oilseed Rape. Ph.D. Thesis, University of Göttingen, Gottingen, Germany, 2004. [Google Scholar]
- Cierpisz, M.; Twardowski, J.; Gruss, I.; Kozak, M. Different soybean plant arrangements affect ground beetle assemblages. J. Plant Prot. Res. 2019, 59, 441–450. [Google Scholar] [CrossRef]
- Santos, J.L.; Pereira, P.S.; Reis, K.H.B.; Freitas, D.R.; Picanço Filho, M.C.; Peluzio, J.M.; Sarmento, R.A.; Guedes, R.N.C.; Picanço, M.C. Decision-making for thrips control in soybean fields using precision agriculture principles. J. Appl. Entomol. 2024, 148, 140–149. [Google Scholar] [CrossRef]
- Root, R.B. Organization of a plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea). Ecol. Monogr. 1973, 43, 95–124. [Google Scholar] [CrossRef]
- Pobereżny, J.; Wszelaczyńska, E.; Lamparski, R.; Lemanowicz, J.; Bartkowiak, A.; Szczepanek, M.; Gościnna, K. The impact of spring wheat species and sowing density on soil biochemical properties, content of secondary plant metabolites and the presence of Oulema ssp. PeerJ 2023, 11, e14916. [Google Scholar] [CrossRef]
- Maron, J.L.; Crone, E. Herbivory: Effects on plant abundance, distribution and population growth. Proc. Royal Soc. B 2006, 273, 2575–2584. [Google Scholar] [CrossRef]
- Krobb, J.L.; Stewart, S.D.; Brown, S.A. Effects of plant density, seed spacing, and seed treatment on thrips injury to cotton. Crop Prot. 2022, 161, 106059. [Google Scholar] [CrossRef]
- Underwood, N.; Halpern, S. Insect herbivores, density dependence, and the performance of the perennial herb Solanum carolinense. Ecology 2012, 93, 1026–1035. [Google Scholar] [CrossRef]
- Nowatzki, T.M.; Tollefson, J.J.; Bailey, T.B. Effects of row spacing and plant density on corn rootworm (Coleoptera: Chrysomelidae) emergence and damage potential to corn. J. Econ. Entomol. 2002, 95, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Pobożniak, M. The occurrence of thrips (Thysanoptera) on food legumes (Fabaceae). J. Plant Dis. Prot. 2011, 118, 185–193. [Google Scholar] [CrossRef]
- Kumar, V.; Kakkar, G.; Palmer, C.L.; McKenzie, C.L.; Osborne, S.L. Thrips Management Program for Horticulture; University of Florida IFAS Extension: Gainesville, FL, USA, 2016; pp. 1–7. [Google Scholar]
- Shimat, J.; Braman, K.; Hudson, W.; Nair, S. Biology and Management of Thrips Affecting the Production Nursery and Landscape; University of Georgia Extension: Athens, GA, USA, 2019; pp. 1–5. [Google Scholar]
- Ábrahám, R. Thrips species associated with soybean in Hungary. Acta Phytopathol. Entomol. Hung. 2008, 43, 211–218. [Google Scholar] [CrossRef]
- Kucharczyk, H. Przylżeńce (Thysanoptera) Roztocza. Fragm. Faun. 1994, 37, 168–180. [Google Scholar] [CrossRef]
- Pitkin, B.R. A revision of the flower–living genus Odontothrips Amyot & Serville (Thysanoptera: Thripidae). Bull. Br. Mus. Entomol. 1972, 26, 371–402. [Google Scholar]
- Virteiu, A.M.; Steff, R.; Carabet, A.; Molnar, R.; Grozea, I. Revision of the genus Odontothrips Amyot & Serville (Thysanoptera, Thripidae) with the redescription of Odontothrips loti (Haliday, 1852) species on Lotus corniculatus crops. Res. J. Agric. Sci. 2021, 53, 255–261. [Google Scholar]
- Hurej, M.; Kucharczyk, H.; Twardowski, J.; Kotecki, A. Thrips (Thysanoptera) associated with two genetically modified types of linseed (Linum usitatissimum L.). J. Plant Dis. Prot. 2017, 124, 81–91. [Google Scholar] [CrossRef]
Wrocław-Pawłowice (Location 1) | |
Row Spacing | Number of Seeds Sown per 1 m2 |
15 | 50 |
15 | 90 |
30 | 50 |
30 | 90 |
Łosiów (Location 2) | |
Row Spacing (cm) | Soybean Variety |
12 | Abelina (variety 1) |
12 | Lissabon (variety 2) |
45 | Abelina (variety 1) |
45 | Lissabon (variety 2) |
Dominance D (%) | ||
---|---|---|
Species | Location 1 | Location 2 |
Thrips tabaci | 42.54 | 35.17 |
Aelothrips intermedius | 15.95 | 11.04 |
Thrips fuscipennis | 11.87 | 6.94 |
Limothrips denticornis | 1.50 | 2.52 |
Limothrips cerealium | 4.82 | 5.99 |
Thrips flavus | 0.82 | 1.42 |
Chirothrips manicatus | 1.22 | 2.52 |
Thrips nigropilosus | 4.87 | 3.94 |
Anapothrips obscurus | 1.05 | 1.74 |
Thrips physapus | 2.52 | 4.42 |
Thrips major | 0.65 | 0.79 |
Thrips atratus | 2.02 | 4.73 |
Odontothrips loti | 2.35 | 4.10 |
Neohydatothrips gracilicornis | 0.30 | 0.16 |
Haplothrips aculeatus | 0.67 | 0.00 |
Limothrips spp. | 3.20 | 5.21 |
Aeolothrips fasciatus | 0.07 | 0.16 |
Frankliniella intonsa | 0.37 | 0.63 |
Haplothrips spp. | 3.17 | 6.47 |
Chirothrips spp. | 0.00 | 2.05 |
Permutation N | Total Sum of Squares | Within-Group Sum of Squares | F | p |
---|---|---|---|---|
9999 | 3.6 | 3.119 | 32.87 | 0.0001 |
Coef | Stand Err | z | p > |z| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
Thrips All | ||||||
Intercept | 4.9882 | 0.495 | 10.068 | 0.000 | 4.017 | 5.959 |
Phenological stage | −0.3727 | 0.104 | −3.591 | 0.000 | −0.576 | −0.169 |
Year | −0.1859 | 0.104 | −1.792 | 0.073 | −0.389 | 0.017 |
Row spacing | −0.0034 | 0.011 | −0.300 | 0.764 | −0.026 | 0.019 |
Seed density | −0.0048 | 0.004 | −1.141 | 0.254 | −0.013 | 0.003 |
Thrips tabaci | ||||||
Intercept | 4.9125 | 0.513 | 9.568 | 0.000 | 3.906 | 5.919 |
Phenological stage | −0.5924 | 0.108 | −5.488 | 0.000 | −0.804 | −0.381 |
Year | −0.4272 | 0.108 | −3.964 | 0.000 | −0.638 | −0.216 |
Row spacing | −0.0015 | 0.012 | −0.132 | 0.895 | −0.024 | 0.021 |
Seed density | −0.0071 | 0.004 | −1.609 | 0.108 | −0.016 | 0.002 |
Aeolothrips intermedius | ||||||
Intercept | 3.7813 | 0.550 | 6.870 | 0.000 | 2.703 | 4.860 |
Phenological stage | −0.6203 | 0.117 | −5.311 | 0.000 | −0.849 | −0.391 |
Year | −0.3810 | 0.116 | −3.282 | 0.001 | −0.609 | −0.153 |
Row spacing | −0.0041 | 0.013 | −0.323 | 0.747 | −0.029 | 0.021 |
seed density | −0.0047 | 0.005 | −1.005 | 0.315 | −0.014 | 0.005 |
Thrips fuscipennis | ||||||
Intercept | 3.1205 | 0.569 | 5.483 | 0.000 | 2.005 | 4.236 |
Phenological stage | −0.7654 | 0.122 | −6.254 | 0.000 | −1.005 | −0.526 |
Year | −0.1748 | 0.120 | −1.455 | 0.146 | −0.410 | 0.061 |
Row_spacing | 0.0040 | 0.013 | 0.306 | 0.760 | −0.022 | 0.030 |
Seed_density | −0.0040 | 0.005 | −0.810 | 0.418 | −0.014 | 0.006 |
Coef | Stand Err | z | p > |z| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
Thrips All | ||||||
Intercept: | 1.3849 | 0.602 | 2.301 | 0.021 | −2.564 | −0.205 |
Phenological stage | 1.0403 | 0.160 | 6.489 | 0.000 | 0.726 | 1.355 |
Year | 0.8223 | 0.258 | 3.185 | 0.001 | 0.316 | 1.328 |
Row spacing | 0.0014 | 0.008 | 0.183 | 0.854 | −0.014 | 0.017 |
Variety | −0.0891 | 0.258 | −0.346 | 0.729 | −0.594 | 0.416 |
Thrips tabaci | ||||||
Intercept: | 1.2135 | 0.438 | 1.566 | 0.000 | 2.007 | 5.923 |
Phenological stage | −0.3842 | 0.150 | 6.498 | 0.000 | −1.007 | −0.341 |
Year | −0.2453 | 0.150 | 2.347 | 0.000 | −0.312 | 0.009 |
Row spacing | −0.0132 | 0.011 | 0.023 | 0.5611 | −0.027 | 0.064 |
Variety | −0.0024 | 0.024 | −0.024 | 0.4388 | −0.017 | 0.032 |
Aeolothrips intermedius | ||||||
Intercept: | 3.7813 | 0.550 | 1.482 | 0.000 | 2.723 | 4.865 |
Phenological stage | −0.6203 | 0.117 | 5.242 | 0.000 | −0.888 | −0.541 |
Year | −0.3810 | 0.116 | 2.245 | 0.000 | −0.672 | −0.131 |
Row spacing | −0.0041 | 0.013 | −0.044 | 0.5611 | −0.029 | 0.021 |
Variety | −0.0047 | 0.005 | −1.054 | 0.4388 | −0.014 | 0.005 |
Thrips fuscipennis | ||||||
Intercept: | 3.1205 | 0.569 | 1.243 | 0.000 | 3.908 | 4.241 |
Phenological stage | −0.7654 | 0.122 | 4.285 | 0.000 | −0.624 | −0.126 |
Year | −0.1748 | 0.120 | −0.054 | 0.000 | −0.638 | −0.381 |
Row spacing | 0.0040 | 0.013 | −0.056 | 0.5611 | −0.031 | 0.021 |
Variety | −0.0040 | 0.005 | −1.005 | 0.4388 | −0.023 | 0.019 |
Species | Abbreviation | Trophic Group | Food Specialization | Main Host Plants (If Applicable) | References |
---|---|---|---|---|---|
Aeolothrips fasciatus (Linnaeus, 1758) | AelFasc | predatory | mainly adult and larvae of thrips, supplements the diet with plant pollen | [27,28] | |
Aeolothrips intermedius * (Bagnall, 1934) | AeolIntr | predatory | mainly adult and larvae of thrips and mites, supplements the diet with plant pollen | [21,29,30,31] | |
Chirothrips manicatus (Haliday, 1836) | ChirManc | herbivore | oligophagous | monocotyledonous | [15,29] |
Haplothrips aculeatus (Fabricius, 1803) | HaplAcul | herbivore | oligophagous | monocotyledonous | [28,29] |
Haplothrips leucanthemi (Schrank, 1781) | HaplLeuc | herbivore | oligophagous | monocotyledonous | [29] |
Limothrips cerealium (Haliday, 1836) | LimtCere | herbivore | oligophagous | monocotyledonous | [28,29] |
Limothrips denticornis (Haliday, 1836) | LimtDent | herbivore | oligophagous | monocotyledonous | [28] |
Odontothrips loti (Haliday, 1852) | OdonLoti | herbivore | oligophagous | Fabaceae | [29,32,33] |
Neohydatothrips gracilicornis (Williams, 1916) | NGracl | herbivore | oligophagous | Fabaceae, often on Vicia spp. | [34,35] |
Thrips atratus (Haliday, 1836) | ThripAtr | herbivore | polyphagous | feeds on flowers on a wide range of host plants, often on Asteraceae and Fabaceae | [30,34] |
Frankliniella intonsa (Trybom, 1895) | FranInt | herbivore | polyphagous | feeds on flowers and leaves on a wide range of host plants often on Fabaceae | [32,36,37] |
Haplothrips niger (Osborn, 1883) | HaplNigr | herbivore | polyphagous | feeds on flowers on a wide range of host plants, often on Fabaceae | [38] |
Thrips flavus (Schrank, 1776) | ThripFlav | herbivore | polyphagous | feeds on flowers on a wide range of host plants, often on Fabaceae | [30,32] |
Thrips fuscipennis (Hailday, 1836) | ThripFusc | herbivore | polyphagous | feeds on flowers and leaves on a wide range of host plants, often on Rosaceae and Fabaceae | [30,32] |
Thrips major (Uzel, 1895) | ThripMajr | herbivore | polyphagous | feeds on flowers and leaves on a wide range of host plants, often on Rosaceae and Fabaceae | [30,32] |
Thrips nigropilosus Uzel, 1985 | ThripNigr | herbivore | polyphagous | feeds on flowers on a wide range of host plants including Fabaceae | [33,39] |
Thrips tabaci (Lindemann, 1889) | ThripTabc | herbivore | polyphagous | feeds on flowers on a wide range of host plants including Fabaceae | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Twardowski, J.; Gruss, I.; Cierpisz, M.; Twardowska, K.; Magiera-Dulewicz, J.; Kozak, M. Diversity of Thrips Species Associated with Soybean Grown in Different Plant Arrangements at Various Phenological Stages. Agriculture 2024, 14, 1501. https://doi.org/10.3390/agriculture14091501
Twardowski J, Gruss I, Cierpisz M, Twardowska K, Magiera-Dulewicz J, Kozak M. Diversity of Thrips Species Associated with Soybean Grown in Different Plant Arrangements at Various Phenological Stages. Agriculture. 2024; 14(9):1501. https://doi.org/10.3390/agriculture14091501
Chicago/Turabian StyleTwardowski, Jacek, Iwona Gruss, Marcin Cierpisz, Kamila Twardowska, Joanna Magiera-Dulewicz, and Marcin Kozak. 2024. "Diversity of Thrips Species Associated with Soybean Grown in Different Plant Arrangements at Various Phenological Stages" Agriculture 14, no. 9: 1501. https://doi.org/10.3390/agriculture14091501
APA StyleTwardowski, J., Gruss, I., Cierpisz, M., Twardowska, K., Magiera-Dulewicz, J., & Kozak, M. (2024). Diversity of Thrips Species Associated with Soybean Grown in Different Plant Arrangements at Various Phenological Stages. Agriculture, 14(9), 1501. https://doi.org/10.3390/agriculture14091501