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Abstract

:

The uniformity of the travel speed of electric reel sprinkling irrigation machines is a key factor affecting irrigation quality. However, conventional PID control is susceptible to sudden disturbances under complex farmland conditions, leading to reduced speed uniformity. To enhance the robustness of the control system, it is necessary to investigate new disturbance rejection control algorithms and their effects. Therefore, a kinematic model of the reel sprinkling irrigation machine and a brushless DC (BLDC) motor model were established, and a linear active disturbance rejection control (LADRC) strategy based on improved particle swarm optimization (IPSO) was proposed. The simulation results show that under variable speed conditions, the system exhibits no overshoot, with an adjustment time of 0.064 s; under variable load conditions, the speed vibration amplitude is less than 0.3%. The field test results indicate that at travel speeds of 10 m/h and 30 m/h, the maximum absolute deviation rate under IPSO-LADRC control is reduced by 27.07% and 13.98%, respectively, compared to PID control. The control strategy based on IPSO-LADRC effectively improves the control accuracy and robustness under complex farmland conditions, providing a reference for enhancing the control performance of other electric agricultural machinery.
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1. Introduction


Agricultural efficient water-saving irrigation is a major strategic initiative for promoting the sustainable use of water resources and ensuring national food security, water security, and ecological security [1]. Water-saving irrigation equipment serves as an effective guarantee for achieving efficient water conservation [2]. In recent years, with the transformation and upgrading of traditional agricultural machinery, electric-driven reel sprinkling irrigation machines have developed rapidly. In China, the market share of electric-driven reel sprinkling irrigation machines has reached 30% [3]. However, the current speed control of electric-driven systems typically relies on traditional PID control, which is not robust under complex farmland conditions. When encountering internal and external disturbances such as stones, potholes, and changes in the coiling layers of the water pipe, the traditional PID speed controller results in significant fluctuations in the travel speed of the irrigator, affecting the irrigation quality. Uneven water distribution can easily cause surface runoff and lead to increased localized deep seepage. This results in soil nutrient loss and water waste, ultimately reducing agricultural production efficiency [4]. Therefore, maintaining stable speed control of the sprinkler under complex farmland conditions has become an urgent issue that needs to be addressed.



A stable control system must meet the following requirements: (1) strong anti-interference capability, ensuring minimal fluctuations of the travel speed; (2) excellent control precision, resulting in small speed deviations; (3) fast response with little to no overshoot. Traditional PID control is a linear control method that exhibits weak robustness when dealing with nonlinear controlled objects and complex systems [5]. The conventional proportional, integral, and differential are difficult to balance steady-state and transient control performance [6]. Although some researchers have proposed improved methods such as fuzzy adaptive PID control [7,8,9,10] and neural network PID control [11,12,13], or have employed intelligent algorithms to optimize PID parameters [14,15,16], these approaches still fail to fundamentally address the inherent sensitivity of PID to parameter variations [17]. Moreover, some nonlinear control strategies, such as H-infinity [18,19] and backstepping control [20,21,22], can largely ensure control performance and stability but require extremely accurate control models, which is obviously challenging. Fuzzy control [23] has significant advantages in handling uncertain systems but relies on experience during the design process and requires repeated tests and adjustments. Model predictive control (MPC) [24] requires an accurate mathematical model of the controlled object and often involves extensive computations. Sliding mode variable structure control [25] can cause high-frequency oscillations due to chattering.



To overcome the limitations of these methods, Han [26] designed the active disturbance rejection controller (ADRC), providing a new approach to enhance controller robustness. ADRC does not rely on accurate models, responds quickly and maintains stability in long-delay environments with strong anti-disturbance capabilities and adaptability [27]. ADRC has been widely applied in variable control technologies. Tian et al. [28] designed an ADRC controller for the current loop to suppress uncertain periodic and non-periodic current ripples. Hezzi et al. [29] proposed an ADRC strategy for regulating microgrid voltage and current. He et al. [30] proposed an ADRC-based track slip control strategy for unmanned underwater tracked bulldozers. However, ADRC requires the tuning of dozens of parameters and involves significant computational complexity, making manual trial and error and theoretical analysis very difficult. To improve efficiency and accuracy, Wang et al. [31] improved ADRC parameter optimization using a modified moth–flame algorithm, enhancing convergence speed and accuracy. Zhu et al. [32] designed an ADRC controller optimized by BPNN, improving obstacle avoidance and anti-interference capabilities in no-till seeders. Li et al. [33] combined ant colony optimization (ACO) and beetle antennae search (BAS) algorithms to adjust ADRC parameters, enhancing the anti-disturbance capabilities of a quadrotor unmanned aerial vehicle (UAV). Although these methods have enhanced the performance of ADRC, its complexity remains significant. To address this, Gao [34] proposed the linear active disturbance rejection control (LADRC) method, which not only retains ADRC’s strong disturbance rejection capabilities but also simplifies the controller’s structure and parameters to reduce computational effort. Compared to other advanced control methods such as MPC and fuzzy control, LADRC is more practical and efficient.



Therefore, this paper proposes an IPSO-LADRC−based control strategy to address the issues in electric reel sprinkling irrigation machines using PID control. This strategy estimates and compensates for sudden disturbances in real-time while utilizing IPSO to optimize and adjust the core parameters of the LADRC controller, further enhancing the accuracy and robustness of the control system.




2. Materials and Methods


To improve the solving accuracy and speed, the inertia weight and learning factor of the standard PSO algorithm are modified. A cosine function is introduced to nonlinearly and dynamically adjust these parameters throughout the iterations, boosting the algorithm’s global search capability and convergence performance. The improved PSO algorithm is then used to optimize the parameters of the LADRC controller, which is applied in the vector control model of the permanent magnet motor. During this process, the control system evaluates optimization effectiveness using the ITAE index, leading to the optimal configuration of control parameters. The core idea of the IPSO-LADRC control strategy is shown in Figure 1.



2.1. Electric Drive and Speed Control Components


2.1.1. Electric Drive Components


The electric drive mechanism drives the reel to rotate, gradually coiling the water pipe onto the reel while pulling the sprinkler cart to move, thereby achieving irrigation operations. When the coiling layers change and external uncertainties cause sudden disturbances, the travel speed of the sprinkler cart also changes. At this time, the speed control system plays a role in maintaining a constant travel speed to ensure the irrigation quality. The structure of the electric reel sprinkling irrigation machine is shown in Figure 2a, and the electric drive transmission device is shown in Figure 2b.




2.1.2. Speed Measurement Mechanism and Principle


The roller speed measurement mechanism consists of a roller and a speed measurement encoder, as shown in Figure 3. The encoder is coaxial with the speed measurement roller. The speed measurement roller rotates due to friction with the water pipe. The travel speed of the sprinkler cart pulled by the water pipe is equal to the linear speed of the speed measurement roller. The relationship between the linear speed and angular speed of the speed measurement roller is given by


  v = 2 π  r 1   n 1   



(1)




where  v  is the linear speed of the speed measurement roller,    n 1    is the angular speed of the speed measurement roller, and    r 1    is the radius of the speed measurement roller.



The angular speed    n 1    is measured in real time by the encoder, the total number of pulses from the encoder in   Δ t   seconds is  p , the number of pulses per revolution is    p 0   , and the angular speed    n 1    of the speed measurement roller is then given by


   n 1  =   p   p 0  ⋅ Δ t     



(2)







The recovery length  L  of the water pipe is given by


  L = 2 π  r 1    p   p 0      



(3)








2.1.3. Control System Hardware


The structure of the travel speed control system for the electric reel sprinkling irrigation machine is shown in Figure 4. The hardware components include the controller, detection module, speed measurement module, actuators, and power supply module. The upper computer of the controller uses an Android control terminal (produced by Shenzhen Tiankun Technology Co., Ltd., Shenzhen, Guangdong Province, China) with a CPU model RK3568, which communicates with the lower computer via a CAN bus to achieve system monitoring and human–machine interaction. The lower computer uses a STM32f103ZET6 microcontroller (produced by Dongguan Wildfire Electronics Technology Co., Ltd., Dongguan, China; 72 MHz main frequency, 144 pins, 5 V power supply, 3.3 V I/O pin input voltage). The current detection module uses an ACS712 Hall linear current sensor (produced by Allegro MicroSystems, Manchester, NH, USA) with a power supply voltage of 5 V and a range of 0–30 A. The speed measurement module uses an E6B2-CWZ6C incremental rotary encoder (produced by Omron Corporation, Kyoto, Japan) with a pulse rate of 2500 P/R and a working voltage of 5–24 V. The actuator includes a permanent magnet motor and driver, and a large ratio gearbox. The permanent magnet BLDC motor is a Unite BM1418ZXF model (produced by Zhejiang Unite Motor Co., Ltd., Yongkang, Zhejiang Province, China) with a voltage 48 V, rated power of 500 W, rated torque of 1.7 N·m, and a rated speed of 2800 r/min). The large ratio gearbox has four gears to meet the requirements of different working conditions. The driver used is a ZM-6618 model (produced by Beijing Shidai Chaoqun Electric Technology Co., Ltd., Beijing, China) with a working voltage of 18–60 V and a maximum current of 18 A. The power supply module includes a 48 V power supply and a 48 V to 12 V step-down module. The 48 V battery (produced by VARTA AG, Ellwangen, Germany) directly powers the motor driver, while the stepped-down 12 V power supply powers the Android control terminal and the microcontroller circuit board. The microcontroller circuit board has a built-in linear regulator module that converts the power from 12 V to 5 V to supply the STM32f103ZET6 chip and external sensors.




2.1.4. Control System Software Functions


The software system is integrated and developed on the Keil uVision5 platform, with source code written in C language. It mainly includes sensor data acquisition, control algorithms, serial communication, display, and human–machine interaction. The main interface of the Android control serial terminal display screen is shown in Figure 5. The main functions include displaying the current real-time recovered travel speed of the machine, the set speed target value, the length of the recovered water pipe, the number of water pipe coiling layers on the reel, and the current control status. The set speed target value can be manually changed. The number of coiling layers is automatically determined based on the recovered length and the function set in the program.



The overall software flow is shown in Figure 6. After the system is started, the initialization of each part is first performed, including timer interrupt initialization, external interrupt initialization, and display control initialization. The main controller then generates pulse width modulation (PWM) signals to control motor speed based on the target and actual motor speeds. During operation, the speed measurement roller encoder continuously generates pulse signals, which are captured and counted by the external interrupt pin PB0 of the main controller. The main controller determines the rotation direction of the encoder by reading the level signal on pin PB1. When the pulse count reaches a certain value and PB1 is at a low level, the meter counter increases by 1, and when PB1 is at a high level, the meter counter decreases by 1 and resets the pulse counter. This process continues until the meter counter reaches its upper or lower limit, ending the program. Timer TIM3 is used to record and store the encoder pulse count to calculate the speed of the speed measurement roller, and the linear speed of the water pipe movement is calculated using Equations (1) and (2).



The block diagram of the control system for the electric reel sprinkling irrigation machine is shown in Figure 7. The controller indirectly measures the pipe recovered speed and length of the machine through pulse accumulation calculation. Based on the desired control requirements, the controller outputs PWM signals to adjust the speed of the permanent magnet BLDC motor, so as to drive the reel to achieve the target speed through the gearbox and chain drive. The built-in Hall encoder and Hall linear current sensor of the motor provide real-time feedback to the control system, forming a dual closed-loop feedback control system for speed and current. To prevent oscillations and hardware failures caused by frequent control adjustments, a speed error dead zone (0.5% of the target speed) is set and the PWM signal duty cycle is adjusted promptly when the dead zone is exceeded.





2.2. Control System Modeling


2.2.1. Mathematical Model of the Electric Reel Sprinkling Irrigation Machine


When establishing the mathematical model of the electric-driven reel sprinkling irrigation machine, the following assumptions are made to simplify the analysis: (1) the angle between the winding direction of the water supply pipe and the axis of the reel cylinder is negligible; (2) the reel cylinder is a rigid body, and the diameter of the reel changes uniformly as the water supply pipe is wound; and (3) the water supply pipe is inelastic and does not deform due to stretching.



Based on the above assumptions, the working principle of the electric-driven reel sprinkling irrigation system is further analyzed. In the electric reel sprinkling irrigation machine system, the permanent magnet BLDC motor drives the reel to rotate through the transmission device and pulls the sprinkler cart to travel automatically for irrigation. The recovered speed of the water pipe and the angular speed of the reel, respectively, represent the linear speed of the sprinkler cart in the tangential direction to the reel and the angular velocity of the reel during the traveling process. The relationship between the recovered speed of the water pipe and the angular speed of the reel is given by


  ν = 3600  ω r   R i  = 120 π  n r   R i   



(4)




where  ν  is the recovered speed of the water pipe, m/h;    ω r    is the angular speed of the reel, rad/s;    R i    is the radius of the reel, m;    n r    is the rotation speed of the reel, r/min; and  i  is the layer number of the water pipe on the reel ( i  = 1, 2, 3, 4).



From Equation (5), it is known that for a given value of  ν , the angular speed of the reel    ω r    is inversely proportional to the radius of the reel    R i   . As shown in Figure 8, the radius of the reel is given by


   R i  = R +   1  1000    ( i −   1 2   ) D  



(5)




where  R  is the core radius of the reel, m;  D  is the outer diameter of the water pipe, mm.



During the operation of the reel sprinkling irrigation machine, when the water pipe enters the next layer after filling up a layer, the radius of the reel suddenly increases, causing the sprinkler cart to move faster, leading to uneven water distribution and affecting the irrigation effect. Therefore, it is necessary to reduce the angular speed of the reel to cope with the increase in the reel radius to maintain a constant travel speed of the sprinkler cart. The relationship between the motor speed and the reel rotation speed is given by


  n =  I t   I c   n r   



(6)




where  n  is the motor speed, r/min; and    I t    and    I c    are the gear ratios of the gearbox and the transmission chain, respectively. Therefore, the speed regulation of the motor can achieve the control of the reel rotation speed, thus realizing the constant recovery speed of the water pipe.




2.2.2. Mathematical Model of the Permanent Magnet BLDC Motor


The motor system exhibits strong coupling, nonlinearity, and high complexity. To establish a mathematical model, certain simplifications are made to eliminate unfavorable factors. The assumptions include the following: (1) the influence of motor core saturation, eddy current loss, hysteresis loss, and cogging effect should be ignored; (2) the armature reaction should not be considered, and the air gap magnetic field distribution is an ideal trapezoidal wave with a flat-top width of 120 electrical degrees. For simplification, the three-phase stationary coordinate system is converted to the two-phase rotating coordinate system. In this system, the voltage equations for the d-axis and q-axis of the permanent magnet BLDC motor are defined as [35]


         u d  =  R s   i d  +  L d     d  i d    d t    −  ω e   L q   i q         u q  =  R s   i q  +  L q     d  i q    d t    +  ω e     L d   i d  +  ψ f           



(7)







In the case of    i d  = 0  , the electromagnetic torque equation is given by


   T e  =   3 2   p  ψ f   i q   



(8)







The mechanical motion equation is expressed as


   T e  −  T L  −  B v   ω m  = J    d  ω m    d t     



(9)







The relationship between    ω m    and    ω e    is


   ω m  =     ω e   p    



(10)




where    u d    and    u q    denote the d-axis and q-axis voltage components, V;    i d    and    i q    are the current components along the d-axis and q-axis, A;    L d    and    L q    represent the inductances of the d-axis and q-axis, H;    R s    is the stator resistance, Ω;    ψ f    represents the permanent magnet flux, Wb;    ω e    and    ω m    are the motor angular velocity and mechanical angular velocity, rad/s, respectively;  J  is the moment of inertia, kg·m2;  p  indicates the number of pole pairs;    B v    is the viscous friction coefficient, N·m·s;    T e    and    T L    are the electromagnetic torque and mechanical load torque, N·m, respectively.





2.3. Controller Design


2.3.1. LADRC Controller


The main components of ADRC use nonlinear functions, resulting in the need to tune dozens of parameters, which makes manual tuning and theoretical analysis very challenging. Even with offline optimization using optimization algorithms, the computation load is still significant, and each iteration takes a long time, consuming a large amount of computational resources. To address this challenge, linear active disturbance rejection control (LADRC) is employed, which maintains the benefits of ADRC, such as not relying on the object model and strong anti-disturbance capabilities, thereby simplifying debugging and practical application [36]. The block diagram of the LADRC controller is shown in Figure 9.



In this paper, the first-order LADRC is used for the speed control loop of the motor speed control system. The first-order system is represented by the differential equation


  y = f   y , u , ω ( t )   +  b 0  u  



(11)




where  u  and  y  are the input and output of the system, respectively;  f  is the total disturbance;   ω ( t )   is the external disturbance of the system; and    b 0    is the controller gain. Equation (9) can be transformed into the form of Equation (11), expressed as


    ω ˙  m  =    3 p  ψ f   i q    2 J    −     T L   J   −     B v   ω m   J    



(12)







Compared with Equation (11), it can be seen that the system input  u  corresponds to the q-axis current    i q   , and the output  y  corresponds to the mechanical speed    ω m   . The controller gain    b 0    is


   b 0  =    3 p  ψ f    2 J     



(13)




and the total disturbance  f  is


  f = −     T L   J   −     B v   ω m   J    



(14)







From the known motor parameters, the value of    b 0    can be directly computed.



The LADRC controller comprises the linear tracker differentiator (LTD), the linear extended state observer (LESO), and the linear state error feedback control law (LSEF) [37]. The primary function of the LTD is to achieve a fast dynamic response to the input signal, and the final control system output follows the input signal while minimizing the overshoot phenomenon in the system. The LTD equation is expressed as


         e 0  =  ω  ref   − x        x ˙  = − r  e 0         



(15)




where    ω  r e f     is the theoretical motor speed,  x  is the speed tracking signal, r/min; and  r  is the tracking speed factor.



The LESO is utilized to determine the delayed state and overall disturbance. Utilizing real-time observation methods addresses uncertainties and unknown external disturbances in the model. The differential equations for LESO are:


         e 1  =  z 1  −  ω m          z ˙  1  =  z 2  −  β 1   e 1  +  b 0  u         z ˙  2  = −  β 2   e 1         



(16)




where    z 1    is the estimate of    ω m   , r/min;    z 2    is the estimate of the total disturbance of the system;    e 1    is the observation error of the motor speed, r/min;    β 1    and    β 2    are observer gain corrections;  u  is the system control input, A. To ensure the stability of the LESO, the poles of Equation (16) are located in the left half of the complex plane, and the characteristic equation is given by


   s 2  +  β 1  s +  β 2  =     s +  ω o     2   



(17)




where    ω 0    is the observer bandwidth, rad/s;  s  is the complex variable. By setting    β 1    and    β 2    to make the characteristic equation have negative real roots, it can be obtained that


         β 1  = 2  ω 0         β 2  =  ω 0 2         



(18)







The appropriate    ω 0    ensures that the observer can quickly and accurately track the system state and disturbance. Excessively large    ω 0    amplifies the noise and high-frequency components, leading to instability. Conversely, excessively small    ω 0    reduces dynamic performance and disturbance rejection capability, rendering the observer ineffective in tracking rapid changes, disturbances and states, thereby resulting in significant estimation errors.



The objective of LSEF is to eliminate the static error and improve the disturbance rejection capability of the system. The equation for LSEF is


         e 2  = x −  z 1         u 0  =  k p   e 2        u = (  u 0  −  z 2  ) /  b 0         



(19)




where    e 2    is the tracking error of    ω m   , r/min;    k p    is the proportional gain; and    u 0    is the initial control input.



The parameter setting of LADRC is complex and time-consuming, with the performance and robustness highly dependent on parameter choice. Manually tuning parameters to find the optimal configuration requires extensive tests and experiences and often falls into local optima. By combing particle swarm optimization (PSO) for LADRC parameter optimization, the optimization time can be significantly reduced, allowing for the rapid acquisition of the optimal parameter configuration. This approach enhances the efficiency and quality of the optimization process.




2.3.2. Improvement of Particle Swarm Optimization


Particle swarm optimization (PSO) [37] is a global optimization algorithm that mimics the foraging behavior of bird flocks. By improving PSO, the algorithm can better utilize the movement and information exchange of multiple particles in the parameter space, iteratively adjusting the positions and velocities of the particles to ultimately converge to the global optimal solution. The updates for velocity and position in the PSO algorithm are represented as follows [38]:


       v i  ( t + 1 ) = w  v i  ( t ) +  c 1   r 1  (  p i  ( t ) −  x i  ( t ) ) +  c 2   r 2  ( g ( t ) −  x i  ( t ) )      x i  ( t + 1 ) =  x i  ( t ) +  v i  ( t + 1 )      



(20)




where    v i    is the velocity of the particle;    x i    is the position of the particle;  w  is the inertia weight;    c 1    and    c 2    are the learning factors for individual experience and group experience;    r 1    and    r 2    are random values between 0 and 1;    p i    is the personal best position;  g  is the global best position. To prevent particles from aimlessly searching, the particle velocity is constrained within the interval   [  v  min   ,  v  max   ]  , and the position search is constrained within the interval   [  x  min   ,  x  max   ]  .



The inertia weight  w  influences the search capability of the particle swarm. In the standard PSO,  w  remains constant, causing a gradual decline in particle velocity over iterations, leading to local optima and diminishing global search capability. To enhance global search and prevent local optima, this study employs a nonlinear time-varying adjustment of  w  based on a cosine function, which is expressed as follows:


  w =       w  max   −  w  min    2     cos   π ⋅       k   T  max         2    +       w  max   +  w  min    2      



(21)




where    w  max     and    w  min     are the maximum and minimum values of the inertia weight, respectively;  k  is the current iteration number;    T  max     is the maximum number of iterations. The variations of inertia weights in standard PSO, linear inertia weight PSO (LPSO), and the PSO with inertia weight (IPSO) are shown in Figure 10a. Compared to standard PSO and LPSO, IPSO maintains a higher  w  early in iterations to improve global search and a lower  w  later to enhance convergence accuracy.



In addition to  w ,    c 1    and    c 2    also influence the search capability of the particle swarms. These factors determine how particles adjust their positions based on individual and collective experiences, reflecting the information exchange among the particle swarm. A larger    c 1    causes excessive local searching, while a larger    c 2    promotes convergence towards the global optimum. Therefore, the learning factors are modified as follows:


       c 1  = 1.5 + cos    k π    T  max           c 2  = 2 − cos    k π    T  max           



(22)







As shown in Figure 10b, the improved learning factors ensure that the algorithm has a relatively large    c 1    in the early stages of iteration, allowing particles to disperse and explore the search space extensively, and enhancing global search capability. In the later stages of iteration, a relatively large    c 2    helps particles converge to local optima, improving local search precision.



In this paper, the dimension of the parameter space is selected as 3. The IPSO is used to optimize the bandwidth    ω 0    of LESO, the tracking speed factor  r  of LTD, and the proportional gain    k p    of LSEF. The parameter tuning process of the IPSO algorithm is shown in Figure 11.



The specific steps for parameter tuning are as follows:



	(1)

	
Parameter initialization. Set the population size of the particle swarm, maximum iterations, and search space dimensions. Randomly generate the initial positions and velocities of the particles, and initialize the parameters of the LADRC controller.




	(2)

	
Calculation of fitness function values. Assign the particle positions to the LADRC controller in sequence, and calculate the corresponding fitness values.




	(3)

	
Update of the personal best and global best positions. For each particle, if the current fitness value is better than the personal best fitness value, update the personal best position; if better than the global best fitness value, update the global best.




	(4)

	
Update of the particle velocity. If    v i  ( t + 1 ) ≤  v  min    , then    v i  ( t + 1 ) =  v  min    ; if    v i  ( t + 1 ) ≥  v  max    , then    v i  ( t + 1 ) =  v  max    .




	(5)

	
Update of the particle position. If    x i  ( t + 1 ) ≤  x  min    , then    x i  ( t + 1 ) =  x  min    ; If    x i  ( t + 1 ) ≥  x  max    , then    x i  ( t + 1 ) =  x  max    .




	(6)

	
Checking of the termination condition. If the maximum number of iterations is reached, the algorithm ends and the controller parameters are output; otherwise, return to step (2).








2.3.3. Design of IPSO-LADRC Controller


The system objective function used in this study is the integral of time-weighted absolute error (ITAE), which integrates the product of the running time and the absolute value of the system steady-state error as the fitness. The smaller ITAE value indicates the better control system performance. The control system designed according to this criterion has minimal transient response oscillations and good selectivity for parameters. The ITAE calculation formula is the fitness function [39]; that is,


   f  I T A E   =    ∫ 0  + ∞   t   | e ( t ) | d t  



(23)




where   e ( t )   is the steady-state error and  t  is the response time. The ITAE index comprehensively evaluates the static and dynamic performance of the control system, including speed, accuracy, and stability, thereby achieving ideal optimization on the steady-state error and adjustment time for the motor of the reel sprinkling irrigation machine.



The controller input signal is the desired motor speed calculated by Equations (4)–(6). The system control target is the BLDC motor that drives the reel to rotate. IPSO optimizes parameters    ω 0   ,  r  and    k p    in LADRC, and evaluates control system performance using the ITAE index, resulting in an optimal motor control response curve within the set maximum iterations. The flowchart of the IPSO−optimized LADRC controller parameter process is shown in Figure 12.






3. Results and Analysis


3.1. Simulation Experiments


To verify the feasibility of the IPSO-LADRC algorithm for the intelligent control system of the electric reel sprinkling irrigation machine, the Simulink component in Matlab2023a software was used as the experimental platform to build a vector control system for the BLDC motor based on LADRC, as shown in Figure 13. The PSO and IPSO algorithm programs were written using M-script files to optimize the key parameters in the LADRC. The simulation experiments compared the IPSO-LADRC control with PID control, LADRC control, and PSO−LADRC control strategies for the motor. The experiments included variable speed and variable load tests to simulate typical operating conditions of the machine, aiming to test the superiority of the intelligent control system for the electric reel sprinkling irrigation machine based on IPSO-LADRC.



3.1.1. Simulation Parameters


The Simulink simulation uses system running time t as the independent variable, motor speed as the system input, and unit step response as the output. In order to avoid prolonged simulation computation time, it is necessary to narrow the optimization range to save optimization time. Before starting, the optimization ranges of the three LADRC parameters were determined based on previous empirical tuning, that is,   r ∈ [ 0.0001 , 1000 ]  ,    ω 0  ∈ [ 0.0001 , 2000 ]  ,    k p  ∈ [ 0.0001 , 200 ]  . The controller gain b0 was 990.85; the population size of PSO and IPSO was 50, with a maximum iteration number of 100; the upper bound and lower bound for position search space    x  max     and    x  min     were set to 1 and −1; the maximum particle speed and minimum particle speed    v  max     and    v  min     were set to 1 and −1; the PSO inertia weight  w  was 0.7, with learning factors    c 1    and    c 2    both set to 1.5; the IPSO inertia weight maximum value    w  max     was set to 0.9; minimum value    w  min     was set to 0.4; the d-axis and q-axis current loop PI controller parameters,    K p    and    K i   , were 20 and 670, respectively; the initial parameters for the LADRC,    ω 0   ,  r , and    k p   , were 300, 500, and 48, respectively. The test used the BM1418ZXF permanent magnet BLDC motor, and the simulation motor parameters were consistent with the actual motor parameters listed in Table 1. The speed range was set from 0 to 1200 r/min, based on the working conditions of the reel sprinkling irrigation machine. The load torque was set from 0 to 1.5 N·m to simulate the real working conditions of the electric reel sprinkling irrigation machine.




3.1.2. Simulation Results Analysis


Startup Control Performance


The motor with good startup performance of the electric reel sprinkling irrigation machine could better adapt to complex conditions and maintain operational continuity and stability. To explore the startup performance of the motor under four control strategies, the motor speed was set to 1000 r/min (corresponding to a travel speed of 30 m/h), and the load torque was set to 1 N·m. Under these conditions, the adjustment time, overshoot, and steady-state error were used to assess the motor dynamic response. The motor load startup response is shown in Figure 14, and the startup control performance under four control strategies is shown in Table 2.



It can be seen that the startup performance of the electric reel sprinkling irrigation machine control system based on IPSO-LADRC has significant advantages over the other three control strategies. The system has no overshoot, the adjustment time of 0.061 s, and the smallest steady-state speed error rate of only 0.0001%. The normal PID control has the longest adjustment time, the largest overshoot, and the highest steady-state error, resulting in the poorest overall performance. LADRC control improves the adjustment time but has the highest overshoot. Although its steady-state error is small, the large overshoot can cause significant transient fluctuations during startup, affecting the stability of the system. The PSO−LADRC control strategy has an adjustment time similar to LADRC control but completely eliminates overshoot, and has a smaller steady-state error, leading to significantly improved performance.




Variable Speed Control Performance


The variable speed adjustment time is a critical metric for evaluating the speed tracking performance of the system, which refers to the time required from the given speed change command to the system stabilizing at the new speed. To explore the variable speed performance of the motor, the speed was suddenly changed from 1000 r/min to 900 r/min under a load torque of 1 N·m, and then suddenly returned to 1000 r/min after stabilization. The motor variable speed control response curve is shown in Figure 15.



As shown in Figure 15, under the same conditions, the normal PID control has the longest adjustment time of 0.16 s and an overshoot of approximately 1.1%. The motor speed response curves under the three LADRC control strategies all have no overshoot. Among them, the IPSO-LADRC control strategy stabilizes the motor speed the fastest, with an adjustment time of 0.064 s, and the waveform is more stable, exhibiting superior speed tracking performance.




Variable Load Control Performance


During the operation of the electric reel sprinkling irrigation machine, encountering stones, potholes, and other conditions will cause sudden changes in the local load. The speed variation amplitude and speed recovery time during variable load conditions are both important system anti-disturbance performance, which refer to the maximum speed drop, the maximum speed rise after a sudden load change, and the time required for the system to stabilize at the given speed again. To explore the variable load performance of the motor, the load torque was abruptly changed from 1 N·m to 1.5 N·m, and then returned to 1 N·m after stabilization, and the speed variation amplitude and recovery time were observed. The motor variable load response curves for the four control strategies are shown in Figure 16, and the variable load control performances are shown in Table 3.



As shown in Figure 16 and Table 3, the three LADRC algorithms significantly improve anti-disturbance capabilities compared to the PID control algorithm, with the IPSO-LADRC control strategy demonstrating the best performance under load disturbances. The disturbance vibration amplitude of IPSO-LADRC is 2.76 r/min and the recovery time is 0.023 s. Compared to normal PID control, the vibration amplitude is reduced by 95%, and the recovery time by 90%. Compared to LADRC, the vibration amplitude is reduced by 90%, and the recovery time is reduced by 76%. Compared to PSO−LADRC, the vibration amplitude is reduced by 73%, and the recovery time is reduced by 52%. Furthermore, after disturbance recovery, the steady-state speed has almost no static error, showing better overall system stability.




Algorithm Performance Comparison


To evaluate the effectiveness of the improved intelligent algorithm in optimizing LADRC controller parameters, this work conducted an experimental comparison based on the PSO and IPSO algorithms. The fitness value variation curves of the two intelligent algorithms are shown in Figure 17, and the parameter variation curves of the LADRC controller optimized by the two intelligent algorithms are shown in Figure 18.



As shown in Figure 17, the optimization of LADRC parameters based on IPSO reaches the optimum at the 34th iteration, with a fitness value of 0.1323, while the optimization of LADRC parameters based on PSO reaches the optimum at the 59th iteration, with a fitness value of 0.4874. The PSO−LADRC requires more iterations and has a larger fitness value, indicating poorer control system performance compared to IPSO-LADRC. Therefore, the improvement in the PSO in this work is reasonable.



As shown in Figure 18, the three parameters optimized by PSO for LADRC are as follows:    ω 0    reaches its optimum value of 1500 at the 47th iteration;  r  reaches its optimum value of 597.3 at the 59th iteration;    k p    reaches its optimum value of 48.43 at the 47th iteration. The three parameters optimized by IPSO for LADRC are as follows:    ω 0    reaches its optimum value of 2000 at the 34th iteration;  r  reaches its optimum value of 196.428 at the 11th iteration;    k p    reaches its optimum value of 100 at the 14th iteration.






3.2. Field Tests for the Whole Machine


To further verify the performance of the IPSO-LADRC algorithm and control system, the JP75-300/D electric-driven reel sprinkling irrigation machine (produced by Jiangsu Huayuan Water Saving Co., Ltd., Xuzhou, China) was selected as the experimental object for the experiment in April 2023, as shown in Figure 19. The experiment was conducted in a test field located in Daizhuang Village, Tianwang Town, Jurong City, Jiangsu Province, China (119.16° E, 31.94° N, at an elevation of 34 m). The crop in the field was wheat, with a plant height of approximately 7–12 cm. The terrain was relatively flat (slope was negligible), the relative moisture content of the topsoil (0–20 cm) was 67%, and the outdoor temperature was 26 °C. A PY40 rotary sprinkler with a nozzle diameter of 14 mm and an operating pressure of 0.2 MPa was used for the experiment.



At operating speeds of 10 m/h and 30 m/h, the operating performance of the electric-driven reel sprinkling irrigation machine was compared under normal PID control and IPSO-LADRC control, including the mean absolute deviation rate, the maximum absolute deviation rate, and the standard deviation, to determine the accuracy and stability of the electric control system. The mean absolute deviation rate is calculated as follows:


   M A  =   1 k     ∑  i = 1  k        v i  −  v t     v t        × 100 %  



(24)




where  k  is the sample size;    v i    and    v t    are the actual measured speed and theoretical speed, m·h−1. The standard deviation can be expressed as follows:


  s =     1 k     ∑  i = 1  k      v i  −  v ¯         



(25)







Considering the limitations of the test site, the water pipe coiled on the reel could not be fully rolled out. Therefore, only the third and fourth layers of the water pipe were partially selected to be rolled out for the experiment, with a total length of 100 m, of which the third and fourth layers of the extended water pipe were 27.3 m and 72.7 m, respectively. At operating speeds of 10 m/h and 30 m/h, the gearbox was set to fourth and second gears, corresponding to speed ratios of 1183.9 and 493.3, respectively, and the chain transmission ratio between the gearbox and the reel was 18.5. Before the test, a tractor was used to tow the sprinkler cart to an appropriate working position, leaving two layers of the water pipe on the reel. At the start of the test, the power switch was turned on, and the speed of the sprinkler cart gradually increased from 0 to the set operating speed. During startup, the sudden load change caused by the water pipe from slack to taut would generate severe vibrations, reducing control accuracy. To ensure the reliability of the experimental data, the test unit started recording and storing the water pipe recovery speed with an Android industrial control terminal after the system started and stabilized. The speed measurement was performed with a roller sensor that had an accuracy of ±0.144°, which greatly satisfied the high precision requirements for speed measurement. For each test, 20 samples were selected from the stable operation of the control system for analysis and calculation of operating performance. The control test results of the electric reel sprinkling irrigation machine under PID and IPSO-LADRC control strategies at different speeds are shown in Table 4 and Figure 20.



As shown in Table 4 and Figure 20, the field tests results at different speeds indicate that at a speed of 10 m/h, the mean absolute deviation rate and maximum absolute deviation rate of the proposed IPSO-LADRC control method are 4.42% and 9.7%, which are 13.67% and 27.07% lower than that of the PID control method. At speed of 30 m/h, the mean absolute deviation rate and maximum absolute deviation rate of the IPSO-LADRC control method are 5.57% and 16%, which are 23.90% and 13.98% lower than that of the PID control method.





4. Discussion


This study primarily addresses the issue of travel speed stability encountered by electric-driven reel sprinkling irrigation machines during irrigation in complex farmland environments. The approach includes designing the hardware structure and software program for the travel speed control system of the electric-driven reel sprinkling irrigation machine, analyzing the working principle of the machine and establishing a kinematic model, and designing and validating a control strategy that optimizes LADRC controller parameters using the IPSO algorithm. The main findings of this study are as follows:



By analyzing the kinematic model of the irrigation machine and combining the IPSO algorithm to optimize the LADRC controller parameters, a travel speed control system was designed. This system successfully addresses issues such as long adjustment time, large overshoot, and poor disturbance rejection capability found in traditional control methods under complex farmland conditions.



A simulation model of the BLDC motor vector control system was built to verify the feasibility of the IPSO-LADRC algorithm. The results showed that under variable speed conditions, the control system had an adjustment time of 0.064 s, demonstrating excellent speed tracking performance. Under variable load conditions, the speed fluctuation amplitude was less than 0.3%, with no steady-state error or oscillation after stabilization, indicating strong disturbance rejection capability.



The performance of the IPSO-LADRC algorithm and control system was further validated through whole machine tests. The results indicate that at travel speeds of 10 m/h and 30 m/h, the average absolute deviation rate and maximum absolute deviation rate under the IPSO-LADRC control strategy are significantly better than those under the conventional PID control strategy, offering higher control accuracy and stronger disturbance rejection capability.



Additionally, other studies have shown that designing and optimizing LADRC can significantly improve the performance of control systems in complex environments. The LADRC controller proposed in Reference [40], the DDPG−LADRC method in Reference [41], and the fuzzy adaptive LADRC controller (FLADRC) proposed in Reference [42] all exhibit significant improvements in control stability and dynamic performance compared to PID control, but they suffer from overshoot. The MDDPG−LADRC control algorithm proposed in Reference [43] requires a large number of optimization iterations, leading to high computational complexity. It also exhibits a disturbance amplitude variation of approximately 6%, a recovery time of 0.5 s, and noticeable errors after stabilization. The extremum seeking (ES) algorithm proposed in Reference [44] to optimize LADRC parameters reduces the maximum amplitude variation and recovery time under disturbance to half that of LADRC, but still requires up to 5 s of regulation time. The TDOF−LADRC speed controller proposed in Reference [45] achieves accurate tracking without overshoot (response time of 0.25 s); however, the speed variation under variable load conditions is 1.52%. In contrast, the IPSO-LADRC control system proposed in this study not only completely eliminates overshoot in speed regulation under both variable speed and variable load conditions, but also achieves a regulation time of 0.064 s with a speed variation amplitude of less than 0.3%, far superior to other control strategies. Field test results indicate that the IPSO-LADRC control strategy maintains an average control error of around 5% at different walking speeds, fully meeting the control requirements specified in Reference [46].



Although this control method demonstrates strong performance, it also presents challenges such as increased complexity and higher computational demands, which may pose difficulties in practical applications where hardware resources are limited. Furthermore, the control performance under a broader range of farmland scenarios has yet to be tested. The IPSO-LADRC strategy demonstrated excellent performance in practical tests. However, the complexity of the farmland environment and the high computational demands increased the difficulty of system response to some extent, resulting in disturbance rejection performance that falls far short of what was achieved in simulation experiments. Therefore, there is still room for optimization in this approach. Based on the findings and limitations of the current study, several directions for future research can be considered:



Explore the speed control effects under a wider variety of farmland types or agricultural conditions, such as terrains with slopes, and performance in different scenarios like muddy or sandy fields.



Optimize computational complexity and real-time performance by exploring lightweight algorithms utilizing hardware acceleration technologies such as FPGA or GPU.



Building on this research, improve the error feedback control law of the LADRC controller by incorporating advanced control methods such as adaptive control or sliding mode control to enhance dynamic adaptability and disturbance rejection capability.




5. Conclusions


This study addresses the problem of significant travel speed fluctuations in electric reel sprinkling irrigation machines under traditional control methods by designing a travel speed control system based on IPSO-LADRC. By establishing the kinematic model of the irrigation machine, improving the PSO algorithm, and optimizing the key parameters within the LADRC controller, the system effectively resolves issues of low precision and poor disturbance rejection capability under complex working conditions.



The simulation results indicate that under variable speed conditions, the control system exhibits no overshoot and an adjustment time of 0.064 s. Under load disturbance conditions, the speed fluctuation amplitude is less than 0.3%, with a disturbance recovery time of 0.023 s, and no oscillation or static error after reaching steady state. The IPSO-LADRC control strategy demonstrates superior dynamic response performance and stronger disturbance rejection capability.



The field test results show that at travel speeds of 10 m/h and 30 m/h, the average absolute deviation rate under the IPSO-LADRC control is reduced by 13.67% and 23.90%, respectively, and the maximum absolute deviation rate is reduced by 27.07% and 13.98%, respectively, compared to conventional PID control. The IPSO-LADRC control strategy offers more precise speed control and stronger robustness.
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Figure 1. Design concept of the IPSO-LADRC controller. Note: The red arrows represent the process of parameter improvement in the PSO algorithm; * denotes the target values for the q-axis and d-axis currents. 
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Figure 2. Components of the electric reel sprinkling irrigation machine. (a) Overall structure; (b) electric drive components. Note: 1. sprinkler cart; 2. water supply pipe; 3. reel; 4. electric drive transmission control box; 5. permanent magnet motor; 6. gearbox; 7. tachymeter rollers; 8. display screen. 
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Figure 3. Roller speed measurement mechanism. Note: 1. speed measurement bracket; 2. encoder; 3. speed measurement rubber roller; 4. roller shaft; 5. fixing nut. 
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Figure 4. Speed control components of the electric reel sprinkling irrigation machine. 
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Figure 5. Main interface of the Android control terminal display screen. 
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Figure 6. Flow chart of the system control. 
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Figure 7. Block diagram of the control system for the electric reel sprinkling irrigation machine. 
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Figure 8. Cross-sectional view of the reel.Note: The dotted line represents the central axis of the water pipe. 
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Figure 9. Block diagram of the LADRC. 
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Figure 10. Variation trends of inertia weight and learning factors. (a) Variation in inertia weights in PSO, LPSO, and IPSO; (b) variation in learning factors in PSO and IPSO. 
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Figure 11. IPSO algorithm parameter tuning and optimization process. 
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Figure 12. Flowchart of IPSO−optimized LADRC controller parameter process. 
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Figure 13. Simulation diagram of the vector control system for BLDC motor based on LADRC. 
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Figure 14. Motor load startup response curve. 
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Figure 15. Motor variable speed control response curve. 
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Figure 16. Motor variable load response curve. 
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Figure 17. Fitness value variation curves of the two intelligent algorithms. (a) PSO; (b) IPSO. 
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Figure 18. Parameter variation curves for optimizing the LADRC controller using the two intelligent algorithms. (a) PSO; (b) IPSO. 
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Figure 19. Field tests of the JP75-300/D electric-driven reel sprinkling irrigation machine. 
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Figure 20. Control test results of the electric reel sprinkling irrigation machine under different speeds. (a) Sample speed control curve at 10 m/h; (b) sample speed control curve at 30 m/h. 
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Table 1. Parameters of BM1418ZXF BLDC motors.






Table 1. Parameters of BM1418ZXF BLDC motors.





	Parameter
	Values





	Inertia (kg·m−2)
	0.002628



	Viscous friction coefficient (N·m·s)
	0.000527



	Number of pole pairs
	5



	Phase resistance (Ω)
	0.1506



	Direct and quadrature-axis inductances (H)
	0.000251



	Back EMF coefficient (Kr·min−1)
	0.0328



	Torque coefficient (N·m·A−1)
	0.313



	Flux of permanent magnets (Wb)
	0.0496










 





Table 2. Startup control performance under four control strategies.
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	Control Strategy
	Adjustment Time/s
	Overshoot/%
	Steady-State Error/%





	PID
	0.238
	5.1
	0.0062



	LADRC
	0.161
	7.6
	0.0034



	PSO−LADRC
	0.158
	0
	0.0021



	IPSO-LADRC
	0.061
	0
	0.0001










 





Table 3. Variable load control performance under four control strategies.






Table 3. Variable load control performance under four control strategies.





	Control Strategy
	Disturbance Amplitude/(r·min−1)
	Recovery Time/s





	PID
	54.12
	0.225



	LADRC
	27.15
	0.095



	PSO−LADRC
	10.09
	0.048



	IPSO-LADRC
	2.76
	0.023










 





Table 4. Control test results of the electric reel sprinkling irrigation machine under different speeds.






Table 4. Control test results of the electric reel sprinkling irrigation machine under different speeds.





	
Control

Strategy

	
  ν   = 10 m·h−1

	
  ν   = 30 m·h−1




	
Mean Absolute Deviation Rate/%

	
Maximum/%

	
Standard Deviation

	
Mean Absolute Deviation Rate/%

	
Maximum/%

	
Standard Deviation






	
PID

	
5.12

	
13.3

	
0.035

	
7.32

	
18.6

	
0.045




	
IPSO-LADRC

	
4.42

	
9.7

	
0.028

	
5.57

	
16

	
0.041
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