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Abstract: Accurate categorization and timely control of leaf diseases are crucial for citrus growth.
We proposed the Multi-Models Fusion Network (MMFN) for citrus leaf diseases detection based on
model fusion and transfer learning. Compared to traditional methods, the algorithm (integrating
transfer learning Alexnet, VGG, and Resnet) we proposed can address the issues of limited categories,
slow processing speed, and low recognition accuracy. By constructing efficient deep learning models
and training and optimizing them with a large dataset of citrus leaf images, we ensured the broad
applicability and accuracy of citrus leaf disease detection, achieving high-precision classification.
Herein, various deep learning algorithms, including original Alexnet, VGG, Resnet, and transfer
learning versions Resnet34 (Pre_Resnet34) and Resnet50 (Pre_Resnet50) were also discussed and
compared. The results demonstrated that the MMFN model achieved an average accuracy of 99.72%
in distinguishing between diseased and healthy leaves. Additionally, the model attained an average
accuracy of 98.68% in the classification of multiple diseases (citrus huanglongbing (HLB), greasy spot
disease and citrus canker), insect pests (citrus leaf miner), and deficiency disease (zinc deficiency).
These findings conclusively illustrate that deep learning model fusion networks combining transfer
learning and integration algorithms can automatically extract image features, enhance the automation
and accuracy of disease recognition, demonstrate the significant potential and application value in
citrus leaf disease classification, and potentially drive the development of smart agriculture.

Keywords: disease detection and classification; citrus leaf; model fusion; transfer learning; deep learning

1. Introduction

Citrus fruits, as a crucial cash crop globally, have a direct effect on food supply,
agricultural economy [1], and international trade in terms of yield and quality. However,
citrus is susceptible to various diseases [2] caused by fungi and pathogens [3]. Diseases are
prone to occur in the foliage, which not only leads to premature senescence and dropping
of citrus leaves but also affects development and quality [4]. There are many types of
citrus diseases [5], and once infected, they spread rapidly from tree to tree, resulting in
a large area of infection. This not only directly threatens the sustainable development of
the citrus industry but also increases the cost and the economic burden on fruit growers.
In the early stages of leaf infection, if the type of disease and the degree of infection
can be effectively identified and assessed, it can help fruit growers to implement effective
preventive measures and solutions and increase citrus production and economic returns [6].
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Citrus leaf disease classification, as an important area of plant pathology, has received
a lot of attention and research [7]. Alongside the evolution and progress of technology [8],
different approaches have been applied in this field to enhance the accuracy and efficiency
of disease identification. Traditional methods for diagnosing citrus leaf diseases primarily
rely on manual experience and visual inspection, which are easy to implement but suffer
from high subjectivity and low accuracy and efficiency. As well as requiring a high degree
of specialization and extensive experience for technicians, it is not suitable for the preven-
tion and detection of large-area orchard diseases. Using biological detection methods can
achieve accurate identification of diseases [9]. However, this requires professional testing
equipment [10], operation in the laboratory [11] by professional testing personnel, and
complex processes. Since it is time-consuming and high-cost, it is generally suitable for
accurate quantitative analysis of disease application. Therefore, it does not meet the require-
ments of large orchard disease prevention and control. Consequently, the development
of a fast, accurate, and efficient method for diagnosing citrus leaf diseases is particularly
crucial and has very important practical significance [12]. With the emergence of artificial
intelligence, machine learning algorithms have experienced significant advancements [13].
These advancements primarily include techniques based on image processing and machine
vision [14]. These methodologies typically rely on manually crafted features and classi-
fiers [15], such as support vector machines (SVM) [16], K-nearest neighbors (KNN) [17],
decision trees, and others [18], to facilitate disease recognition and classification. However,
these approaches often encounter limitations when confronted with intricate variations in
images and diverse manifestations of diseases. Moreover, manual design features require a
lot of expertise and experience, and different feature extraction methods may be needed for
different diseases. This will increase the complexity and difficulty of application. Compared
to hyperspectral images, RGB images occupy a central position in the field of computer
graphics and image processing due to their rich colors, strong intuition, wide versatility,
low cost, and easy processing. They can accurately restore or create rich visual effects and
meet various complex image processing needs.

Recently, deep learning (DL) technology [19] has achieved remarkable results in image
classification and target detection [20]. This is due to its powerful feature extraction and
pattern recognition capabilities. In particular, the convolutional neural network (CNN) [21]
can automatically extract image features that are more expressive and robust. By automati-
cally learning the hierarchical feature representations in the image, it can better understand
the image structure and improve the classification accuracy. Mohanty et al. [22] used the
transfer learning technique on the PlantVillage dataset for 26 types of diseases recognitions.
They successfully achieved an overall classification accuracy of 99.35% by using Alexnet
and Googlenet. In contrast, Wagle and Remachandran [23] used a variety of networks,
including Alexnet, VGG16, Googlenet, MobilenetV2, and Squeezenet, which were trained
by transfer learning, in their tomato leaf diseases recognition study. Their experimental
results showed that the VGG16 network attained the highest recognition accuracy of 99.17%.
Sladojevic et al. [24] used fine-tuned Caffenet networks to recognize different crop leaf
diseases and they achieved an average accuracy of 96.3%. Agarwal et al. [25] used a CNN
model containing eight hidden layers and trained it on the PlantVillage dataset, finally
achieving an accuracy of 98.4%. Rangarajan et al. [26] used a transfer learning technique
to recognize six types of diseases as well as healthy images of tomatoes with the help of
pre-trained Alexnet and VGG16 models and achieved 97.29% and 97.49% accuracies, respec-
tively. Xing et al. [27] improved parameter utilization by proposing a weakly densenet-16
network and applying a cross-channel feature fusion method and achieved 93.33% accuracy
on a citrus pest and disease dataset. Kundu et al. [28] proposed a DL framework based on
real datasets labeled by plant pathologists. This framework utilized the K-means algorithm
and maizenet model to achieve automatic detection, disease prediction, and loss estimation
of maize diseases with an accuracy of 98.5%. The framework was integrated into a web ap-
plication to provide a convenient tool for plant pathologists. Gangwar et al. [29] developed
a transformer model that performed well in classifying tomato leaf images (with normal
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and complex backgrounds) in 13 classes with 93.51% accuracy. It requires less storage
space and shorter training time and can be equipped with IoT, drones, and other devices
for real-time monitoring. Dhaka et al. [30] comprehensively evaluated the application
of IoT and DL models for plant disease monitoring and classification. The advantages
and disadvantages of multiple architectures were analyzed, and shortcomings in existing
research were identified. Their performance on publicly available datasets was compared
and contrasted to provide a reference for selecting the optimal model. In conclusion, deep
learning, with automatic feature extraction, high-level semantic understanding, strong
generalization power, concise processing flow, and good scalability, has shown remarkable
proficiency in the domain of image categorization. As one of the current mainstream
methods, DL provides strong theoretical support and practical guidance for citrus leaf
disease classification [31].

From traditional manual methods to instrumental detection, to the more intelligent
methods of today, the prevention and management of crop diseases have always been a
pressing issue in agriculture [32]. Disease recognition technology has undergone several
stages of development [33]. Despite the growing global importance of the citrus industry
in recent years, the accurate identification of citrus diseases still faces many challenges.
Current research focuses on the identification, prevention and control of common diseases,
while there is a lack of systematic research data and effective identification methods for
emerging or regionally specific disease species. Currently, the diagnosis of citrus diseases
relies on symptomatic observation and laboratory testing, but these methods are often
lagging behind. The research gap in early disease diagnosis technology not only limits the
early detection and rapid response of diseases, but also affects the sustainable development
of the citrus industry.

In view of this, this study aims to fill this gap by developing an efficient and accurate
intelligent identification system for citrus diseases through the comprehensive use of
advanced technologies such as image processing, and deep learning. Specific research
objectives include: (1) to construct a citrus disease dataset containing a wide range of disease
species and diverse samples to provide a solid data foundation for subsequent research;
(2) to explore and optimize the feature extraction and representation methods applicable
to citrus disease images to improve the accuracy and efficiency of disease identification;
(3) to design and implement one or more efficient classification models that can accurately
identify citrus diseases in complex and changing field environments; and (4) to validate the
effectiveness and practicability of the proposed methods, and to provide scientific basis
and technical support for the precise prevention and control of citrus diseases.

This article is structured as follows. Section 2 introduces the dataset, data preprocess-
ing, related technical methodologies, the proposed CNN model in detail, and experimental
design. Section 3 explains the experimental results, and Section 4 summarizes the research
results and discusses their significance and future research direction. Finally, the conclusion
and perspectives are presented in Section 5.

2. Materials and Methodologies
2.1. Data Acquisition

At present, there are few available datasets of citrus pests and diseases, and they
usually cover limited types of diseases, misclassification of diseases and uneven image
quality. To overcome these challenges, we screened and integrated datasets from multiple
sources to construct the dataset. The citrus leaf disease dataset we used comes from
multiple sources, including (1) open-source datasets, such as PlantVillage, the Citrus
Pest Identification Challenge dataset, the Kaggle citrus leaf dataset, images from Baidu’s
webpage, and images from published papers and datasets (citrus samples from orchards
in the state of Tamaulipas, Mexico). (2) Self-collected dataset: different citrus orchards in
Guilin (25◦16′30′′ N 110◦17′46′′ E), Guiping, (23◦20′08′′ N 110◦19′49′′ E), Guangxi Zhuang
Autonomous Region, China, including one thousand three hundred photos with a size of
6000 × 4000 pixels. These self-collected pictures were shot with a Canon camera (Tokyo,
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Japan), model EOS R50, with 24 megapixels, autozoom, no flash, and saved in JPG format.
Details of the sources of the dataset are shown in Table 1. To ensure the diversity and
practical application value of the data, we consulted citrus pests and diseases experts,
fruit growers, and relevant information to fully understand the specific conditions of the
diseased leaves. Ultimately, we integrated images from different sources and constructed a
comprehensive and representative diseases dataset used for research.

Table 1. Description of data sources.

Sources Images

PlantVillage 732
Citrus Pest Identification Challenge 396

Kaggle 450
Webpage of Baidu 41
Published papers 579

Self-collected 1352

In terms of quantity, the dataset encompassed a total of more than three thousand cit-
rus leaf images. This can help the model to demonstrate better generalization performance
in practical applications. In terms of disease types, the dataset covered a wide range of
diseases commonly found in citrus production, such as zinc deficiency, citrus huanglong-
bing (HLB), greasy spot disease, citrus leaf miner, and citrus canker. In addition, in order to
build a complete classification system, the dataset contained images of healthy leaves as
benchmark categories. Each category possessed a sufficient number of image samples, and
these samples showed good diversity in terms of disease severity, leaf morphology, and
background environment, simulating complex recognition scenarios in the real world.

2.2. Data Preprocessing

In image classification tasks, CNNs require sufficient data to effectively learn sample
features. An insufficient amount of data may cause the model to fall into a local optimum,
triggering overfitting and degradation of recognition accuracy. To solve these problems,
the amount and diversity of data should be increased to enhance the generalization ability
of the network. Therefore, data augmentation on the original dataset is necessary. It can
expand the dataset and increase the diversity and number of samples, thereby meeting
the data requirements of CNNs and improving the model’s recognition accuracy. Before
constructing the DL model, the original dataset was thoroughly preprocessed to enhance
the quality, diversity and applicability of the data. The following is a detailed description
of the series of preprocessing steps we took for the citrus leaf disease dataset.

Data enhancement: To increase the generalization ability and robustness of the model,
we performed data enhancement operations, including Random cropping, zoom, trans-
lation, rotate, adjust image light and shade and contrast [34], etc. Data enhancement
helped the model to better adapt to various scenarios that may occur in real applications
by simulating different shooting conditions and perspective changes [35].

Size adjustment: Due to inconsistent sizes and resolutions of the original images,
inputting them directly into the model may affect the stability and efficiency of training.
Therefore, we resized all images to a uniform size, such as 256 × 256 or 512 × 512 pixels so
that the model can process the input data more efficiently.

Normalization: Normalization is a data preprocessing technique commonly used in
DL. It converts an original image from the pixel interval of 0 to 255 to the interval of 0 to 1 by
a linear transformation. This operation does not alter the image data but can decrease the
neural network computation load, thus accelerating model training. In this study, we also
normalized the images in the dataset to enhance the convergence speed and recognition
accuracy.

Histogram equalization: To improve the contrast and clarity of the image, we utilized
histogram equalization technique. This operation redistributed the pixel intensities of the
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image, making the detailed parts of the image more prominent, which helped the model to
better recognize the disease features on the leaves.

Median filter and Gaussian filter: To remove noise and detail interference from the
image, we have used a median filter and a Gaussian filter, respectively. The median filter
can effectively remove pepper noise, while the Gaussian filter smoothed the image and
reduced the effect of high-frequency noise. These filtering operations helped to improve
the signal-to-noise ratio of the image and make disease features more clearly recognizable.

Through these preprocessing steps, we successfully enhanced the quality and diversity
of the citrus leaf disease dataset, laying a solid foundation for the subsequent disease
classification task. After data enhancement, the dataset presented comprised a total of
19,791 images, encompassing five types of leaf diseases as well as healthy leaves. The
images were randomly split into training and validation sets at a 7:2:1 ratio, with 14,777
images allocated to the training set, 3546 images to the validation set, and 1468 images to
the test set. Figure 1 shows some examples of preprocessing. Table 2 shows the number of
pictures for each type of disease in the citrus leaves dataset.
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Figure 1. Different cases of data preprocessing.

Table 2. Description of citrus leaves dataset.

Class Training Images Validation
Images Test Images Total Images

Healthy 2228 532 208 2968
Canker 2778 670 246 3694

HLB 2686 647 258 3591
Greasy spot 2206 527 215 2948
Leafminer 2163 516 214 2893

Zn deficiency 2716 654 327 3697
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2.3. Technical Methodologies
2.3.1. Transfer Learning

In disease classification tasks, it is difficult to collect a large amount of labeled data.
Transfer learning can utilize pre-trained models to solve this problem and achieve better
performance even with a small sample dataset [36]. The principle of transfer learning is
to utilize already-learned knowledge or models and apply them to new tasks or domains
to accelerate the learning process and improve performance [37]. The core of transfer
learning lies in finding similarities between the source and target domains and then uti-
lizing these similarities to transfer knowledge. This transfer can be performed based on
different levels, such as on model parameters, features, or samples. Since the pre-trained
model has already learned a large number of image features, it requires significantly less
training data and training time when transferring to the disease classification task. This
makes transfer learning an efficient learning method. Using transfer learning can save
considerable computational resources and time. Meanwhile, the model is able to learn a
more generalized feature representation, thus demonstrating superior performance and
stronger generalization ability on new tasks. In this study, to expedite the training process
and enhance its performance, we leveraged pre-trained weights originating from extensive
datasets, enriched with robust feature extraction capabilities. Once these weights were
loaded, we appended a fully connected layer to the existing network architecture, aiming
to enhance its adaptability for leaf disease classification. During the training phase, we
employed backpropagation while permitting the fine-tuning of all layers, including the
convolutional layers. This approach allowed the entire pre-trained model’s parameters to
undergo continual updates, optimizing its performance for the specific task of leaf disease
classification. Figure 2 shows the representation of deep CNN feature extraction using
transfer learning.
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2.3.2. Convolutional Neural Networks

CNNs were originally proposed by Yann LeCun in 1998 through the LeNet-5 model [38]
and successfully applied to handwritten digits recognition. Nowadays, CNN has become a
widely used DL algorithm [39], which usually consists of a multiple network structure such
as input, convolutional, pooling, fully connected, and output layers. In order to enhance
the expressive power of neural networks, we introduced nonlinear processing units, i.e.,
activation functions, to obtain more nonlinear feature information. Common activation
functions include Sigmoid, Tanh, and ReLU. CNNs showed significant advantages in leaf
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disease classification. The convolutional layer automatically extracted key features, such as
edges and texture [40]. As the number of network layers increases, the convolutional layer
captured more advanced features, thus improving classification accuracy. The pooling
layer can reduce model complexity and computation while enhancing generalization and
highlighting features. The connected layer integrated features to form a global representa-
tion and mapped to specific disease categories for flexible classification. Overall, the CNN
extracted feature through the convolutional layer, simplified them with the pooling layer,
and integrated and classified them with the fully connected layer, which together provided
an efficient, accurate, and flexible solution for the leaf disease classification task.

2.3.3. Alexnet

Alexnet [41] is a far-reaching DL network architecture, especially in the field of com-
puter vision. It employs an eight-layer network architecture consisting of five convolutional
layers and 3 fully connected layers. In the convolutional layers, Alexnet performs feature
extraction from the input image by means of convolutional kernels of different sizes. In
addition, Alexnet incorporates the dropout technique to prevent overfitting and trains in
parallel on two GPUs to speed up computation. Although Alexnet has achieved remarkable
results on image classification tasks, it has some drawbacks. First, due to the more com-
plex network structure, Alexnet has a larger number of parameters, which requires larger
computational resources and storage space. Second, Alexnet may encounter computational
efficiency problems when dealing with high-resolution images. Furthermore, Alexnet may
not be as efficient as subsequent more lightweight network structures for some specific
tasks.

2.3.4. VGG

VGG [42] is a deep CNN developed by the Computer Vision Group at the University
of Oxford and researchers at DeepMind. It mainly explores the relationship between the
depth of a CNN and its performance. By repeatedly stacking 3 × 3 small convolutional
kernels and 2 × 2 maximal pooling layers, VGG successfully builds a deep CNN with
16–19 layers. The philosophy design of VGG lies in its simplicity and consistency, which
is entirely composed of 3 × 3 convolutional kernels and 2 × 2 maximal pooling layers,
without using any special layers. This design allows the network to capture finer-grained
image features and perform well on different image datasets. The key features of the VGG
network include its depth, the use of only 3 × 3 convolutional kernels, and the use of ReLU
as the activation function.

2.3.5. Resnet

Resnet was proposed in 2015 from Microsoft Labs [43]. Resnet increases the depth
of the network directly to 152 layers in the classification competition of ImageNet, far
exceeding the 19 layers of VGG, which won the championship in the previous year. The
emergence of Resnet is of great historical significance for deep neural networks. Resnet
excels in CNN image tasks, leveraging shortcuts to address the challenge of model degra-
dation in deep networks. Resnet introduces the structure of residual connection, which
enables the deep network to play a better role. In addition, Resnet introduces the batch
norm layer, which enables the network to train deeper structures.

2.4. The Network Structure (MMFN) We Proposed

In the deep learning based task for citrus leaf disease classification, we innovatively
incorporated the ideas of integrated learning and transfer learning, named the Multi-
Models Fusion Network (MMFN). First, we used pre-trained models from transfer learning
to initialize deep neural networks, accelerating training and improving model performance.
Subsequently, we trained multiple DL models based on transfer learning and fused their
predictions to improve classification accuracy and generalization. This strategy effectively
utilized existing resources and significantly improved the accuracy and efficiency of citrus
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leaf disease classification. Specifically, we selected three classical DL models, Alexnet,
VGG, and Resnet, which has excellent performance in the field of image recognition. We
performed a detailed model fusion and introduced transfer learning. This process involved
not only an in-depth understanding and tuning of each model but also careful design of
the fusion approach. Consequently, we wanted to ensure the final model can effectively
cope with a variety of complex leaf disease scenarios while maintaining the advantages of
the respective models. Since Alexnet, VGG, and Resnet have different network structures
and depths, they are able to extract features from images at different levels and details.
Alexnet is more adept at capturing low-level features such as texture, and VGG helps
to capture more detailed features by using a stack of multiple 3 × 3 small convolutional
kernels, which improves the network’s ability to represent nonlinearities. Resnet, on the
other hand, introduces a residual module to avoid overfitting and solves the gradient
vanishing problem. It performs well in deep networks and is better at capturing high-level
features such as shape and structure. Therefore, the complementary nature of these models
is utilized to extract the most representative features from each model. By using this fusion
strategy, we expected to synthesize the strengths of each model to improve the recognition
accuracy of citrus leaf diseases. Through this integrated application of DL techniques,
we provided a new solution to the citrus leaf disease classification problem, as shown in
Figure 3.
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For the purpose of verifying the effectiveness of MMFN, we conducted a series of
experiments by using numerous citrus leaf disease image data. The image data covered
both healthy leaves and various diseased leaves, thus ensuring the broad applicability and
accuracy of the model. In addition, we optimized and adapted the model to meet the needs
of disease recognition in different environments and conditions. The effectiveness of DL in
citrus leaf disease classification was well established. During the model training process,
we used the Adam optimizer with appropriate learning rate and momentum values to
ensure that the model could converge stably and efficiently. A cross-entropy loss function
was employed to gauge the disparity between the model predictions and the actual labels,
guiding the model’s optimization direction.

To enhance the accuracy and generalization ability of the leaf disease classification
task, we first performed a series of preprocessing operations on the images. These pre-
processing steps included random cropping, scaling, panning, rotating, and adjusting the
brightness and contrast of the images. These steps aimed to enrich the training set with
data expansion and data enhancement so that the model can cope with many different
image transformations. Subsequently, we normalized the augmented images to ensure
that the data distribution of the images was consistent and resized them so that they could
be uniformly input. On the input side of the model, we input one batch of image data at
a time. To expedite model training and enhance performance, we initialized the model
with pre-trained weights, which were trained on other large datasets and contained rich
feature extraction capabilities. After loading the weights, we added a fully connected layer
to the original network to better adapt it to the leaf disease classification task. During the
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training process, we used backpropagation without freezing the parameters of the convolu-
tional layers, i.e., all layers were fine-tuned and all parameters of the pre-trained model
were continuously updated to adapt to the leaf disease classification task. Throughout
the model’s learning process, we particularly focused on the features extraction stage. In
order to efficiently convert high-dimensional convolutional features into low-dimensional
representations, we cleverly accessed a well-designed linear mapping layer after the last
convolutional layer. The task of this layer was to compress the complex convolutional
features to 128 dimensions, aiming to map all the features learned by various models to
a common low-dimensional space. This not only preserved the core information in the
features but also effectively eliminated redundant data. Subsequently, we stitched these re-
fined 128-dimensional features to form a fully connected layer with a dimension of 128 × 3.
This fully connected layer was optimized by a cross-entropy loss function and used L2
regularization to avoid overfitting, and ultimately output the predicted probability of this
batch of images corresponding to each category. In this way, we successfully realized the
data downscaling and redundancy removal, while retaining the key feature information.
This not only improved the computational efficiency of the model, but also enhanced its
performance on the leaf disease classification task. Figure 4 shows the detailed feature
extraction and model fusion of the suggested framework.
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2.5. Experimental Setting and Evaluation Indicators

The experimental platform consisted of a server running the Windows 10 64-bit
operating system, equipped with an Intel (R) Core (TM) i7-10700KF processor clocked
at 3.80 GHz, 16 GB of memory, and an NVIDIA GeForce RTX 3070 GPU. The software
development environment utilized was Python 3.7, and the experiment was conducted
using the pytorch1.12.1+cuda113 deep learning framework. The integrated development
environment (IDE) employed for compilation was PyCharm 2020.3.3 ×64.

This experiment employed the adaptive Adam optimizer, which dynamically adjusted
the learning rate of each parameter by computing the first-order moment estimate and
the second-order moment estimate. The batch size was set to 32, the initial learning rate
was 0.001, and 100 epochs were trained for each experiment. Additionally, we adopted
an exponential learning rate decay strategy, enabling the learning rate to decrease in a
stepwise manner, with a decay factor of 0.9.

The cross-entropy loss function is used to assess the alignment between the model’s
predicted probabilities and the true labels. A larger difference between the predicted and
true probability distributions results in a higher cross-entropy value, and vice versa. The
cross-entropy loss function is depicted in Equation (1), Where yi represents the true vector

distribution and
∧
yi represents the predicted vector distribution.

Loss = −
n

∑
i=1

yilog (
∧
yi), (1)

To assess the performance of a trained DL model in image classification tasks, quan-
titative metrics need to be taken. The commonly used evaluation metrics are accuracy,
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precision, recall, and F1 value [44]. Accuracy is the most commonly used and intuitive
evaluation metric to measure a model’s overall correctness. It is defined as the ratio of
correctly predicted samples to the total number of samples. However, accuracy alone may
not fully evaluate a model’s performance, especially in cases of class imbalance. Precision
is an evaluation metric for the prediction results that indicates the proportion of all samples
predicted to be positive which are actually positive. A higher precision rate signifies greater
reliability in the model’s prediction of positive categories. Recall is an evaluation metric
for real samples, indicating the proportion of actual positive samples correctly identified
by the model. A higher recall means the model successfully identifies more true positive
samples. The F1 value (F1-Score) is the harmonic mean of precision and recall, combining
both metrics to provide a balanced evaluation of the model’s performance. The formulas
for calculating accuracy, precision, recall, and F1 value are shown in (2), (3), (4), and (5).

TP represents the number of correctly predicted positive samples, TN represents the
number of correctly predicted negative samples, FP represents the number of incorrectly
predicted positive samples, and FN represents the number of incorrectly predict-ed negative
samples.

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1-Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

3. Results
3.1. Classification of Healthy and Unhealthy Leaves Images
3.1.1. Experimental Results of Different Models for Classifying Health and
Infectious Diseases

In addition, to validate the superiority of our proposed model, we also conducted
comparative experiments with other DL methods, including the original Alexnet, VGG,
Resnet, the transfer learning Resnet34 (Pre_Resnet34), and the transfer learning Resnet50
(Pre_Resnet50). The results showed that the maximum accuracy of all models exceeded
90%, with MMFN realizing the highest accuracy. It means that the deep learning based
citrus leaf disease classification method outperformed other models in accuracy, loss, and
other indicators. The test set accuracy was comparable to the validation and training
sets, and this good performance validated the potential application value of MMFN in
real-world environments. The recognition accuracy of MMFN of diseased and healthy
leaves reached 99%, with specific parameters shown in Table 3. The accuracy curves of the
validation sets for each model are illustrated in Figure 5. As can be seen from Figure 5, the
accuracy of the validation set of MMFN reached 95% from the beginning and throughout
was higher than that of the other models.

Table 3. Models results of health and infectious diseases.

Model
Results

Time Epoch Lr Train_Loss Train_Acc Val_Loss Val_Acc Test_Loss Test_Acc

Alexnet 36 s 100 0.0001 0.072 0.974 0.028 0.947 0.055 0.925
VGG 55 s 100 0.0001 0.039 0.985 0.024 0.984 0.032 0.948

Resnet 39 s 100 0.0001 0.037 0.986 0.017 0.986 0.021 0.966
Pre_Resnet34 42 s 100 0.0001 0.118 0.957 0.093 0.958 0.101 0.953
Pre_Resnet50 49 s 100 0.0001 0.098 0.965 0.062 0.969 0.048 0.941

MMFN 383 s 100 0.0001 0.103 0.987 0.094 0.997 0.081 0.984
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3.1.2. Experimental Results of the Model We Proposed

To visually represent the classification performance of MMFN, we plotted accuracy
curves for both the training and validation sets, as shown in Figure 6, the normalized
confusion matrix, shown in Figure 7. We can observe that the accuracy of both the training
set and validation set followed an increasing trend, both eventually stabilizing at 97%, 98%,
respectively. From the confusion matrix, it showed that the MMFN has high accuracy in
classifying and recognizing healthy and diseased leaves. The various evaluation metrics
of the MMFN are plotted in Table 4. It showed that the fusion model was able to achieve
more than 99.8% accuracy in the classification task of detecting whether a leaf was diseased
or not, and all metrics performed well.
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Table 4. Evaluation indicators for the health and infectious disease classification task.

Class Accuracy Precision Recall F1

Healthy 0.996 0.998 0.996 0.997
Illness 0.998 0.996 0.998 0.997

3.1.3. Ablation Experiments for Health and Infectious Disease Classification

Ablation experiment is a commonly used experimental methodology to assess the
contribution and importance of different components in a complex system or model. By
gradually removing or modifying certain parts of the system, researchers can observe
changes in system performance to determine which parts are critical to the overall perfor-
mance of the system and which parts may have little or no effect. In the MMFN ablation
experiments, one network at a time (Alexnet, VGG, Resnet) was “turned off” from the
MMFN model, and the model was then trained to analyze the specific impact of each
network on the overall performance of the model. The overall change in accuracy is shown
in Figure 8, and the detailed comparison is shown in Table 5.
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Table 5. Comparison of results of ablation experiments for healthy and unhealthy leaves images
classification.

Model Average Acc Healthy Ill

Shut Alexnet 0.996 0.996 0.996
Shut VGG 0.995 0.994 0.996

Shut Resnet 0.994 0.992 0.996
MMFN 0.997 0.996 0.998

The results of the ablation study showed that when Alexnet was turned off, the
accuracy of the model decreased by 0.1 percent; when VGG was turned off, the accuracy
decreased by 0.2 percent; and when Resnet was turned off, the accuracy decreased by
0.3 percent. These results showed that while the improved accuracy is not particularly
significant, overall, each network makes a significant contribution to the final solution and
no network is redundant.

3.2. Multi-Disease Classification
3.2.1. Model Results for Multi-Disease Classification

For the purpose of verifying the superiority of MMFN, we also conducted compar-
ative experiments with other DL methods, including the original Alexnet, VGG, Resnet,
Pre_Resnet34, and Pre_Resnet50 methods. The results demonstrated that the deep learning
based citrus leaf disease classification method we proposed outperformed other methods
in terms of accuracy, loss, and other performance metrics, as shown in Table 6. Addition-
ally, we plotted the comparison of the category recognition accuracy of different models,
and the results showed that overall, our model had the best overall recognition accuracy
results for each category. The test set accuracy was similar to that of the validation and
training sets, demonstrating the MMFN’s strong potential for real-world applications. The
plots of inter-class accuracy comparisons using different models are shown in Figure 9.
We also plotted the normalized confusion matrix for each model, as shown in Figure 10.
It can further confirm the superior performance of our method in the task of citrus leaf
disease classification. At the same time, we can also see that due to the increase in model
complexity, our proposed model also took more time when running. The accuracy graph
of the validation set for each model is shown in Figure 11, which clearly demonstrates the
performance advantage of MMFN over other models.
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Table 6. Model results for multi-disease classification.

Model
Results

Time Epoch Lr Train_Loss Train_Acc Val_Loss Val_Acc Test_Loss Test_Acc

Alexnet 47 s 100 0.0001 0.302 0.894 0.212 0.931 0.216 0.921
VGG 75 s 100 0.0001 0.117 0.958 0.084 0.975 0.124 0.942

Resnet 58 s 100 0.0001 0.103 0.962 0.053 0.981 0.157 0.940
Pre_Resnet34 71 s 100 0.0001 0.103 0.963 0.058 0.979 0.236 0.913
Pre_Resnet50 43 s 100 0.0001 0.260 0.907 0.167 0.944 0.196 0.928

MMFN 430 s 100 0.0001 0.053 0.981 0.039 0.987 0.122 0.953
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3.2.2. Experimental Results of Our Proposed Model

To demonstrate the classification performance of MMFN more intuitively, we plotted a
comparison of the accuracy of the training and validation set, as shown in Figure 12. We can
observe that the accuracy of both the training set and validation set followed an increasing
trend, eventually stabilizing at 97% and 98% respectively. The normalized confusion matrix
is plotted in Figure 13. From the confusion matrix, it can be seen that most of the categories
were relatively well classified from the diagonal elements. This suggested that the model
was adept at differentiating between various disease types and healthy leaves, with high
recognition accuracy for each category. The various evaluation metrics of MMFN are
displayed in Table 7. The data in the table revealed that the accuracy of leaf classification for
the six distinct categories exceeded 98%, with high accuracy, recall, and F1 scores. Notably,
the prediction accuracy for healthy leaves and greasy spot disease reached 99.5%.
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Table 7. Effectiveness metrics for classifying various types of diseases.

Class Accuracy Precision Recall F1

Healthy 0.971 0.995 0.991 0.981
Canker 0.996 0.998 0.996 0.997

HLB 0.985 0.996 0.971 0.978
Greasy spot 0.995 0.999 0.980 0.987
Leafminer 0.983 0.999 1.000 0.991

Zn deficiency 0.983 0.996 0.994 0.988

3.2.3. Ablation Experiment for Multi-Disease Classification

In order to gain a deeper understanding of the contribution of each network in the
MMFN model, we conducted an ablation study. We “turned off” one of the networks in
the model (Alexnet, VGG, Resnet) and observed the change in performance. The change
in accuracy is shown in Figure 14. From Table 8, the results showed that when Alexnet
was turned off, the accuracy of the model decreased by 1.1 percent; when VGG was turned
off, the accuracy decreased by 1.6 percent; and when Resnet was turned off, the accuracy
decreased by 1.1 percent. These results showed that each network maked a significant
contribution to the final solution and that no network is redundant.
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Table 8. Comparison of results of ablation experiments for multi-diseases ablation experiments.

Model Average Acc Healthy Canker HLB Greasy Spot Leafminer Zn
Deficiency

Shut Alexnet 0.975 0.979 0.994 0.945 0.982 0.972 0.976
Shut VGG 0.970 0.959 0.988 0.951 0.977 0.988 0.957

Shut Resnet 0.975 0.963 0.996 0.946 0.982 0.984 0.976
MMFN 0.986 0.971 0.996 0.985 0.995 0.983 0.983

In summary, our experimental results showed that the MMFN model achieved satis-
factory performance on both binary and multi-class classification tasks. The ablation study
also further confirmed the importance of each network in the model.

4. Discussion

After numerous training iterations, we obtained a model with stable performance. The
results showed that MMFN achieved remarkable results in the task of citrus leaf disease
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classification. Specifically, (1) in the classification of healthy and unhealthy leaves, the
model achieved an average accuracy of 99.72% on the validation set, with precision, recall,
and F1 scores all reaching 99%. (2) During the classification of multiple diseases, the model
attained an average accuracy of 98.68% on the validation set, with precision, recall, and
F1 scores also performing well. At the same time, our ablation experimental results also
showed that the MMFN model achieved satisfactory performance on both binary and
multi-class classification tasks. The ablation study also further confirmed the importance of
each network in the model.

Rehman et al. [45] used deep learning, combined with image enhancement, feature
fusion and WOA optimization algorithms, to successfully classify six diseases of citrus, with
an accuracy rate as high as 95.7%. Khattak et al. [46] constructed a CNN model by using an
integrated approach to differentiate between healthy and fruits/leaves suffering from five
common citrus diseases (e.g., black spot, ulcer, etc.). The model extracted complementary
features performed well on several evaluation metrics with a test accuracy of 94.55%.
Elaraby et al. [47] evaluated a new method on a library of citrus disease images and a
combined dataset for recognizing and classifying six citrus diseases. Two CNNs, Alexnet
and VGG19, were utilized to build and test the method, achieving 94% accuracy at the best
total system performance. Lin et al. [48] improved the identification of citrus pests and
diseases by using deep convolutional neural networks (DCNN). With image preprocessing
and DCNN techniques, the recognition accuracy was improved by about 12% compared
to traditional methods. Compared to existing studies, our study has made significant
progress in citrus pest and disease identification, especially in classification accuracy and
disease species coverage. However, we also note that the current public dataset suffers
from problems such as scarcity, limited pest species coverage, and classification errors,
different ability in disease manifestations in different regions and different seasons, which
limit the further improvement of model performance to some extent. To overcome these
challenges, we will work on constructing larger and higher quality citrus pest datasets in
the future, explore more advanced data processing and enhancement techniques, solve
the problem of hardware demand for a large number of computing resources, expand the
computing power, and realize the processing of large amounts of data or processing of large
areas of orchard disease data. In addition, we need to conduct an in-depth critical analysis
of the model’s limitations. For example, unbalanced data sets, diversity of data collection
environments, mixed complex disease identification, real-time response, etc. At the same
time, detecting diseases on the inner leaves of trees is indeed a more significant challenge
than detecting diseases on the outer leaves. We plan to enhance the ability of the model to
analyze different levels of the tree canopy by introducing advanced imaging techniques
and sensor data to improve the detection of hidden diseases. Although the MMFN model
performs well in most cases, it may still be deficient in the identification of certain rare or
complex diseases. This may be due to the fact that the model failed to fully learn the unique
characteristics of these diseases during the training process. Therefore, we plan to further
improve the recognition ability and robustness of the model by introducing more disease
samples, optimizing the model structure, or adopting an integrated learning approach
in future studies. In order to make our model more user-friendly for field workers and
farmers, we are also considering developing a user-friendly interface in the future to further
simplify the interaction with the model. Finally, we hope that this study will inspire more
researchers to pay attention and invest in citrus pest and disease recognition techniques. We
believe that through continuous efforts and innovations, we can provide more accurate and
efficient pest control solutions for agricultural production, thus guaranteeing the healthy
growth of crops and food security.

5. Conclusions

Aiming at the problems of traditional citrus leaf disease detection, such as the limited
number of categories, slow operation speed, and low recognition accuracy, a method for
detecting citrus leaf diseases based on a model fusion strategy incorporating transfer learn-
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ing was proposed. In this paper, we discussed in depth the application and effectiveness
of DL in citrus leaf disease classification. By analyzing in detailed the performance of
DL models such as CNNs in dealing with complex image classification problems, we
demonstrate the great potential of DL in the field of agricultural disease diagnosis. The
primary contributions of this paper can be summarized as follows: first, we constructed an
efficient DL model, MMFN, which can accurately identify whether a leaf is diseased or not
as well as classify a variety of diseases in citrus leaves. Through extensive experimental
validation, MMFN demonstrated significant advantages in both recognition accuracy and
efficiency.

(1) The model can accurately distinguish between leaf disease and absence disease; the
average accuracy on the validation set was 99.72%; and the precision, recall and F1 score
were 99%.

(2) During the classification of multiple diseases, the average accuracy for each type of
disease on the validation set reached 98.68%. The classification accuracies for citrus Canker
and greasy spot diseases were above 99%. The overall precision, recall, and F1 scores were
also excellent.

In summary, we faced challenges such as limited disease types in the dataset, similarity
in disease performance leading to misclassification, and complexity of the data collection
environment. At the same time, we found that DL showed great potential and application
value in citrus leaf disease classification. As technology continues to advance and data
becomes more abundant, the field of agricultural science and technology will inevitably
be impacted by emerging AI-driven technology trends and systems [49]. By combining
citrus disease classification research with AI, as well as multidisciplinary cross-integration,
advances in this field will significantly improve citrus yield and quality, reduce pesticide
use, and promote sustainable agricultural development with significant economic benefits.
We have grounds to anticipate that DL will assume an increasingly crucial role in the
future diagnosis of agricultural diseases and provide more efficient and accurate disease
identification methods for agricultural production. This will not only contribute to improv-
ing the yield and quality of citrus and other crops but also lay a solid foundation for the
advancement of smart agriculture.
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