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Abstract: Counting planthoppers manually is laborious and yields inconsistent results, particularly
when dealing with species with similar features, such as the brown planthopper (Nilaparvata lugens;
BPH), whitebacked planthopper (Sogatella furcifera; WBPH), zigzag leafhopper (Maiestas dorsalis;
ZIGZAG), and green leafhopper (Nephotettix malayanus and Nephotettix virescens; GLH). Most of the
available automated counting methods are limited to populations of a small density and often do
not consider those with a high density, which require more complex solutions due to overlapping
objects. Therefore, this research presents a comprehensive assessment of an object detection algorithm
specifically developed to precisely detect and quantify planthoppers. It utilises annotated datasets
obtained from sticky light traps, comprising 1654 images across four distinct classes of planthoppers
and one class of benign insects. The datasets were subjected to data augmentation and utilised to
train four convolutional object detection models based on transfer learning. The results indicated
that Faster R-CNN VGG 16 outperformed other models, achieving a mean average precision (mAP)
score of 97.69% and exhibiting exceptional accuracy in classifying all planthopper categories. The
correctness of the model was verified by entomologists, who confirmed a classification and counting
accuracy rate of 98.84%. Nevertheless, the model fails to recognise certain samples because of the
high density of the population and the significant overlap among them. This research effectively
resolved the issue of low- to medium-density samples by achieving very precise and rapid detection
and counting.

Keywords: insect pest detection; deep learning; machine vision; VGG16

1. Introduction

The current state of global agriculture is at a crucial point, as it must provide food
for a growing population while facing increasing environmental difficulties. In Malaysia,
where rice is an essential crop, ensuring the protection of its production is crucial. Rice is
not only a fundamental food source but also a crucial element of the cultural and economic
foundation of the nation, providing sustenance for millions. Over the last decade, the
average national rice production as measured by the rice self-sufficiency ratio (SSR) was
approximately 70%, and the country still relies on rice importation to cater to its growing
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population [1]. As such, the protection of rice crops from the pervasive threat of pests takes
on added urgency, as any compromise in production can reverberate across the entire socio-
economic spectrum [2]. Several planthopper species have been propounded as a major
threat to paddy fields as this highly migratory pest is capable of traversing long distances
and has invaded all the major rice-growing areas in the world [3]. The Brown planthopper
(Nilaparvata lugens; BPH) and whitebacked planthopper (Sogatella furcifera; WBPH) are
monophagous sap-sucking insects that can cause leaves to initially turn orange–yellow
before becoming brown and dry [4]. Zigzag leafhopper (Maiestas dorsalis; ZIGZAG) feeding
causes damage to the leaf tips, which will dry up, and causes whole leaves to become orange
and curled [5]. Another planthopper species is the green leafhopper (Nephotettix malayanus
and Nephotettix virescens; GLH), which spreads the viral ungro disease, which can cause
stunted plants, reduced vigour and number of productive tillers, and withering or complete
plant drying [6]. The past few years have witnessed GLH becoming one of the major pests
of rice, causing immense yield loss [7]. Conventional strategies to control planthoppers
have proven unsuccessful, with the planthoppers’ populations acquiring resistance to most
pesticides, thereby rendering them ineffective within a few generations [8].

Effective prevention and control of insect pests are crucial for minimising agricultural
losses. An essential aspect of achieving this goal is the ability to accurately identify and
classify these pests, differentiate between various species, and assess their population levels
for specific pest control measures. The Malaysian Agricultural Research and Development
Institute (MARDI) has developed a manual identification and counting technique done by
highly skilled experts as part of an early warning system for planthopper out-breaks. To
optimise this method, a solar-powered light trap device was created specifically to capture
insects during the nighttime [9]. The device consists of a light bulb contained within a
translucent plastic sheet, with dimensions approximately similar to an A3 paper. The plastic
sheet is covered with adhesive to trap the pests. Flying insects have positive phototaxis,
a behaviour that leads them to be drawn towards sources of light. The adhesive light
trap is retrieved on the next day and the professionals manually count the caught insects.
Nevertheless, the process of counting a single light trap requires up to 6 hours. Moreover,
the precision and effectiveness of the manual counting method may be influenced by
variables like tiredness and inconsistent evaluation by the inspectors. Technical factors, such
as the planthoppers’ condition (whether they are damaged or incomplete), the placement of
samples on traps, and the presence of overlapping insects, can result in differing viewpoints
among the inspectors. Additionally, the chosen classes of planthoppers share numerous
common characteristics, which makes it challenging to categorise the sample accurately
without a complete view from all angles. The counting process is further hampered by the
existence of overlapping insects. Therefore, the implementation of this manual approach
on a large scale presents issues [10–12]. The challenging and expensive nature of this
project has also prompted a significant increase in excitement concerning the automated
identification of insect pests in recent years [13].

The primary features for object recognition are broadly categorised into manual fea-
tures and deep features. In a study by Wu et al. [14], manual features such as GIST [15],
SIFT [16], and SURF [17] were compared with deep features like AlexNet [18], GoogleNet [19],
VGGNet [20], and ResNet [21] for pest identification. The results demonstrated a substantial
advantage of deep learning with an accuracy surpassing manual features by approximately
30%. Presently, the focus in pest detection mainly centres on detecting larger pests [22–24].
This is because cameras in the field are relatively sparsely arranged, resulting in pests
having fewer pixels in the overall image.

Currently, two-stage detectors have achieved state-of-the-art performance in small
object datasets [25] and demonstrated improved performance in small pest datasets [14].
The core process of a two-stage detector involves the following steps: (1) The input feature
map is processed through a Region Proposal Network (RPN), generating several Regions of
Interest (RoIs). The RPN aims to retain as much foreground information (pests) as possible
while filtering background information irrelevant for subsequent classification. (2) The
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location and classification of each RoI are determined by several fully connected layers. The
use of an RPN can effectively eliminate environmental backgrounds in small pest images,
thereby enhancing multi-classification accuracy.

A widely utilised architecture for object detection is the Faster R-CNN (Region-based
Convolutional Neural Network) [26]. The Faster R-CNN algorithm is renowned for its
capacity to effectively and precisely identify objects in images by merging a region proposal
network with a convolutional neural network backbone. A previous study examined the
use of automated methods to detect diseases in paddy leaves through Faster-RCNN and
multiple deep CNN models, including VGG16, ResNet-50, ResNet-101, and YOLOv3 [27].
Another study utilised multiple model detectors, such as Faster R-CNN ResNet 101, Faster
R-CNN ResNet 50, Faster R-CNN Inception v.2, R-FCN ResNet 101, and Retinanet ResNet
50, to identify moths captured in pheromone traps [28]. The Faster R-CNN ResNet 101
detector achieved the highest accuracy with a mean average precision (mAP) of 90.25. A
separate study employed the VGG16 and SSD models to identify six distinct species of
dissimilar pests in a light trap [29]. Faster R-CNN was also used as part of a novel approach
for automated pest counting, showcasing its effectiveness in accurately detecting and counting
Matsucoccus thunbergianae pests in pheromone trap images [28]. Additionally, Faster R-CNN
has been used to detect other pests, including aphids, whiteflies, thrips [30–35], bagworm [36],
stored-grain insects [37], pine larvae [38], Spodoptera frugiperda [39], and apple pest [40].

Several studies have investigated the application of advanced image processing tech-
niques and machine learning algorithms for automated planthopper detection. Various
techniques, such as image processing, machine learning, and deep learning, have been
explored to automate the identification and counting of planthoppers in paddy fields. A
number of studies have focused on segmentation methods, such as multi-feature fusion,
Markov random field models, and morphological approaches, to accurately delineate
planthoppers from complex backgrounds [41–43]. Additionally, the development of in-
novative tools, such as handheld devices for image capture and software systems for
automated counting, has been promising in streamlining the planthopper detection pro-
cess [44–47]. While extensive studies have been conducted on planthoppers, the majority
of them mainly focused on small population samples, where instances of planthopper
overlapping are infrequent.

Based on the literature, it is evident that there is a dearth of research on effectively
addressing the detection of planthoppers in cases where there is sample overlap. To address
the research gap, our study created a ground-built device that employed a customised
algorithm for deep-learning image processing to precisely identify and count planthoppers.
The system’s robustness was assessed to determine its efficacy and reliability in identifying
planthoppers in images with high population densities where there is a high occurrence of
overlapping insects. An automated detection method was employed as an essential element
of this investigation, which entailed identifying planthoppers and employing classification
algorithms to classify and quantify them into their respective planthopper classes using
Faster R-CNN. Attaining this goal can significantly aid planters by equipping them with
an automated planthopper counting system, allowing them to conduct a comprehensive
census before implementing control measures. Consequently, this can significantly reduce
pesticide consumption by accurately timing interventions to control planthoppers.

2. Materials and Methods

Figure 1 shows the overall process of this research. The procedure is divided into two
stages, with the first stage concerning model development. The samples were annotated
and labelled within the training dataset. Next, the dataset was trained and fine-tuned using
four different models before it was optimised to achieve exceptional detection accuracy
performance. The second stage entailed the validation of the model’s results by an ento-
mologist. The selected model utilised new samples to detect and quantify the four distinct
categories of planthoppers. All results (labelled images and the number of counts) were
uploaded into a developed web system. The entomologist then confirmed the outcomes
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and provided input based on cases that were incorrectly classified and samples that had
not been identified.
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2.1. Dataset Preparation

This study was conducted at two specific locations: MADA Kodiang, Kedah (lati-
tude: 6.389501346945703, longitude: 100.3044763625799) and MARDI Parit, Perak (latitude:
4.435004707006803, longitude: 100.89111414850355). The data were gathered between 2021
and 2023 using a light trap apparatus designed by MARDI (Serdang, Malaysia), which
comprised a light bulb, a support pole, and an adhesive trap. The sticky trap was con-
structed by applying adhesive to one side of a transparent plastic sheet that had the same
dimensions as an A3 paper sheet. It was then encircled around the light bulb to lure and
trap insects. A transparent box was used to house the light trap. Each side of the box
comprised numerous small apertures with a 5 mm diameter that only permitted entry to
insects of comparable size to planthoppers. Figure 2 shows an image of the transparent box.
The light bulb was illuminated from 7:30 p.m. to 8:30 p.m., coinciding with the period of
peak insect activity. Insects were attracted to the light source, moved towards it, and were
trapped on the adhesive trap in several orientations. A few of them incurred harm while
trying to flee from the light trap. On the subsequent day, the adhesive trap was retrieved
and transported to the laboratory for the image acquisition process.

Figure 3 depicts an example of the adhesive light trap. The machine vision system
described in [48] was used to capture numerous smaller images of the A3 light trap. Each
image depicted a fragment of the light trap, which was partitioned into 323 grids with a
field of view (FOV) of 25 mm × 15 mm and a resolution of 3072 × 2048 pixels. Ten light
traps were used, resulting in a total of 3230 images. However, only 1654 images contained
planthoppers and were used for further analysis. The annotation process for each image
was done by the entomologists from MARDI using a free graphical image annotation
software, i.e., LabelImg v1.8.6 [49]. The XML files containing the annotations, including the
categories of planthoppers and the coordinates of their bounding boxes, were saved in the
PASCAL VOC format. The research utilised four categories of planthoppers: BPH, GLH,
WBPH, and ZIG-ZAG. Additionally, a new category called BENIGN was added, which
includes insects that are similar to planthoppers. A total of 1654 images were utilised with
852 were obtained from BPH, 142 from GLH, 2286 from WBPH, 742 from ZIGZAG, and
207 from BENIGN. The images were partitioned into three sets in a proportion of 70:15:15,
yielding 1158 images for the training set, 248 for testing, and 248 for validation. Figure 4
exhibits examples of the four primary planthopper categories, Figure 5 contains examples
of the BENIGN category that shares a resemblance to the main planthopper category, and
Figure 6 displays instances of annotated photographs created using the LabelImg software.
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2.2. Data Training and Evaluation

The selection of convolutional object detection models has a substantial impact on both
their processing speed and accuracy. This decision depends on several criteria, such as meta-
architecture, feature extractor type, and input size [50]. Choosing and optimising a model
that is customised to the individual needs of the detecting activities is crucial. Therefore,
this study utilised four different model configurations: Faster R-CNN Resnet 50, Faster
R-CNN Resnet 101, Faster R-CNN Resnet 152, and Faster R-CNN VGG-16. The selection
of these models was based on previous research on the classification of planthoppers [48].
These four models exhibit excellent performance in accurately recognising the four different
categories of planthoppers. The models were created for planthoppers trapped inside a
black box with a consistent light source and a white background. The TensorFlow Object
Detection API [51] was used to implement these configurations. To enhance the model's
robustness, transfer learning was employed by utilising pre-trained weights from the
Pascal-VOC 2007 challenge dataset [52]. Additionally, data augmentation techniques, such
as vertical and horizontal flipping, random cropping and padding, and adjustments to
contrast and brightness, were applied.

The Faster R-CNN model was implemented by utilising the PyTorch V2.1.1 open-
source deep learning framework and the computational power of an NVIDIA deep learning
graphics processing unit (GPU) RTX3060. The model underwent training for 30 epochs,
employing a momentum optimiser with a momentum factor set to 0.9. The initial learning
rate was established at 0.02 and underwent decay at each epoch step.

Subsequently, the trained models were subjected to evaluation using the average
precision (AP) metric, a widely adopted assessment tool in object detection. This metric
represents the mean of precision values corresponding to changes in the recall value within
the precision-recall distribution of the model. The matching process between ground
truth boxes and detected boxes took into account the acceptance of box localisation, which
was considered a correct detection, and was contingent on the intersection over union
(IoU) threshold. IoU quantifies the extent of overlap between two boxes, calculated by
dividing the area of overlap by the area of union. In this study, APs were calculated
for IoU thresholds set at 0.5. This choice stemmed from the nature of the task, wherein
precise box localisation is deemed less crucial compared to more general object detection
tasks. The precision and recall, integral components in AP computation, are defined in
Equations (1) and (2), with TP representing true positives, FP representing false positives,
and FN representing false negatives.
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The mean average precision (mAP) served as the primary metric for assessing the
detection accuracy of the proposed model. It represents the mean value of the APs across all
classes. AP itself, a critical metric in object detection, can be computed using precision and
recall values, as indicated in Equation (3), where r denotes the recall value and ρinterp(rn+1)
signifies the maximum precision value within varying recall value intervals.

Precision(%) =
TP

TP + FP
× 100 (1)

Recall (%) =
TP

TP + FN
× 100 (2)

mAP(%) = ∑1
r=0 (rn+1 − rn)ρinterp(rn+1)× 100 (3)

2.3. Verification of the Model

The model’s verification process involved a thorough examination by five groups of
MARDI entomologists, with two entomologists assigned to each group. The purpose was
to assess the model’s precision in classifying four types of planthoppers: BPH, GLH, WBPH,
and ZIGZAG. A total of twenty adhesive light traps with the size of 297 mm × 420 mm
were employed. A sticky light trap containing a high-density object is defined as one that
contains over 1000 objects. As a result, 13 light traps contained low-density objects and
7 contained high-density objects. A grid-based capture technique was employed for each
sticky light trap, generating smaller images with dimensions of 15 mm × 25 mm. This
approach produced 323 images per trap, resulting in a total of 6460 images from the
20 light traps. The grid was designed with overlapping regions of 2 mm on each side of
the grid. Throughout the verification process, the built model was applied to all images
and the identified objects were immediately annotated on each image. The entomologists
evaluated two specific criteria: mislabel cases and the detection rate. Mislabel cases refer
to situations when the identified object was incorrectly categorised as a different class or
did not fall into any of the four designated classes. Concerning the detection rate, the
entomologists quantified the number of planthoppers that were not identified by the model
and designated it as the error rate. Subsequently, all images that consisted of identified
planthoppers were submitted to a developed web system for the verification procedure.

Figure 7 shows the user interface of the developed web system. The detected classes
are labelled in the image and the results of the correct number of detected objects for each
class are also displayed on the screen.
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The web-based system was developed by utilising the LabVIEW platform and the
Python language based on the research findings. The device was equipped with a graph-
ical user interface to capture the image of the sticky light trap within a black enclosure.
LabVIEW was utilised to integrate the camera with the motorised platform responsible
for camera movement. Python was integrated with LabVIEW to do image processing
on the sticky light trap image using an AI model and the results were saved in a local
database. The database was then synchronised with the cloud database, providing users
with a remote view of the data. Figure 8 displays the graphical user interface of the system.
The implementation of an AI model in the counting process has significantly accelerated
the procedure, reducing the time required to count an A3-size light trap to just two minutes.
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3. Results and Discussion

Figure 9 illustrates the mAP values for all models. It can be observed that the mAP
value for each model exhibits distinct patterns. The training was stopped at 30 epochs
after no significant changes—i.e., less than 2% of the mAP. The Resnet50 model initially
demonstrated a relatively modest mAP, ranging from 45.78% to 94.46%. However, it
displayed a consistent upward trend over the epochs, indicating continuous learning and
refinement. Resnet101 also showed a similar pattern, with mAP values ranging from 58.81%
to 94.77%. It began with a lower mAP but exhibited improvement over time, with occasional
fluctuations. On the other hand, Resnet152 started with a relatively higher mAP, ranging
from 56.72% to 96.63%. It maintained a generally upward trend, suggesting consistent
learning and enhancement with minor fluctuations. In contrast, VGG16 started with a
relatively high mAP, ranging from 53.45% to 99.68%. It displayed a consistently positive
trend, indicating a strong learning curve. Notably, VGG16 consistently outperformed the
Resnet models, showcasing higher mAP values throughout the training process.

Figure 10 illustrates the loss values for all models. Observing the loss trends, it is
evident that all models exhibited a consistently significant reduction in loss values as the
epochs progressed until 30. Initially, the models started with relatively high loss values,
which was typical in the early stages of training when the model was yet to learn the
underlying patterns in the data. As the number of epochs increased, there was a notable
downward trend, indicative of the models’ improving performance.

VGG16 consistently demonstrated the lowest loss values across the epochs, indicating
its superior performance in terms of minimising prediction discrepancies. Resnet152 exhib-
ited the second-lowest loss values, showcasing its efficacy in learning complex patterns.
Despite displaying substantial improvements, Resnet101 and Resnet50 tended to have
marginally higher loss values compared to VGG16 and Resnet152. In summary, the loss
data revealed that all models underwent significant learning and improvement over the
training epochs. VGG16 consistently maintained the lowest loss values, followed closely by
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Resnet152. This information is crucial to understand the learning dynamics of the models
and aids in selecting the most appropriate model for a given task.
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Table 1 shows the performance of different object detection models based on their
respective Inference Time and mean average precision (mAP) scores. Among the models
assessed, Faster R-CNN VGG 16 exhibited the highest level of precision with a noteworthy
mAP score of 97.69%. This indicates an exceptional proficiency in accurately identifying
objects within images. However, it is essential to note that this model necessitates slightly
more time for inference, averaging at 13.73 milliseconds per image compared to Faster
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R-CNN Resnet 50 (12.71 milliseconds). Nonetheless, Faster R-CNN Resnet 50 achieved the
lowest mAP (92.95%) among other models, signifying a minor compromise in accuracy
compared to the VGG 16 model. The Faster R-CNN Resnet 101 and Resnet 152 models
exhibited an incremental improvement in accuracy compared to Faster R-CNN Resnet
50 with the mAP scores of 94.77% and 96.63%, respectively. However, they necessitate
marginally more time for inference, averaging at 14.42 and 15.16 milliseconds, respectively.

Table 1. Test results of planthoppers detection.

Model Inference Time (ms) mAP (%)

Faster R-CNN Resnet 50 12.71 92.95
Faster R-CNN Resnet 101 14.42 94.77
Faster R-CNN Resnet 152 15.16 96.63

Faster R-CNN VGG 16 13.73 97.69

The advantage of the VGG16 architecture, which contributes to its higher accuracy
compared to ResNet, can be accounted to its deep architecture with a homogeneous
structure. VGG16 is characterised by its simplicity and uniformity, encompassing a series
of convolutional layers followed by max-pooling layers, which allows it to learn a rich
hierarchical representation of features in the input images. This deep architecture enables
VGG16 to capture intricate patterns and details within the images, leading to superior
performance in object detection tasks. Additionally, the VGG16 model is effective in feature
extraction and transfer learning, making it proficient in learning discriminative features
for object identification [53]. The deep hierarchical representations learned by VGG16
contribute to its ability to achieve high precision in object detection tasks, as evidenced by
its exceptional mAP score of 97.69% in the context of Faster R-CNN [54].

Table 2 presents the classification accuracy of different object detection models across
distinct planthoppers classes. Notably, the Faster R-CNN VGG 16 model excelled and
achieved exceptional correct detection across all classes. It recorded an accuracy of 99.8% for
BPH, 100% for GLH, and 99.4% for WBPH while maintaining a highly commendable accu-
racy of 95.8% for ZIGZAG. Additionally, Faster R-CNN VGG 16 excelled in distinguishing
BENIGN with an accuracy of 93.5%. It also demonstrated superior performance for BPH
and BENIGN with an average accuracy of 96.65%. In comparison, PENYEK [55] achieved
95% accuracy in classifying the BPH and BENIGN classes. The VGG 16 model’s outstand-
ing performance, particularly in discerning BPH and GLH, underscores its potential for
precision agriculture applications.

Table 2. Accuracy by class.

Model
Accuracy by Class (%)

BPH GLH WBPH ZIGZAG BENIGN

Faster R-CNN Resnet 50 96.8 99.9 95.5 94.3 74.7
Faster R-CNN Resnet 101 96.5 100 96.3 95.3 85.8
Faster R-CNN Resnet 152 98.7 100 97.9 95.8 90.8

Faster R-CNN VGG 16 99.8 100 99.4 95.8 93.5

The Faster R-CNN Resnet 152 model also deserves attention as it demonstrated
robust accuracy rates and achieved an impressive 98.7% accuracy in identifying BPH while
maintaining perfect scores for GLH. The model’s performance underscores its suitability
for applications demanding highly accurate planthoppers classification. Despite being
slightly less accurate compared to VGG 16 and Resnet 152, the Faster R-CNN Resnet 50 and
Resnet 101 models still demonstrated commendable proficiency. They exhibited accuracies
ranging from 95.5% to 96.5% across various pest classes, confirming their capability in
reliable planthoppers identification. These results provide a detailed insight into the specific
strengths and aptitudes of each model, allowing for informed decisions when selecting
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the most appropriate model for precise planthoppers classification in agricultural contexts.
Figure 11 shows the results of the detected planthoppers using Faster R-CNN VGG16.
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Figure 12 illustrates instances of detection errors. The blue dashed line squares signify
false negative cases, indicating objects that were not detected by the model. Conversely,
the red dashed line squares represent false positive cases where objects were incorrectly
identified as belonging to another class. As seen in Figure 12 instances of false negatives
predominantly occurred when multiple insects overlapped. There were numerous instances
where even experienced entomologists found it challenging to determine the correct class
for planthoppers, especially in cases involving BPH and WBPH, due to overlapping insects.
The majority of the detection errors occurred in these scenarios. It is worth noting that false
positive errors were less common in comparison to false negative errors.
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The entomologists’ verification results were split into two categories, namely misclas-
sified cases and undetected cases. Table 3 shows the model prediction and verification
results. “Total” represents the combined sum of detections across these four classes for
each light trap; “Misclassified” denotes instances where the detected object was inaccu-
rately classified; and “Undetected” reveals the total count of planthoppers that, as per the
entomologists’ assessment, should have been identified by the model but were not.
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Table 3. Results obtained from the detection model and verification process done by the MARDI
entomologists.

Light Trap
Model Detection Results Verification Results

BPH GLH WBPH ZIGZAG Total Misclassified Undetected

1 295 258 265 252 1070 4 270
2 559 1784 371 1348 4062 20 1252
3 173 468 664 687 1992 11 859
4 820 106 419 785 2130 6 504
5 8 70 23 4 105 9 37
6 7 29 16 3 55 4 16
7 2 6 8 0 16 1 7
8 5 25 73 0 103 6 31
9 2 17 45 16 80 0 11
10 7 2 121 0 130 7 27
11 98 3 230 160 491 5 101
12 32 2 10 8 52 11 1
13 80 8 103 203 394 31 210
14 33 62 30 765 890 0 114
15 60 5 45 190 300 2 101
16 164 96 152 846 1258 20 194
17 46 13 54 349 462 21 50
18 173 430 99 2812 3514 59 1069
19 38 29 22 207 296 6 33
20 294 259 118 1297 1968 2 465

Total 2896 3672 2868 9932 19,368 225 5352

Several significant observations become apparent. For instance, Light Trap 2 recorded
the highest total count of detected planthoppers (4062). However, it also exhibited a
noteworthy number of mislabelled cases (20) and a substantial count of undetected plan-
thoppers (1252). Despite its high total count of detected planthoppers (3514), Light Trap 18
also displayed a significant number of mislabelled cases (59) and undetected planthoppers
(1069). This indicates that the undetected cases mostly occurred in high-density samples
(detected sample > 1000), where overlapping cases are very common. Figure 13 illustrates
a sample from Light Trap 2 where the most undetected cases occurred. From the image, it
is evident that the undetected cases (marked by blue dashed line boxes) occurred in areas
with heavy overlapping. Finally, Light Trap 7 had the lowest number of detections (16),
followed by Light Trap 6 (55) and Light Trap 9 (80).

The model’s performance in detecting planthoppers was assessed based on various
metrics. In total, 24,720 planthoppers were detected by the entomologist during the
validation process. The model managed to detect 19,368 planthoppers while missing
5352 planthoppers, resulting in a detection rate of 78.34% for the actual validation process.
Among the detected cases by the model, 225 were mislabelled, leading to an impressive
correct detection accuracy of 98.84%.

The analysis of misclassified and undetected cases revealed compelling insights into
the challenges associated with insect detection in high-density scenarios. The results
presented in Table 4 demonstrate a notable prevalence of misclassified and undetected cases
in high-density images, indicating the complexities and difficulties inherent in accurately
identifying and labelling insects in densely infested areas. Specifically, the findings indicate
that the incidence of undetected cases is substantially higher in high-density images, with
1672 insects found over 290 images, resulting in a rate of 5.77%. This is significantly higher
than the low-density category, where 3680 insects were found over 6170 images, yielding
a lower rate of 0.6%. Similarly, the misclassified cases exhibited a higher occurrence in
high-density images, with 29 insects (0.1%), compared to 196 insects (0.03%) for undetected
cases. These findings underscore the heightened challenges and complexities associated
with accurately detecting and classifying insects in high-density images.
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Table 4. Results based on the density level of the image.

Density
Level

Number of
Images

Number of Detected Planthopper Classes Verification Results

BPH GLH WBPH ZIGZAG Misclassified Undetected

High 290 525 1162 432 2814 29 (0.1%) 1672 (5.77%)
Low 6170 2371 2510 2436 7118 196 (0.03%) 3680 (0.6%)

4. Conclusions

This study investigated the capabilities of object detection algorithms in automatically
identifying planthoppers. Annotated datasets were obtained using adhesive light traps,
which included a wide variety of planthopper classes, namely BPH, GLH, WBPH, and ZIG-
ZAG, with the later addition of BENIGN. The test results demonstrated that the Faster R-
CNN VGG-16 model attained an impressive mAP score of 97.69%, indicating its real-world
applicability. Nevertheless, the presence of densely populated samples with significant
planthopper overlap posed a difficulty, leading to an overall detection rate of 78.34% while
maintaining a small false detection rate of 1.16%. This emphasises the necessity for more
research that concentrates on creating sophisticated models to tackle the complexities of
high-density infestations. These developments may include integrating advanced feature
extraction techniques to utilise the deep hierarchical representations acquired by VGG-16.
Investigating new object detection algorithms and refining methodologies for fine-tuning
can also enhance performance in scenarios with a large density of objects. Moreover,
the potential for improving the generalisation and adaptability of pre-training models to
real-world difficulties can be achieved by utilising transfer learning techniques on various
high-density insect datasets. In summary, this study lays a solid groundwork for the
creation of reliable automated pest detection systems, which will lead to notable progress
in precision agriculture.
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