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Abstract: The Camellia oleifera fruit harvester, a specialized agricultural device, is engineered for
efficient operation within the densely planted C. oleifera groves of China’s undulating terrains. Its
design features a notably small footprint to navigate the constrained spaces between trees. With the
enhancement of the functionality and power of the harvester, the engine compartment becomes even
more congested. This, while beneficial for performance, complicates heat dissipation and reduces
harvesting efficiency. In this study, experiments were initially conducted to collect temperature
data from the main heat-generating components and parts susceptible to high temperatures within
the harvester’s engine compartment. Subsequently, a 3D model was developed for numerical
simulations, leading to the proposal of optimization schemes for the engine compartment’s structure
and the validation of these schemes’ feasibility. A comparison of the experimental data, both before
and after optimization, revealed a significant reduction in the surface temperatures of components
within the engine compartment following optimization. As a result, the heat dissipation of the
engine compartment has been greatly optimized. The harvester has demonstrated prolonged normal
operation, enhancing the reliability and economy of the harvester.

Keywords: Camellia oleifera fruit harvester; engine compartment; heat dissipation; experimentation
and simulation; structural optimization

1. Introduction

Camellia oleifera is one of the unique woody oil crops in China, and it is an important
economic crop with a planting area of about 4.85 million hectares [1]. Its fruit is composed
of cattails, seed shells, coats, and kernels. Usually, the seeds are physically pressed to
extract Camellia oil. At present, fresh C. oleifera fruits are picked manually, which is costly
and inefficient. If more special equipment or mechanical devices can be introduced into
the practical production, it would be a better solution for the industrial development and
management, as well as helping to overcome the harvesting conflict [2,3].

The C. oleifera fruit harvester, a specialized type of agricultural machinery, is employed
in the C. oleifera tree groves of China’s hilly regions [4]. With the national C. oleifera indus-
try’s development, researchers have been striving to enhance the harvester’s functionality,
adaptability, and cost-effectiveness [5–9]. Given the dense planting of C. oleifera trees, it
is crucial for the harvester to maintain a compact size. Furthermore, as the harvester’s
functionalities expand, there is an increasing need to install sensors within the engine
compartment, exacerbating the limited space issue. Additionally, to navigate the chal-
lenging terrain, it becomes necessary to progressively increase the engine’s power. These
developments hinder effective heat dissipation within the engine compartment. Therefore,
solving the heat dissipation challenge within the engine compartment has emerged as a
critical task.
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The cooling system in the harvester’s engine compartment is designed to draw in cold
air through forced convection. However, when this cold air meets the intricate systems of
components, the airflow becomes sluggish, leading to vortex formation and the creation
of a complex local temperature field within the compartment. These conditions hinder
the ability to maintain the overall compartment temperature within a reasonable range,
causing issues such as overheating of the radiator and hydraulic systems, reduced power in
the hydraulic system, diminished engine performance, and potential equipment shutdown,
which seriously reduces the harvesting efficiency of the harvester. Consequently, optimizing
the internal structure of the engine compartment is critically important for enhancing the
harvester’s reliability and cost-effectiveness.

Currently, the predominant approaches for addressing heat dissipation challenges
draw upon methodologies from automotive, electrical, aerospace, and materials engineer-
ing [10–17]. Given that the harvester falls within the small agricultural vehicle category, we
primarily adopt automotive engineering techniques as our foundational strategies, which
are then refined and innovated upon to devise a new method tailored for heat dissipation
research in small agricultural machinery. Numerical simulation, a critical technique in
automotive engineering analysis, enjoys widespread application [18]. The comprehensive
analysis of heat dissipation systems by Pengyu Lu et al. was conducted using a 1D/3D col-
laborative simulation approach, with real-time status boundary conditions and parameters
facilitated through data exchange between 1D and 3D models [19]. The study by Chunhui
Zhang et al. explored airflow characteristics under the engine hood, focusing on the effects
of grille opening sizes and passive aerodynamic devices on cooling resistance and radiator
efficiency [20].

The method of numerical simulation stands as a highly representative and classical
approach, well-developed and widely utilized in exploring mechanical heat dissipation
issues. However, relying exclusively on numerical simulation may lead to findings that lack
solid empirical support. Consequently, an increasing number of researchers are comple-
menting numerical simulation studies with on-site experiments to validate the rationality
and effectiveness of their simulations. Jianpeng Wang et al. developed a mathematical
model for automotive thermal management and conducted numerical simulations of the
vehicle’s flow field and temperature field. The feasibility of the simulation results was
validated through an automotive thermal balance test. The results demonstrated that by
sealing the cooling module, front-end module, and optimizing the deflector structure, the
recirculation of hot air and the inlet air temperature of the cooling module were reduced,
thereby improving the heat dissipation efficiency of the cooling module [21]. Xiaoming Xu
et al. investigated the effects of different ventilation modes on the performance of electric
vehicle power compartments, utilizing natural air-cooling techniques. Their findings sug-
gest that by integrating simulation calculations with on-site collaborative analysis methods,
the optimal ventilation mode can be identified both swiftly and precisely [22]. Jie Zhang
proposed a multi-objective optimization method for the thermal management systems of
passenger cars. By employing a 1D/3D collaborative simulation analysis alongside on-site
testing, issues like excessive battery surface temperatures and engine coolant temperatures
surpassing permissible levels were effectively addressed, thereby significantly reducing
the vehicle’s thermal risks [23]. These studies provide excellent methods for solving the
heat dissipation issues in automotive engine compartments.

Compared to automobile engine compartments, the harvester’s engine compartment
is smaller in volume and more compact in structure. However, due to the harvester’s much
slower traveling speed, the effect of natural convection can be considered negligible. To
better address the heat dissipation challenges in the harvester’s engine compartment, this
study followed a research sequence of “experimentation—identifying issues—simulation—
proposing optimization solutions for identified issues—further simulation—validating
the feasibility of proposed solutions—further experimentation—comparison—drawing
conclusions.” Initially, experiments were conducted to collect temperature data, uncovering
severe heat dissipation challenges. A 3D model was then established for numerical simula-
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tion, proposing optimization solutions for the internal structure of the compartment and
validating the feasibility of these solutions. Finally, a comparison of the experimental data
before and after optimization revealed a significant decrease in the surface temperatures of
components within the compartment, thus validating the rationality and effectiveness of
the improvement scheme.

2. Experiment
2.1. Experimental Setup

C. oleifera is mainly distributed in the mountainous and hilly areas of subtropical
regions in southern, central, and eastern China (Figure 1). The planting area of C. oleifera in
China accounts for 85% of the world’s C. oleifera planting area [24].
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Figure 1. The growth environment of Camellia oleifera. (a) Topographic features; (b) planting spacing.

According to long-term production experience, the recommended harvesting dates
of different C. oleifera cultivars are the traditional Chinese solar terms, comprising Cold
Dews, Frost’s Descents, and Winter Begins [25]. The C. oleifera fruit harvester operates with
a diesel engine, with the distribution of its engine compartment’s internal structure shown
in Figure 2.
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The experiments were carried out in Shuangfeng, Hunan Province, China (27.4165◦ N,
112.1433◦ E), as detailed in Table 1, which presents the ambient parameters at the experi-
mental site. The testing instruments required for the experiments are listed in Table 2.
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Table 1. Ambient parameters of Shuangfeng.

Ambient Parameters Shuangfeng

Weather Sunny
Temperature

Relative Humidity
Wind Velocity
Slope Gradient

27 ◦C
39%

≤1.5 m/s
13.6◦

Table 2. Instruments and parameters used in the experimental section.

Instruments Manufacturer Model Number Range Accuracy

Thermocouple KAIPUSEN K-type −40~200 ◦C ±0.5%
Thermal Imager FOTRIC 236 −20~650 ◦C ±2.0%

Dynamic Signal Testing
Analyzer Nanjing HOPE HP-DS8125 / ±0.2%

In the experiment, eight temperature sensor points were established (Figure 3), all
situated on the surfaces of the main heat-generating components, and those susceptible to
high-temperature failure. Thermocouple temperature probes were attached to each sensor
point and secured with heat-resistant tape. Subsequently, the tail end of the thermocouple
was connected to the interface of the Dynamic Signal Testing Analyzer (DSTA). The tem-
perature signal will be transmitted to the DSTA through the thermocouple, and it will form
a temperature variation image. Data collection intervals were set at 1 s. Details regarding
the characteristics of the sensor points are provided in Table 3.
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Table 3. Temperature sensor points.

Component Code Point Location (Surface)

Engine

A1 Top: Near the engine compartment cover
A2 Rear: Near the radiator
A3 Left side: Near the valves
A4 Right side: Near the diesel and hydraulic oil tank

Exhaust manifold B Base
Radiator C Near the coolant inlet

Hydraulic pump D Center
Valves E Top



Agriculture 2024, 14, 1640 5 of 19

2.2. Experimental Procedure

During the idle operation of the harvester, stable internal temperatures were achieved.
Data obtained from the eight sensor points of the Dynamic Signal Testing Analyzer (DSTA)
within the first 9 min of idle operation after startup are depicted in Figure 4.
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Under idle running conditions, the stable temperatures and the time required to reach
these stable temperatures at each sensor point are documented in Table 4. Once the sensor
points attained stable temperatures, the temperature data ceased to exhibit significant
fluctuations, resulting in smooth temperature curves. Thus, it can be inferred that the tem-
perature data from each sensor point within the harvester’s engine compartment reached a
basic stable state within 9 min, facilitating the commencement of subsequent experiments.

Table 4. Stable temperature and time point.

Point Stable Temperature (◦C) Time Point (s)

A1 81.2 527
A2 80.7 535
A3 68.9 516
A4 57.6 514

B 164.2 451
C 66.7 508
D 44.7 499
E 47.5 533

The process of harvesting a single tree with the harvester includes several steps, as
follows: moving to the next tree, activating the harvesting device, performing the harvest,
and deactivating the harvesting device. To simulate these steps, the harvester first moves
at a low speed for 20 s, then idles at a low speed for 30 s, followed by idling at a high speed
for 10 s, and finally, it idles at a low speed again for 30 s. The workflow diagram of the
harvester is depicted in Figure 5. During low-speed movement, the harvester’s speed is
approximately 0.2 m/s, and harvesting one tree takes about 1.5 min.

Since C. oleifera trees predominantly grow in hilly terrain areas, to mimic the road
conditions encountered during the harvesting of C. oleifera fruits, three working conditions
were established, as follows: flat ground, uphill, and downhill, as illustrated in Figure 6.
After idling to achieve stable temperatures, the harvester operates on flat ground for 6 min,
then transitions to working uphill for 6 min, and finally, operates downhill for another
6 min. This experiment is conducted twice. From the machine’s startup to the end of
the experiment, the duration is approximately 45 min. Each road condition simulates
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the harvesting of four C. oleifera trees, resulting in a total of twenty-four C. oleifera trees
harvested. To minimize experimental errors, the set of experiments is repeated.
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2.3. Experimental Result and Phenomenon

The temperature changes at the eight sensor points are depicted in Figure 7. Although
thermocouple measurement is renowned for its high precision, different models of thermo-
couples possess limited temperature measurement ranges. Thermocouples with smaller
measurement ranges exhibit relatively higher failure rates.

Agriculture 2024, 14, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 5. Harvesting workflow diagram. 

Since C. oleifera trees predominantly grow in hilly terrain areas, to mimic the road 
conditions encountered during the harvesting of C. oleifera fruits, three working condi-
tions were established, as follows: flat ground, uphill, and downhill, as illustrated in Fig-
ure 6. After idling to achieve stable temperatures, the harvester operates on flat ground 
for 6 min, then transitions to working uphill for 6 min, and finally, operates downhill for 
another 6 min. This experiment is conducted twice. From the machine’s startup to the end 
of the experiment, the duration is approximately 45 min. Each road condition simulates 
the harvesting of four C. oleifera trees, resulting in a total of twenty-four C. oleifera trees 
harvested. To minimize experimental errors, the set of experiments is repeated. 

 
Figure 6. Road conditions workflow diagram. 

2.3. Experimental Result and Phenomenon 
The temperature changes at the eight sensor points are depicted in Figure 7. Alt-

hough thermocouple measurement is renowned for its high precision, different models of 
thermocouples possess limited temperature measurement ranges. Thermocouples with 
smaller measurement ranges exhibit relatively higher failure rates.  

  
(a) (b) 

Figure 7. The temperature change graph from 0~45 min. (a) A1, A2, A3, A4; (b) B, C, D, E. Figure 7. The temperature change graph from 0~45 min. (a) A1, A2, A3, A4; (b) B, C, D, E.

To further validate the accuracy of the thermocouple temperature measurements,
temperature data collection was also performed using thermal imaging (TI) at the sensor
points, as shown in Figure 8. It can be observed that there are differences in the peak
temperature data measured by DSTA and TI, but the differences are not obvious.
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At the peak temperature, the measurements obtained by the Dynamic Signal Testing
Analyzer (DSTA) and TI, along with their differences, were documented in Table 5. Ac-
cording to the data in the table, the maximum temperature difference is 0.3 ◦C, and the
minimum difference is 0.1 ◦C. The minimal discrepancy in temperature data confirms the
accuracy of the temperature measurements.

Table 5. Peak temperature and time point.

Code DSTA (◦C) TI (◦C) Difference (◦C)

A1 87.4 87.2 0.2
A2 84.1 83.9 0.2
A3 73.5 73.3 0.2
A4 62.5 62.4 0.1
B 170.4 170.1 0.3
C 76.3 76.1 0.2
D 68.0 67.9 0.1
E 48.5 48.4 0.1

From the above experiments, it is observed that the temperature changes at points C
and D are significant, reaching 9.7 ◦C and 12.3 ◦C, respectively. Conversely, the temperature
variation at point E is relatively minor, with changes less than 1 ◦C. Variations at the other
points fall within the range of 3 ◦C to 7 ◦C.

Approximately 20.8 and 38.5 min into the experiment, the harvester experienced a
loss of hydraulic system power, characterized by a significant decrease in uphill speed and
reduced steering flexibility. At the experiment’s conclusion, it was observed that the coolant
inlet cap of the radiator had shifted approximately 4.2◦ towards the loosened direction, as
shown in Figure 9. Failure to promptly address the thermal management issues within the
harvester’s engine compartment could lead to component damage, and, in severe cases,
safety incidents.

Based on the experimental data and observations, it is evident that a significant heat
dissipation issue exists within the harvester’s engine compartment. This necessitates
identifying airflow blockage points and locations of local temperature fields through
numerical simulation. The operation of the valves (E) during the experiment was unaffected
by the elevated temperatures within the compartment. Therefore, in subsequent numerical
simulations, the focus will be primarily on simulating airflow around the engine area, with
the valves section being omitted from consideration.
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Figure 9. The position of the radiator coolant inlet cap.

3. Numerical Simulations
3.1. Turbulent Model

The choice of turbulence model significantly influences the speed of the numerical
simulation process and the accuracy of the simulation results. The airflow follows the laws
of mass conservation, momentum conservation, and energy conservation [26]. The air
inside the engine compartment of the harvester is assumed to be incompressible, under-
going turbulent flow, in a steady state, and having uniform density. It possesses constant
thermophysical properties and experiences negligible viscous dissipation. The transport
equations for turbulent kinetic energy k and dissipation rate ε in the realizable k − ε model
are as follows:
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]
, η = S

k
ε

, S =
√

2SijSij (3)

In these equations, t is time, indicating the variation of turbulent kinetic energy with
respect to time. xj represents the coordinate component of the flow field. ρ is the mass
density. uj is the velocity component of the flow field. µ is the viscosity. µt is the turbulent
viscosity. Gk represents the generation of turbulence kinetic energy due to the mean velocity
gradients. Gb represents the generation of turbulence kinetic energy due to buoyancy. YM
represents the contribution of the fluctuating dilatation in compressible turbulence to the
overall dissipation rate. Sk and Sε are user-defined source terms. C1ε, C2, and C3ε are
constants. σk and σε are the turbulent Prandtl numbers for k and ε, respectively, and they
have default values [27,28].

Compared to the standard k − ε model, the realizable k − ε model is characterized by a
stronger analytical capability regarding streamline curvature, vortices, and rotation [29,30].
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3.2. 3D Simulation Model and Mesh Generation

Due to the complexity of the arrangement of electronic circuits, pipelines, and compo-
nents within the engine compartment of the harvester, directly using the original model for
numerical simulation would significantly increase computation time and potentially affect
the overall computational accuracy. Therefore, simplifying the model is necessary to reduce
computation time and enhance the visualization of air velocity and flow trajectories. The
original model was simplified using SolidWorks2022, and the simplified model is presented
in Figure 10.
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The simplified model was employed in SpaceClaim2022R1 to create a shell, wherein
each component inside the engine compartment is treated as a solid domain, and the
gaps between components and other regions are considered fluid domains. The solid
domain includes the engine compartment shell, engine, hydraulic pump, cooler, and
large-diameter pipelines.

Mesh quality significantly influences both computational accuracy and efficiency [31].
The model employs an unstructured-tetrahedral, patch-conforming method to generate the
mesh, which comprises approximately 0.25 million nodes and 1.33 million volume elements.
Due to significant air velocity gradients, smaller volume elements are automatically refined
locally to approximately 10 to 20 mm. The average lengths of other elements range from 30
to 60 mm. The mesh contains no negative volume elements, ensuring that the mesh quality
meets the computational requirements.

3.3. Boundary Conditions and Computational Method

In the process of conducting CFD numerical simulations, it is essential to set appropri-
ate boundary conditions to obtain solutions to the problem [32]. Accordingly, this paper
provides a description of the boundary conditions involved in the CFD simulation, with
the naming of boundaries as depicted in Figure 11. Assuming a fan speed of 1800 rpm,
the fan’s rotating area is controlled using the Moving Reference Frame (MRF) method [33],
maintaining constant air density and disregarding the effects of natural convection. The
fluid–structure interaction method employs the Coupled algorithm, with the simulation
running for 1000 iterations.
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3.4. Result and Discussion

Convergence is achieved in the calculations around the 90th iteration. In the subse-
quent text, the cross-sectional positions depicted by various numerical simulation results,
including the airflow velocity cloud map and air trajectory map, correspond to the position
illustrated in Figure 12.
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view of the hydraulic pump center.

According to the airflow velocity cloud map (Figure 13), the airflow velocity inside
the engine compartment decreases extremely rapidly, and the airflow passage is noticeably
obstructed. When the high-speed airflow generated by the fan encounters the surfaces of
complex components, it is compelled to change direction, leading to a significant reduction
in speed and dispersion in direction. Simultaneously, the space within the engine com-
partment is extremely limited, and the airflow exhaust channel is narrow. These factors
contribute significantly to the relatively obvious attenuation of wind speed.
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According to the airflow trajectory line (Figure 14), the gas trajectory lines are rather
sparse. The quantity of high-temperature air exhaust channels is limited and not prominent.
A considerable number of eddies are formed within the engine compartment, and the
area of these eddies is relatively large. This condition is unfavorable for the proper heat
dissipation of the engine compartment of the harvester.

Figure 14. Airflow trajectory line.
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This condition easily facilitates the formation of a heat cycle, thereby causing difficulty
in heat dissipation. A preliminary assumption suggests that the blockage point of the
thermal channel may be located at the top of the engine, the exhaust manifold, and the
right side of the engine. It is now necessary to optimize the internal structure of the engine
compartment based on this 3D model. Subsequent numerical simulations will be conducted
to determine the location of the blockage point in the thermal channel, and to validate the
feasibility of the optimization scheme.

4. Optimization
4.1. Structural Modification

The optimized simplified model is depicted in Figure 15. The adjustment scheme
is formulated in accordance with the results of numerical simulation. Its purpose is to
eliminate the obstacle points in the air-flow channels within the engine compartment of the
harvester, to increase the number of channels for discharging high-temperature air, and to
substantially reduce the quantity and area of eddies. The optimization plan includes the
utilization of a new engine, lowering the entire engine by 85 mm and moving it backward
by 230 mm, trimming the front end of the engine compartment cover by 288 mm, relocating
the air filter pipe to the rear of the engine, arranging the exhaust manifold forward with
the exhaust outlet positioned beneath the machine, and placing the hydraulic oil tank on
the same side as the diesel tank. Upon conducting the weight distribution and balance test
of the entire vehicle, it is determined that the adjustment of the overall weight and center
of gravity of the harvester will not exert an unfavorable impact on the maneuverability of
the harvester.

Agriculture 2024, 14, x FOR PEER REVIEW 12 of 19 
 

 

This condition easily facilitates the formation of a heat cycle, thereby causing diffi-
culty in heat dissipation. A preliminary assumption suggests that the blockage point of 
the thermal channel may be located at the top of the engine, the exhaust manifold, and the 
right side of the engine. It is now necessary to optimize the internal structure of the engine 
compartment based on this 3D model. Subsequent numerical simulations will be con-
ducted to determine the location of the blockage point in the thermal channel, and to val-
idate the feasibility of the optimization scheme. 

4. Optimization 
4.1. Structural Modification 

The optimized simplified model is depicted in Figure 15. The adjustment scheme is 
formulated in accordance with the results of numerical simulation. Its purpose is to elim-
inate the obstacle points in the air-flow channels within the engine compartment of the 
harvester, to increase the number of channels for discharging high-temperature air, and 
to substantially reduce the quantity and area of eddies. The optimization plan includes 
the utilization of a new engine, lowering the entire engine by 85 mm and moving it back-
ward by 230 mm, trimming the front end of the engine compartment cover by 288 mm, 
relocating the air filter pipe to the rear of the engine, arranging the exhaust manifold for-
ward with the exhaust outlet positioned beneath the machine, and placing the hydraulic 
oil tank on the same side as the diesel tank. Upon conducting the weight distribution and 
balance test of the entire vehicle, it is determined that the adjustment of the overall weight 
and center of gravity of the harvester will not exert an unfavorable impact on the maneu-
verability of the harvester. 

 
Figure 15. Optimized simplified model. 

4.2. Verify the Optimization Scheme 
The procedures for establishing the grid and boundary conditions are fully aligned 

with the methods outlined in Sections 3.2 to 3.3. The cross-sectional location is the same 
as that shown in Figure 12. Based on the results of numerical simulation, on the side within 
the engine compartment, the deceleration trend of air-flow velocity is mitigated. The sig-
nificant increase in the flow velocity of air downward to the harvester can be regarded as 
the opening of the downward flow channel (Figure 16). 

Figure 15. Optimized simplified model.

4.2. Verify the Optimization Scheme

The procedures for establishing the grid and boundary conditions are fully aligned
with the methods outlined in Sections 3.2 to 3.3. The cross-sectional location is the same
as that shown in Figure 12. Based on the results of numerical simulation, on the side
within the engine compartment, the deceleration trend of air-flow velocity is mitigated. The
significant increase in the flow velocity of air downward to the harvester can be regarded
as the opening of the downward flow channel (Figure 16).



Agriculture 2024, 14, 1640 13 of 19
Agriculture 2024, 14, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 16. Optimized air-flow velocity profile cloud map. (a) 3/4 view from the left; (b) 1/2 view 
from the left; (c) 1/4 view from the left; (d) Top view of the engine above; (e) Top view of the radia-
tor center; (f) Top view of the hydraulic pump center. 

In accordance with the airflow trajectory lines (Figure 17), the gas trajectory lines are 
more concentrated compared to before optimization. The quantity of high-temperature 
exhaust channels is augmented. The number of eddies within the engine compartment is 
notably reduced. As depicted by the air-flow velocity map, the downward flow channel 
has been opened. Nevertheless, the small-area eddies generated upon contact with the 
ground cannot be avoided. The results demonstrate that the optimization scheme is feasi-
ble. 

 
Figure 17. Optimized airflow trajectory line. 

Table 6 documents the positions of airflow blockages and the state variations before 
and after optimization. Through the comparison of numerical simulation results prior to 
and following optimization, it can be preliminarily inferred that the optimization scheme 

Figure 16. Optimized air-flow velocity profile cloud map. (a) 3/4 view from the left; (b) 1/2 view
from the left; (c) 1/4 view from the left; (d) Top view of the engine above; (e) Top view of the radiator
center; (f) Top view of the hydraulic pump center.

In accordance with the airflow trajectory lines (Figure 17), the gas trajectory lines are
more concentrated compared to before optimization. The quantity of high-temperature
exhaust channels is augmented. The number of eddies within the engine compartment is
notably reduced. As depicted by the air-flow velocity map, the downward flow channel has
been opened. Nevertheless, the small-area eddies generated upon contact with the ground
cannot be avoided. The results demonstrate that the optimization scheme is feasible.

Figure 17. Optimized airflow trajectory line.
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Table 6 documents the positions of airflow blockages and the state variations before
and after optimization. Through the comparison of numerical simulation results prior to
and following optimization, it can be preliminarily inferred that the optimization scheme
for the internal structure of the harvester engine compartment is both feasible and rational.
Subsequently, this optimization scheme will be implemented in the harvester and subjected
to verification. The verification experiment will be carried out to determine whether this
scheme can effectively optimize the heat dissipation of the harvester, and whether it is
beneficial for the long-term normal operation of the harvester.

Table 6. The comparison of effects before and after optimization.

Location Before After How

Engine top Blocking Unobstructed Solved
Engine right side Numerous small vortices No vortices Solved
Exhaust manifold Velocity–slow Velocity–increasing Solved

5. Verification
5.1. Experimental Setup and Procedure

The experiment was conducted in Fenyi, Jiangxi Province, China (27.7474◦ N, 114.6529◦ E).
The environmental parameters of the location are detailed in Table 7. Due to modifications
in the internal structure of the engine compartment, adjustments were made to the quantity
and placement of temperature sensor points, as outlined in Table 8.

Table 7. Ambient parameters of Fenyi.

Ambient Parameters Fenyi

Weather Sunny
Temperature

Relative Humidity
Wind Velocity
Slope Gradient

25 ◦C
36%

≤1.5 m/s
14.5◦

Table 8. Newly set temperature sensing point.

Component Code Point Location (Surface)

Engine F1 Top: Near the engine compartment cover
F2 Right side: Near the diesel and hydraulic oil tank

Valves G Near the engine
Exhaust manifold H Base

Radiator I Near the coolant inlet cap
Hydraulic pump J Top

5.2. Experimental Result

During the experimentation process, the temperature variations at six sensor points
over the period from 0 to 45 min are depicted in Figure 18. It can be readily observed that
the fluctuation amplitudes of each temperature change curve are reduced, and the values
are also diminished.

As in Section 2.3, temperature verification at the sensor points was conducted using
thermal imaging (TI), as shown in Figure 19.

At peak temperatures, the temperatures measured by the Dynamic Signal Testing
Analyzer (DSTA), those recorded by the TI, and the differences between them are detailed
in Table 9. According to the data in the table, the maximum temperature difference is
0.2 ◦C, while the minimum is 0 ◦C, indicating that the data are largely consistent. Fol-
lowing the conclusion of the experiment, the machine operated normally, without any
observed anomalies.
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Table 9. Comparison of peak temperature data.

Code DSTA (◦C) TI (◦C) Difference (◦C)

F1 81.7 81.6 0.1
F2 59.9 59.8 0.1
G 49.6 49.6 0
H 151.9 151.7 0.2
I 61.3 61.2 0.1
J 47.7 47.7 0

6. Comparison of Experimental Results

After the experiment, a comparison was made between the maximum temperatures
and the time required to reach these maximum temperatures for the main heating compo-
nents and components vulnerable to high temperatures inside the engine compartments
of the two harvesters, as depicted in Figure 20. The experimental results indicate that,
compared to the original harvester, the optimized harvester has experienced a significant
decrease in both the maximum temperatures of the main heating components and high-
temperature vulnerable components within the engine compartment, as well as the time
taken to reach these maximum temperatures. Specifically, the surface temperature at the top
of the engine decreased by 5.7 ◦C, with a reduction in time by 92 s; the surface temperature
at the right side of the engine decreased by 2.6 ◦C, with a reduction in time by 94 s; the
surface temperature of the exhaust manifold decreased by 18.5 ◦C, with a reduction in time
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by 179 s; the surface temperature of the radiator decreased by 15.0 ◦C, with a reduction in
time by 79 s; and the surface temperature of the hydraulic pump decreased by 6.7 ◦C, with
a reduction in time by 123 s. The valve group, after adjusting its position, is basically not
affected by temperature changes.
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Following the experiment, the C. oleifera fruit harvester was made to continue to
perform harvesting operations for as long as four hours at the experimental site. The
harvester was found to be in a normal working state, and there was no occurrence of
phenomena such as power loss of the hydraulic system, significant reduction in slope
speed, diminished steering flexibility, and offset of the cooler inlet cover, as mentioned
previously. Hence, it can be concluded that the experimental design is rational, and the
optimization scheme is effective.

7. Conclusions

Prior to structural optimization, the C. oleifera fruit harvester would be subject to
phenomena such as power loss of the hydraulic system, significant reduction in slope
speed, diminished steering flexibility, and offset of the cooler inlet cover, as mentioned
previously after prolonged operation. Through experiments and numerical simulations
conducted on the harvester engine compartment, it was observed that, prior to optimization,
the airflow channels within the harvester engine compartment were blocked, rendering it
difficult for high-temperature air to be discharged outside the compartment. This had an
adverse impact on components that are prone to failure when exposed to high temperatures,
resulting in decreased harvesting efficiency and safety risks that required immediate
attention. This study focuses on employing a collaborative approach of experiments and
numerical simulations. Firstly, the temperature field and airflow field of the harvester
engine compartment are analyzed. Then, the internal structure of the engine compartment
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is optimized. Finally, the rationality of the experimental design and the effectiveness of the
optimization scheme are verified, thereby resolving the problem of difficult heat dissipation
within the harvester engine compartment and enabling the harvester to operate normally
for an extended period. The following conclusions can be drawn:

1. A method for resolving the heat dissipation issue in small agricultural machinery was
employed, characterized by its straightforward principle and ease of implementa-
tion. This method offers guidance for managing thermal issues in small agricultural
machinery.

2. The highest surface temperatures of various components within the harvester’s com-
partment are located at the exhaust manifold. The engine acts as the primary heat
source, while the effectiveness of the radiator and hydraulic pump varies significantly
with temperature fluctuations.

3. Through experimentation on the pre-improved harvester, it was observed that the
heat channels within the engine compartment were significantly obstructed, leading
to occurrences such as the displacement of the coolant inlet cap of the radiator and
insufficient pressure from the hydraulic pump (due to decreased viscosity of the
hydraulic oil caused by heating). Numerical simulations can effectively and accurately
identify the blocked points in the heat channels and provide crucial references for
structural optimization.

4. Following the experiments, the improved harvester was relocated to hilly terrain and
operated continuously for four hours without any issues, indicating that the heat
dissipation problem within the engine compartment was effectively resolved after
structural optimization.
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