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Abstract: This study addresses challenges related to imprecise edge segmentation and low center
point accuracy, particularly when mushrooms are heavily occluded or deformed within dense
clusters. A high-precision mushroom contour segmentation algorithm is proposed that builds upon
the improved SOLOv2, along with a contour reconstruction method using instance segmentation
masks. The enhanced segmentation algorithm, PR-SOLOv2, incorporates the PointRend module
during the up-sampling stage, introducing fine features and enhancing segmentation details. This
addresses the difficulty of accurately segmenting densely overlapping mushrooms. Furthermore, a
contour reconstruction method based on the PR-SOLOv2 instance segmentation mask is presented.
This approach accurately segments mushrooms, extracts individual mushroom masks and their
contour data, and classifies reconstruction contours based on average curvature and length. Regular
contours are fitted using least-squares ellipses, while irregular ones are reconstructed by extracting
the longest sub-contour from the original irregular contour based on its corners. Experimental
results demonstrate strong generalization and superior performance in contour segmentation and
reconstruction, particularly for densely clustered mushrooms in complex environments. The proposed
approach achieves a 93.04% segmentation accuracy and a 98.13% successful segmentation rate,
surpassing Mask RCNN and YOLACT by approximately 10%. The center point positioning accuracy
of mushrooms is 0.3%. This method better meets the high positioning requirements for efficient and
non-destructive picking of densely clustered mushrooms.

Keywords: contour reconstruction; densely overlapping mushrooms; high-precision contour
segmentation; image segmentation; SOLOV2

1. Introduction

Mushrooms, recognized as one of the edible fungi with the most extensive cultivated
areas and found in some of the world’s largest cultivation countries, exhibit a significant
output. In China alone, they boast an annual production of nearly 2 million tonnes.
Currently, the mainstream production mode of mushrooms in developed countries is factory
production, and most of the processes have realized mechanization and automation. Only
picking still relies on manual labor [1,2]. Due to the decline in the rural labor force, manual
mushroom picking is experiencing a significant shortage of labor, posing a serious obstacle
to the industry’s continued growth. Scholars have researched the autonomous picking
technology of mushrooms and achieved phased development. The relevant research
has developed from the exploration stage [3,4], limited to the laboratory under ideal
conditions, to the field experiment test stage [5,6] in the actual factory mushroom house.
However, due to the heterogeneity of the realistic growing environment of mushroom
houses and the randomness of fruiting body growth, it is challenging to achieve efficient
and nondestructive picking, especially for densely overlapping mushrooms [7]. Clusters
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of mushrooms has become the main reason that prevents the practical application of
mushroom havesting robots. Therefore, identifying and locating densely overlapping
mushrooms with high precision is one of the keys to realizing more efficient, nondestructive
mushroom picking.

Mushrooms are a kind of natural high-cluster crop. It is effortless for fruiting bodies
to grow together densely and overlappingly. Due to the limited space for dense growth,
the mushroom shape can easily vary from round to oval or irregular, or vertical to inclined.
Many mushrooms are seriously overlapping, which makes it difficult to segment and
reconstruct the mushroom contour with high accuracy. For example, since densely growing
mushrooms are easily squeezed and stacked, the contour segmentation between them
will become complex, and it is not easy to obtain accurate edge contours of mushrooms,
as shown in Figure 1, Mushrooms 1, 2, 3, and 4. For another example, densely growing
mushrooms are prone to appearing heavily obscured, such as mushrooms 9 and 10 in
the figure. Their shapes are no longer round or elliptical but are missing and irregular.
It is often difficult to restore the contour based on these missing or irregular shapes to
the actual contour, such as contour 9. The deviation between the generated and accurate
contours is significant, resulting in a considerable variation between the identified and
actual mushroom center points. In addition, a few small mushrooms are easily overlooked,
such as Mushroom 5, 6, 7, and 8. Therefore, to achieve efficient and lossless picking
of densely overlapping mushrooms, it is necessary to study further and improve the
segmentation and contour reconstruction algorithms of densely overlapping mushrooms
to obtain high-precision positioning.
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Figure 1. Main problems in segmentation and localization of densely overlapping mushrooms.

The existing system faces several challenges in accurately segmenting and recon-
structing mushroom contours:

Dense Overlapping Growth: Generally, mushrooms grow in clusters with densely over-
lapping caps. Conventional segmentation methods encounter difficulties in distinguishing
individual mushrooms within these clusters, resulting in inaccurate boundary delineation.

Deformation and Irregular Shapes: Due to mutual adhesion, extrusion, or varying
growth conditions, mushrooms can exhibit irregular shapes and deformities. Most of the
methods, fitting with circles only, are not very accurate in fitting the contours of irregular
shapes and deformities.

Incomplete and Occluded Contours: When mushrooms are partially covered by other
mushrooms, the segmentation process may yield incomplete or occluded contours, making
it challenging to obtain an accurate representation of each mushroom’s shape.
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Variable Lighting and Impurities: Non-uniform lighting conditions and the presence
of surface impurities, such as soil and lesions, can adversely affect the quality of mushroom
images, leading to additional segmentation difficulties.

To address these problems, the proposed work makes significant contributions:

(1) The PR-SOLOv2 instance segmentation model is introduced that leverages PointRend
to improve segmentation accuracy. This model effectively handles dense overlapping
mushrooms and enhances boundary accuracy, achieving a segmentation accuracy of
93.04%.

(2) The work proposes a novel contour reconstruction method based on the curvature
and length of mask contours obtained through instance segmentation. This approach
enables the reconstruction of mushroom contours with high precision.

(3) The work introduces a least-squares ellipse fitting technique for mushrooms with
regular shapes. For irregularly shaped or occluded mushrooms, a corner-based
segmentation method is applied to accurately reconstruct contours. This classification
and fitting approach significantly improves the quality of contour reconstruction.

(4) The proposed work demonstrates a successful segmentation rate of 98.92%. This high
success rate shows the effectiveness of the proposed methods.

The manuscript is structured as follows: Section 2 reviews existing research and
methodologies related to mushroom segmentation and contour reconstruction. Section 3
elucidates mushroom instance segmentation dataset construction. Section 4 introduces
the PR-SOLOv2 instance segmentation model. The contour construction of mushrooms
using the proposed approach is presented in Section 5. It explains the classification and
fitting approach based on curvature and length. Section 6 presents the experimental
results of the proposed methods and compares them to other segmentation algorithms,
highlighting the accuracy and effectiveness of PR-SOLOv2. Section 7 summarizes the major
contributions of the research, emphasizing the improvements in mushroom segmentation
and contour reconstruction.

2. Related Work

In 1968, American researchers Schertz et al. initially suggested the utilization of image
processing technology for citrus detection and picking [8]. Subsequently, computer vision
started to be extensively employed in detecting fruits and vegetables. The research on
identifying and positioning single fruits and vegetables also started with traditional visual
technology and developed rapidly [9–12]. Several researchers [10,13] adopted the machine
learning method to detect and locate apples and citrus fruits by extracting the features of
the target in the image. However, it was not easy to simultaneously ensure high precision,
high efficiency, and detection robustness.

As deep learning technology has advanced, the application of convolutional neural
network (CNN)-based architectures and their variations has progressively been employed
in the detection of fruits and vegetables, demonstrating notable advantages [14]. Re-
searchers have suggested employing enhanced target detection algorithms, such as the
Faster RCNN (Faster Region-based Convolutional Neural Network) algorithm, the Single
Shot MultiBox Detector (SSD) algorithm, and You Only Look Once (YOLO), to identify the
locations of strawberries, apples, and other fruits. These algorithms have demonstrated a
recognition success rate exceeding 83%. It has been proven that it is quite feasible to use
the target detection class deep learning algorithm to calculate the quantity and judge the
quality of plant phenotypes [15,16]. In recent years, due to the improvement of people’s
requirements for target positioning and the need to distinguish different individuals in the
map, instance segmentation methods have emerged as the times require. Among these,
the Mask Region-based Convolutional Neural Network (Mask RCNN), a convolutional
neural network based on regions, has also been explored for its application in recognizing
the picking of grapes, oranges, strawberries, apples, and other fruits and vegetables, and,
in different light intensities, multi-fruit adhesion and overlapping. The success rate of
fruit recognition under complex growth conditions such as tree occlusion can reach more
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than 90%, which shows that the case segmentation method has significant robustness in
agricultural fruit detection [17–20].

In the exploration of recognizing and locating edible fungi, researchers have exper-
imented with traditional image processing methods. Morphological target detection al-
gorithms, including threshold methods based on grayscale [21], sequential scanning algo-
rithms [22], watershed algorithms based on angular density features [23], segmentation
and recognition methods based on edge grayscale gradient features, and contour group-
ing [24] have been employed to identify and pinpoint mushroom contours. As a result, the
recognition success rate has risen from approximately 80% to around 95%. However, the
generalization ability of traditional visual methods is poor, and they are vulnerable to illu-
mination and other objective factors. This kind of method’s segmentation and positioning
effect for mushrooms with sparse or general growth density is acceptable. However, the seg-
mentation and positioning effect for mushrooms with complex adhesion and high-density
overlap will be significantly reduced, which cannot meet the high-precision positioning
requirements for efficient and nondestructive picking of densely overlapping mushrooms.

The advancement of machine learning has extensively promoted the research pro-gress
in recognizing edible fungi [25]. However, it is used in the classification of edible fungi
varieties or growth stages [26–28]. Deep learning models are becoming a new trend in edible
fungus detection, which further optimize the effectiveness of edible fungus identification,
classification, and localization. At present, the significance of deep learning technology
in the field of edible fungi is more focused on classification research [29–33], and only a
few scholars have carried out in-depth studies on the segmentation and localization of
mushroom fruiting bodies by using this technology. Lee et al. [34] established a faster
RCNN target detection model to identify mushrooms and obtained three-dimensional
point cloud data through a depth camera to segment a single mushroom. The identification
accuracy of this algorithm was 70.93%. The oyster mushroom harvesting robot designed
by Rong et al. [35] adopted the SSD target detection algorithm improved by MobileNet-v2
to identify oyster mushrooms, with a 95% success rate and improved detection speed.

Zheng et al. [36] used two detection network models, YOLOv3 and YOLOv4, to de-tect
the head of Flammulina and found that the test time of the YOLOv4 algorithm was 0.8 s
and the test accuracy was 81.54%, which was superior to YOLOv3. Lu et al. [37] applied the
YOLOv3 algorithm for the identification of Agaricaria bisporus and introduced a positioning
correction method to enhance the results. They devised the fractional penalty algorithm
to compute the circle diameter of the mushroom cap, assess the fruiting body’s growth
rate, and estimate harvest time, thereby enhancing the efficiency of mushroom growth
management. Nevertheless, the accuracy of the algorithm can be influenced by the clarity
of the contour in the mushroom region. The contour reconstruction method based on the
circle has a specific deviation for the edge fitting of rare mushrooms with severe adhesion
and extrusion deformation.

Missourian [38] focused on image classification and segmentation in the context of a
harvesting robot’s 3D vision system. This work employs a Support Vector Machine (SVM)
to identify mushrooms as either class one or class two. Image segmentation is addressed
through a multi-step process using HSV color space, image gradient information, and the
Hough transform to locate individual mushrooms in the XY plane. Sert and Okumus [39]
studied segmenting mushrooms in images and measuring their cap width. They make
use of a customized K-Means clustering method, enhancing classical K-Means for better
segmentation. Image preprocessing includes filtering and histogram balancing, followed
by segmentation. Soomro et al. [40] presented a two-stage image segmentation method for
intensity inhomogeneous images. The first stage combines global intensity and geodesic
edge terms, producing a rough segmentation. The second stage refines the segmentation
using local intensity and geodesic edge terms. They use image gradient information and a
Gaussian kernel for regularization in their energy function.

Pchitskaya and Bezprozvanny [41] examined the shapes of dendritic spines, empha-
sizing their dynamic nature and advocating for clusterization approaches over classifi-
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cation. They explore algorithms that rely on clusterization to enable new levels of spine
shape analysis. Ref. [42] presented a method for detecting and measuring the diameter of
mushroom caps using depth image processing. They proposed a novel approach based
on the three-dimensional structure of mushrooms to segment them from the background
and measure their diameters using the Hough transform. Arjun et al. [43] analyzed visual
cues for white button mushrooms using image processing tools. It assesses chromatic and
morphological characteristics and predicts the onset of mushroom discoloration through
hyperspectral image analysis.

Baisa and Al-Diri [44] presented an algorithm for detecting, localizing, and estimat-ing
the 3D pose of mushrooms using RGB-D data from a consumer RGB-D sensor. It combines
RGB and depth information for these purposes and employs advanced techniques for
3D pose estimation. Zhao et al. [45] proposed a white measurement method for Agaricus
bisporus based on image analysis. It involves the construction of an imaging system, color
calibration, and the application of CIE Ganz whiteness formula to assess the whiteness of
the mushrooms. Retsinas et al. [46] concentrated on developing a vision module for 3D
pose estimation of mushrooms in an industrial mushroom farm. It uses multiple RealSense
active-stereo cameras and employs a novel pipeline for mushroom instance segmentation
and template matching.

Zhang et al. [47] investigated more than 62 articles related to microorganism biovolume
measurement using digital image analysis methods. It tracks the development of this
approach since the 1980s. Chen et al. [48] introduced an improved YOLOv5s algorithm for
accurate Agaricus bisporus detection. The algorithm combines a deep learning network with
the Convolutional Block Attention Module (CBAM) to enhance detection accuracy. Chen
et al. [49] focused on accurately recognizing Agaricus bisporus in complex backgrounds
by proposing a watershed-based segmentation recognition algorithm. It includes various
image processing techniques for accurate mushroom segmentation and recognition. Table 1
illustrates a detailed summary of the existing works related to the proposed work.

Table 1. Summary of the state-of-the-art works.

Author Approach Major Findings Segmentation
Success Rate

Mean
Time

Masoudian [38]
SVM for image
classification, multi-step
segmentation

This approach is not well suited for large
datasets. 88.57% 0.49 s

Soomro et al. [40]
Two-stage segmentation
for intensity
inhomogeneous images

The two-stage segmentation technique
overcomes issues related to the initial contour,
making it suitable for inhomogeneous image
segmentation.

97.99% 1.41 s

Ji et al. [42]
Depth image processing for
mushroom diameter
measurement

The method detects mushrooms and provides
essential information for robotic selective
harvesting, improving production quality and
efficiency.

92.37% 0.5 s

Baisa and Al-Diri [44]
RGB-D data for mushroom
detection and 3D pose
estimation

The algorithm provides a robust method for
mushroom detection, localization, and 3D pose
estimation, which can be valuable for robotic
picking applications.

98.99% -

Retsinas et al. [46]
Vision module for 3D pose
estimation using Intel
RealSense cameras

The method aims to accurately detect the 3D
pose of mushrooms without relying on 3D
annotation data, which can facilitate mushroom
harvesting by robotic systems.

96.31% 3 s

Zhang et al. [47]
Review of microorganism
biovolume measurement
methods

The work has research significance and
application value, offering insights into
microorganism biovolume measurement using
digital image analysis methods.

- -
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Table 1. Cont.

Author Approach Major Findings Segmentation
Success Rate

Mean
Time

Chen et al. [48]
Improved YOLOv5s
algorithm for Agaricus
bisporus detection

The improved algorithm shows convincing
recognition accuracy, robustness, and low error
rates in Agaricus bisporus detection.

98% 0.018 s

Chen et al. [49]
Watershed-based
segmentation for Agaricus
bisporus recognition

The proposed algorithm demonstrates
recognition of Agaricus bisporus with low error
rates and real-time processing capabilities.

95.7% 0.706

Tillett et al. [21]
Algorithm for locating
mushrooms in growing
beds

The algorithm is designed for use in robotic
harvesting systems and provides a basis for
identifying and tracking mushrooms in a
growing bed.

93% -

Yang et al. [23]
Corner density-based
localization algorithm for
overlapping mushrooms

The algorithm demonstrates a success rate of
86.3% in locating overlapping mushrooms,
providing an efficient solution for mushroom
localization.

96.37% 0.712 s

Yang et al. [24]

Improved segmentation
recognition algorithm for
overlapping Agaricus
bisporus

The algorithm achieves over 90% recognition
rate for Agaricus bisporus in overlapping
situations, making it suitable for complex
planting environments.

97.25% 0.212 s

Lu and Liaw [37] CNN-based mushroom cap
diameter measurement

The algorithm provides an estimation of
mushroom cap diameters and outperforms the
Circle Hough Transform.

82.7% -

To sum up, traditional image recognition methods are still widely used in mushroom
recognition and positioning, and the recognition effect has been continuously improved.
However, due to the influence of model generalization, there is little room for further
improvement. In contrast, the algorithm based on depth learning dramatically improves the
accuracy and generalization ability of the recognition algorithm. Currently, the mainstream
methods are YOLO, faster RCNN, and other target detection methods. Recently, Mask
RCNN has begun to emerge in recognition of fruits and vegetables and has achieved better
results. Yin et al. [50,51] also attempted to use instance segmentation to segment caps of
Oudemansiella raphanipes and Agrocybe cylindracea. Moreover, instance segmentation proves
especially effective in detecting fruits in complex growth states, including varying light
intensities and instances of multi-fruit adhesion, overlap, and occlusion. The instance
segmentation algorithm will become the next research hotspot in the recognition and
positioning of fruits, vegetables, and edible fungi during picking.

However, two-stage algorithms, which normally have low efficiency, are mainly used
at present. In contrast, the single-stage instance segmentation algorithm SOLO (Segmenting
Objects by Locations) was simplified compared with the two-stage method of first detection
and then segmentation; it claims a more straightforward design to achieve greater efficiency
and better segmentation performance [52,53]. Furthermore, the improved version of the
SOLO model, SOLOv2, uses dynamic convolution to enhance the quality of the mask
segmentation and the model’s efficiency [54]. In SOLOv2, the category branch and mask
branch are integrated, and the matrix non-maximum suppression is proposed to inhibit
the repetitive prediction after multi-scale feature extraction of the input image by Full
Convolutional Networks (FCN), thus realizing faster mask processing [55]. Therefore, the
SOLOv2 network structure is used as the segmentation framework for more and more
tasks requiring efficient and accurate segmentation between the object and the background.
For instance, Li et al. [56] utilized the SOLOv2 algorithm to segment the perimeter of the
offshore area in the oilfield operation site and then took the segmentation result as the key
to detecting the intrusion of the offshore perimeter area. The accuracy rate of the designed
model was up to 94.7%; Ji et al. [57] used the method based on the SOLOv2 network and
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point cloud cavity characteristics to automatically score the rumen filling of dairy cows.
The average segmentation accuracy on the test set images was 86.29%, showing robustness
to individual differences.

Therefore, given the shortcomings of low segmentation and positioning accuracy
in visual recognition of densely overlapping mushrooms, this paper proposes a novel
high-accuracy positioning method for densely overlapping mushrooms based on the
instance segmentation model SOLOv2. This method has the following characteristics:
(1) It solves the fuzzy problem of densely overlapping mushroom edge segmentation;
(2) the most extended contour classification reconstruction algorithm based on the mask
contour of instance segmentation can better eliminate the interference sub-contour in the
irregular contour that is seriously occluded and extruded, and effectively improves the
contour reconstruction effect and mushroom center point positioning accuracy through
classification fitting.

3. Mushroom Instance Segmentation Dataset Construction

This paper takes mushrooms as the research object and collects images of mushrooms
growing in the mushroom house of Shanghai Lianzhong Edible Fungus Professional Coop-
erative to construct the dataset. Mushrooms are raised in factory production environments
and standard culture racks. The culture racks are 31 m long, 1440 mm wide, and 6 storeys
high, with the storeys spaced 600 mm apart. The temperature, humidity, carbon dioxide
concentration, and light in the mushroom room are intelligently controlled by an intelli-
gent control system under conditions suitable for the growth of mushrooms, as shown
in Figure 2. Three MV-GE300C-T GigE color industrial cameras, with a focal length of
4 mm, a pixel depth of 10 bits of colour and image resolution of 1280*720 is used, were
installed transversely on the picking robot to traverse each layer of mushrooms and capture
mushroom images.
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Figure 2. Field image of mushroom image acquisition.

Mushrooms quickly form dense clusters, especially the mushrooms in the early pick-
ing stage, whose growth is particularly lush, resulting in mutual extrusion, shielding,
staggering, and other phenomena among mushrooms. In addition, the fruiting bodies of
mushrooms may appear on the surface of scales during the growth process or the browning
phenomenon due to poor anti-browning ability, thus affecting the shape of mushrooms.
Therefore, the construction of the data set should fully consider these differences in mush-
room growth shape and posture. In this paper, a total of 480 images of eight typical forms
of mushrooms were collected, and 60 shots were gathered for each category, as shown in
Figure 3.

This paper also considers the images under different light source conditions when
constructing the dataset. Specific composition (Figure 4): 160 images with uniform light
and high brightness collected under the top light source, 160 pictures with uneven light
under the side light source, and 160 images with low brightness under the dark light source.

The images in this paper are labeled with labelme. To ensure that the labeled polygons
try to fit the real contours of the mushrooms, the number of basic labeling points for each
mushroom example is stipulated, following the definition of a COCO dataset for s, m, l
to divide the mushroom model: s-type mushrooms at least 10 labeling points, m-type at
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least 20 labeling points, and l-type mushrooms at least 25 points, to improve the degree of
labeling and fit to the real contours of the mushrooms. After labeling all the initial images
to obtain the initial data set, we used data enhancement to process the images to improve
the generalization ability and robustness of the model. Specific image data enhancement
methods included: image brightness change, horizontal flipping of the image, vertical
mirroring, and random rotation. Finally, 1920 mushroom images obtained after performing
the image enhancement process were randomly divided into training and validation sets in
a ratio of 7:3.

Agriculture 2024, 14, x FOR PEER REVIEW 8 of 25 
 

 

 

Figure 3. Datasets of different forms of mushrooms. (a) With scales on caps; (b) With brown spots 
on caps; (c) With soil on caps; (d) Serious interleaving, clumping, and adhesion; (e) Large differences 
in size and height; (f) Adhesion and extrusion deformation between mushrooms; (g) Heavily tilted 
to expose its stalk; (h) With mechanical damage on caps. 

This paper also considers the images under different light source conditions when 
constructing the dataset. Specific composition (Figure 4): 160 images with uniform light 
and high brightness collected under the top light source, 160 pictures with uneven light 
under the side light source, and 160 images with low brightness under the dark light 
source. 

The images in this paper are labeled with labelme. To ensure that the labeled poly-
gons try to fit the real contours of the mushrooms, the number of basic labeling points for 
each mushroom example is stipulated, following the definition of a COCO dataset for s, 
m, l to divide the mushroom model: s-type mushrooms at least 10 labeling points, m-type 
at least 20 labeling points, and l-type mushrooms at least 25 points, to improve the degree 
of labeling and fit to the real contours of the mushrooms. After labeling all the initial im-
ages to obtain the initial data set, we used data enhancement to process the images to 
improve the generalization ability and robustness of the model. Specific image data en-
hancement methods included: image brightness change, horizontal flipping of the image, 
vertical mirroring, and random rotation. Finally, 1920 mushroom images obtained after 
performing the image enhancement process were randomly divided into training and val-
idation sets in a ratio of 7:3. 

   
(a) (b) (c) 

Figure 4. Datasets for different light sources: (a) Top light source; (b) Side light source; (c) Dark light 
source. 

4. Research on High-Accuracy Mushroom Segmentation 
The SOLOv2 algorithm, shown in Figure 5, was used to segment the mushrooms first. 

(a)                 (b)                 (c)                   (d)  

(e)                 (f)                  (g)                  (h)  

Figure 3. Datasets of different forms of mushrooms. (a) With scales on caps; (b) With brown spots on
caps; (c) With soil on caps; (d) Serious interleaving, clumping, and adhesion; (e) Large differences in
size and height; (f) Adhesion and extrusion deformation between mushrooms; (g) Heavily tilted to
expose its stalk; (h) With mechanical damage on caps.
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Figure 4. Datasets for different light sources: (a) Top light source; (b) Side light source; (c) Dark
light source.

4. Research on High-Accuracy Mushroom Segmentation

The SOLOv2 algorithm, shown in Figure 5, was used to segment the mushrooms first.
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Figure 5. SOLOv2 network structure.

The segmentation results are as follows: for the mushrooms with a general aggregation
degree and good growth form, the segmentation effect is good. The recognition rate of
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the mushrooms in Figure 6a is high, especially since some tiny mushrooms are segmented.
The mask boundary fits well with the contour of the actual mushroom. However, the
segmentation effect will be affected for mushrooms with a high aggregation degree and
complex growth morphology, resulting in a rough mask and inaccurate segmentation of
mushroom edges, as shown in Figure 6b. Especially in the densely overlapping area of
mushrooms, the positioning accuracy of the mushroom picking center will be affected.
Therefore, SOLOv2 needs to be improved to obtain more precise and accurate segmentation
of mask edges.
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Figure 6. Result of SOLOv2 segmented mushrooms: (a) Ordinary aggregation; (b) Complex polymer-
ization.

The PointRend neural network can optimize object edge segmentation, treat segmenta-
tion of an image as a rendering problem, and perform the prediction of image segmentation
based on an adaptive point selection iterative subdivision algorithm [58]. The structure
of the network is shown in Figure 7. A lightweight prediction head generates a rough
prediction mask, and bilinear interpolation is utilized for upsampling the rough prediction
mask to obtain a prediction mask with twice the resolution. N points distributed on the
edge are selected, and point-by-point features are constructed on the points chosen by com-
bining fine-grained features and coarse prediction features. Finally, a simple multi-layer
perceptron is used to predict these points. All points share the weight of the multi-layer
perceptron. The multi-layer perceptron can be trained by standard task-specific segmental
losses and finally output the classification label of each point. This is iterated until the
mask at the desired resolution is upsampled. Therefore, this paper uses the PointRend
network structure, which can solve the edge segmentation accuracy that is not high enough
to improve the SOLOv2 network. In SOLOv2, to obtain the semantic information of the seg-
mentation target, multiple convolutions and pooling operations on the original image will
reduce the image resolution. Then, if the image with high semantic and low key is directly
upsampled to be consistent with the size of the original image, information in specific areas
will be lost, resulting in rough segmentation results. In addition, the method of predicting
each pixel in a regular grid and inferring the instance category to which it belongs has the
conditions of over-sampling and under-sampling. In particular, too many sampling points
in low-frequency areas belonging to the same object in the image leads to over-sampling,
and the under-sampling of such high-frequency regions close to the object boundary in the
picture makes the segmented border too smooth and unreal. This will inevitably lead to
rough segmentation results, especially at the edge of the segmentation object.

Therefore, this paper combines the SOLOv2 network structure with the PointRend
neural network module to build an improved SOLOv2 algorithm, which is called the
PR-SOLOv2 algorithm in this paper. Its network structure is shown in Figure 8. After
the Fully Convolution Network (FCN) of SOLOv2’s feature extraction backbone network,
the PointRend module is introduced before the mask prediction branch to improve the
image up-sampling method. To solve the information loss in local areas and render fine
segmentation details, the delicate features of the second layer of the FCN network are
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introduced, combined with the rough features of the fourth layer, and sent to the taught
PointRend module.
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The top-N feature pixels are extracted adaptively from the feature map of low spatial
resolution and the corresponding fine feature map of high spatial resolution. The multi-
layer perceptron is used to iterate and optimize each point continuously, and the instance
is connected to the segmentation prediction branch to predict the instance mask. By this
method, low-level and high-level features are combined layer by layer. The output image
is iteratively rendered from coarse–fine to coarse–fine to solve the boundary inauthenticity
caused by the over-sampling of the smooth region and under-sampling of the boundary
region, which can improve the misjudgment of boundary pixels caused by the original
network structure and improve the accuracy of the image segmentation edge.

The model’s total loss function L is composed of the loss Lcate generated by instance
classification and the loss LMask generated by mask prediction. λ is the coefficient that
balances the two losses, and the calculation is shown in Equation (1).

L = Lcate + λLMask (1)

LMask =
1

Npos
∑ 1

{
P∗

i,j > 0
}dMask

, i, j ∈ M (2)

dMask = 1 − D(p, q) = 1 −
2 ∑x,y

(
px,y•qx,y

)
∑x,y p2

x,y + ∑x,y q2
x,y

(3)

where Lcate is the Focal Loss function for classification [59] for the calculation of LMask
(Equation (2)). S is the number of grid units divided into the input image. i and j respectively
represent the subscripts of indexes from left to right and from top to bottom on M × M
grids on the input image, traversing all grids on the picture; Npos is the number of positive
samples; P* represents the instance category. 1

{
P*

i,j > 0
}

is the indicator function; if P*
i,j > 0,

the indicator function value is 1, otherwise it is 0; dMask is the Dice Loss function, and
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its definition is shown in Equation (3), where D is the Dice coefficient, which is used to
measure the similarity of two sets. p and q represent the predicted Dice Loss mask and the
natural mask, respectively, and px,y and qx,y are the pixel values of the point (x, y) of the
predicted mask and the natural mask on the image, respectively.

5. Contour Reconstruction of Mushroom

In the process of mushroom growth, due to its natural cluster growth characteristics,
it is common for mushrooms to overlap and extrude each other, leading to the pileus’s
deformation. The PR-SOLOv2 instance segmentation model can more accurately separate
them from the complex situations of adhesion between mushrooms, inclination, soil shield-
ing on the surface, and uneven light, and obtain their masks. However, for mushrooms
that are occluded or deformed due to aggregation growth, the mask obtained according to
the image is only part of the shape of the mushroom. If the mask center point is directly
extracted from the mushroom center point, there will be a significant error.

Therefore, given the above non-uniform and irregular mushroom growth shapes, espe-
cially the severe deformation and shape loss of densely overlapping mushroom contours, to
better restore the actual mushroom contour and improve the center point positioning accu-
racy, this paper proposes a mushroom contour classification reconstruction method based
on PR-SOLOv2 segmentation mask contour curvature and length, as shown in Figure 9.
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In this method, firstly, the PR-SOLOv2 algorithm is used to segment mushrooms and
obtain their masks. Then, the mushroom mask contour based on the mask is extracted.
Next, mushrooms are classified into regular and irregular shapes according to the concave
defect length of the extracted contour. A mushroom with a regular shape is fitted with the
least square ellipse. In contrast, a mushroom with an irregular shape and difficult contour
fitting, seriously occluded or squeezed, is reconstructed with the longest contour extraction
and classification reconstruction method based on corner segmentation.

5.1. Reconstruction of Regular Contours

The contour is considered regular with no or only shallow concave defects.
Firstly, the convex hull method is used to find out if there are any concave defects in

the contour. Contours without concave defects are considered regular contours. In addition,
although some mushrooms have concave defects, the chord length (IArc) and arch height
(hArc) of the concave contour are relatively small compared to the entire mushroom length
(rLcontour), so such concave defects can be ignored. Mushroom contours that meet the above
conditions can still be considered regular contours. Due to the varying sizes of mushrooms,
to better determine the impact of concave contours on the fitting of mushrooms of different
sizes, mushrooms are divided into three types based on the contour length (Lcontour): small,
medium, and large. Different boundary values are used to determine mushrooms of
different sizes. A mushroom with a contour length in the range [0,90) is defined as a small
mushroom, [90,180) as a medium mushroom, and above 180 as a large mushroom. When
IArc is less than 46 or hArc is less than 10 for a small mushroom, a concave contour can
be ignored; when IArc is less than 69 or hArc is less than 30 for a medium mushroom, a
concave contour can be ignored; when IArc is less than 89 or hArc is less than 40 for a large
mushroom, a concave contour can be ignored. After the above judgment, if the concavities
of the mushroom contour can be ignored, then this mushroom is defined as having a regular
mushroom contour. Otherwise, it has an irregular contour.

For mushrooms with regular contours, they can be fitted by the least-squares ellipse
method: Take the n contour points above it as Pi(xi, yi)(i = 1, 2, . . . , n), perform fitting
operation according to the least-squares ellipse fitting objective function, calculate the
ellipse position parameters and shape parameters, and reconstruct the contour of the
bisporus mushroom with a smooth contour and regular shape.

5.2. Reconstruction of Irregular Contours

After segmenting the irregular contour of the overlapping mushroom, the obtained
contour contains the contour fragment of the overlapping part of the other mushrooms
covered. Suppose it is not processed and allowed to participate in the fitting together with
the effective contour, such as the least-squares ellipse fitting. In that case, the fitted contour
will differ from the actual contour. And the overlapped part cannot be well restored to the
actual contour.

Given the above situation, this paper proposes the longest contour extraction and
classification reconstruction approach relying on corner segmentation. The specific process
is as follows:

(1) Detect corner points at abrupt changes in contour shape. If the concave contours
cannot be ignored, define its start and end point as corner points;

(2) By corner coordinates, the coordinate line between adjacent corner coordinates is
regarded as a sub-contour segment, and the whole mushroom contour is divided into
N sub-contour segments;

(3) Calculate the length of each sub-contour segment and choose the longest sub-contour
segment;

(4) Based on the longest sub-contour, the mushroom contour is classified and fitted
according to the difference in arch curvature and length of the longest sub-contour.

(5) Calculate the arch curvature C of the contour (Equation (4)).
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C =
1
R

(4)

R = 0.5 ∗
(

z2

hArc
+ hArc

)
(5)

z =

√
(xn − x1)

2 + (yn − y1)
2 (6)

hArc = max(
i

Si ∗ 2
z

) (7)

Si =
√

pi(pi − z)(pi − vi)(pi − mi), i = 1, . . . n (8)

where R is the arcuate curvature radius of the longest sub-contour, vi and mi are, respec-
tively, the length of both sides of the inscribed triangle formed by any point i (i = 1,2,. . .,n)
on the longest sub-contour and its two upper endpoints, IArc is the chord length of the
longest sub-contour and is also the bottom length of all inscribed triangles in the longest
sub-contour, pi is the half circumference of the inscribed triangle, Si is the area of the
inscribed triangle, hArc is the height of the longest arch in the inscribed triangle on the
longest sub-contour.

For the longest sub-contour with an arch curvature exceeding 0.6 and a length surpass-
ing 30, the least-squares ellipse is employed to fit the contour. However, when dealing with
the longest sub-contour having an arch curvature less than 0.6 or a length below 100, using
the least-squares ellipse fitting method would result in a significant deviation of the fitting
contour and its center point from the actual values. Consequently, the minimum-distance
circle-fitting method is applied to reconstruct the mushroom contour in these two scenarios.
N points

(
xj, yj

)
on the contour are selected, and the circle parameters are determined

based on the sum of the absolute values of the distances between the data points and the
circle, as depicted in Equation (9):

f = ∑
∣∣∣∣√(

xj − xc
)2

+
(
yj − yc

)2 − r
∣∣∣∣ (9)

where xc and yc are the center point of the fitted circle, r is the radius of the fitted circle,
f is the minimum value of xc, yc and r are the best-fit parameters. For irregular contours,
the longest sub-contour is extracted based on the corner segmentation proposed above,
and then the target contours of overlapping and irregular mushrooms are reconstructed
separately by least-squares ellipse fitting and minimum-distance circle-fitting according to
the different situations of the bow curvature and length of the longest sub-contour.

6. Experimental Results and Discussion
6.1. Segmentation Experiment and Discussion Based on PR-SOLOv2
6.1.1. Model Training

To validate the results and advantages of the enhanced algorithm, this article uses
Mask RCNN, YOLACT, SOLOv2, and PR-SOLOv2 image segmentation networks for
training based on the mushroom datasets mentioned above to compare and verify their
segmentation effects.

The model training environment was built under the Windows 10 operating system
and a 1×GeForceRTX3090 NVIDIA graphics card from the United States, and the running
memory was 24 GB. Framework Detectron2 of Facebook under the running architecture
CUDA10.1 and CUDNN7.6.5 acceleration libraries of Python3.7, PyTorch1.6, and GPU
were configured as the running framework of the model.

Training parameters were configured with a training batch size of 4. The neural
network optimization algorithm employed stochastic gradient descent (SGD) to progress
in the direction of the maximum slope at the current location. The initial learning rate
was set at 0.01 and the momentum size at 0.9, and 5000 iterations of iterative training
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were carried out. In addition, the mesh size S of SOLOv2 and PR-SOLOv2 algorithms was
(12,16,24,36,40).

6.1.2. Model Evaluation Metrics

The instance segmentation algorithm is essentially a problem of pixel classification and
category recognition. Its evaluation metrics include Average Precision (AP), Intersection
over Union (IOU), forecast time, and other common metrics.

AP represents the area value of the curve enclosed by the coordinate axis, and the
precision–recall (PR) curve is plotted with the recall rate as the horizontal coordinate and
the accuracy rate as the vertical coordinate. IOU denotes the intersection area of the target
mask predicted by the model and the actual annotation box, along with the ratio of their
combination. A preset judgment threshold is utilized, and when the IOU value exceeds
this threshold, the model’s prediction for the target is deemed relatively accurate.

The mushroom segmentation task necessitates predicting categories at the pixel level.
Therefore, evaluation indicators such as the IOU threshold and the corresponding AP value
are adopted. These metrics help distinguish the intersection ratio between the predicted
segment and the ground truth. The average accuracies AP50 and AP75, obtained using the
commonly used decision thresholds of 0.5 and 0.75 in the example segmentation task, are
used to evaluate the segmentation accuracy of the model under different confidence levels.

6.1.3. Instance Segmentation Results and Discussion

(1) Experiment and result of dense overlapping mushroom segmentation

For the mushrooms that grow densely and form mutual adhesion or even mutual
extrusion, the segmentation effect of different instance segmentation methods is shown
in Figure 10. The segmentation result of Mask RCNN shows inaccurate segmentation of
mushroom masks and missing identification of some mushrooms, as shown in Figure 10b.
No. 1, 2, 3, and 4 mushrooms gather and grow, stick together, squeeze, and deform each
other. There is no height difference between mushrooms, which leads to their indistinct
boundary. No. 6 and No. 8 mushrooms were not identified because they were severely
obscured by their neighbors, with only a small amount of fungus cap exposed and uneven
light exposure. Due to the limited growth space of No. 5 and No. 7 mushrooms, the fruiting
body can only grow slightly inclined, exposing the stalk. It is difficult to distinguish
between the mushroom cap to be identified and the stem. Mask RCNN cannot handle these
complex instance segmentation cases.
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Figure 10. Segmentation results of densely overlapping mushrooms: (a) Original; (b) Mask RCNN;
(c) YOLACT; (d) PR-SOLOv2.
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The segmentation effect of the YOLACT algorithm is shown in Figure 10c. There were
some cases in which the stalk was misidentified as a mushroom, some mushrooms were
not identified, and the shape of the generated mushroom mask was very different from
the actual mushroom shape. The stalk of mushroom No. 14, marked in yellow box in the
picture, is misidentified as a mushroom; No. 5, 7, and 9 mushrooms that grow slightly at
an angle and expose their stalks are missed; No. 6 and No. 8 mushrooms were seriously
blocked by the large mushrooms growing around them, resulting in a small imaging area
and uneven illumination and not being recognized. The shape of the segmentation mask
generated by No. 2, 10, 11, 12, and 13 mushrooms is rectangular, greatly different from
the actual mushroom shape. Like Mask RCNN, the YOLACT algorithm cannot solve the
complex and challenging high-precision segmentation problems mentioned above.

In contrast is the PR-SOLOV2 algorithm for dense adhesion and extrusion deformation.
It can be accurately segmented in complex segmentation situations, such as non-obvious
features of the fungus cap and stalk, as shown in Figure 10d. The PR-SOLOv2 can accurately
segment No. 1, 2, 3, and 4 mushrooms that grow densely and extrude each other without
blurred edges. It can also separate No. 6 and No. 8 mushrooms that can be heavily obscured
and not easily identified. In addition, an excellent segmentation effect was also shown on
No. 5, 7, and 9 mushrooms with no obvious characteristics of fungus cap and stalk, and no
fungus stalk was misidentified as fungus cap. The mask shapes generated on No. 10, 11, 12
and 14 mushrooms will not appear rectangular like the YOLACT but will generate masks
that conform to the actual shape of the mushrooms.

(2) Segmentation of a tilting mushroom

For the tilted mushroom, the segmentation problems of the Mask RCNN algorithm
and the YOLACT algorithm are similar, as shown in Figure 11b,c. No. 1 and 2 mushrooms
grow at a full tilt to the soil surface, exposing most of the stalks. The stalks look like tiny
mushrooms. The growth posture of No. 3, 4, and 5 mushrooms was slightly inclined,
revealing a small amount of stem. With inaccurate segmentation results, the mask RCNN
and YOLACT algorithms also divided part of the stalk into the cap. No. 6 mushroom grows
together with other mushrooms and hides on the stem of another mushroom. When the
Mask RCNN and YOLACT algorithm segment the mushroom, in this case, part of the stalk
is also divided into the fungus cap to obtain an unclear mask. The PR-SOLOv2 as shown in
Figure 11d can correctly segment the stem with similar characteristics to the mushroom
cap due to oblique growth, which increases the difficulty of identifying the mushroom.
Including the correct segmentation of No. 1 and No. 2 of this oblique growthwhich is
difficult to accurately identify. It can also accurately divide mushrooms No. 3, 4, 5, and 6,
whose stalk and cap characteristics are difficult to distinguish, and get their precise edge.

(3) Segmentation result of tiny mushrooms

The identification effect of small mushrooms is shown in Figure 12. Mask RCNN and
YOLACT have similar products in small mushroom recognition, as shown in Figure 12b,c.
No. 1, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, and 19 mushrooms are not exposed to uniform
light, the individual mushroom is small, and the characteristics of the fungus cap are
not prominent. Therefore, it is easy to be mistaken for mycelium and miss recognition.
Individual mushrooms No. 2, 5, 6, 10, 14, 15, 18, 20, and 21 are slightly larger, belonging to
the small mushroom and large mushroom adhesion with a certain height difference. It is
easy to identify the small mushroom in the stalk of the large mushroom, which also missed
identification. However, the effect of the PR-SOLOv2 algorithm is shown in Figure 12d;
it can correctly segment the mushrooms with smaller individuals and fewer features,
whose characteristics are similar to mycelia. In addition, it can also accurately segment
small mushrooms that are adhered to large mushrooms and have different heights and
similar features.
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Figure 11. Segmentation result of tilting mushrooms: (a) Original; (b) Mask RCNN; (c) YOLACT;
(d) PR-SOLOv2.
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Figure 12. Segmentation result of tiny mushrooms: (a) Original; (b) Mask RCNN; (c) YOLACT;
(d) PR-SOLOv2.

(4) Comparison of segmentation effects

The effect of instance segmentation on mushroom segmentation is tabulated in Table 2.
The average segmentation accuracy of the Mask RCNN on the dense mushroom image
segmentation task is 83.510%. The AP of YOLACT is 80.743%, while that of SOLOv2
is more than 90% (90.279%). The PR-SOLOv2 proposed in this paper has the highest
AP among the four segmentation methods in dense mushroom segmentation, reaching
93.037%, which is about 10% higher than Mask RCNN and YOLACT, and about 3% higher
than that of SOLOv2. When the IOU threshold is set to 50%, the AP performance of PR-
SOLOv2 in the mushroom image segmentation task is as high as 99.056%. In addition,
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the average segmentation time is 0.39 s, which is still better than the Mask RCNN and
YOLACT algorithms.

Table 2. Effect of instance segmentation on mushroom segmentation.

Algorithm P R AP (%) AP50 (%) AP75 (%) Mean Time(s)

Mask RCNN 0.933 0.852 83.510 95.061 89.006 0.68
YOLACT 0.901 0.838 80.743 93.451 87.853 0.41
SOLOv2 0.959 0.917 90.279 96.103 92.747 0.36

PR-SOLOv2 0.982 0.945 93.037 99.056 95.249 0.39

(5) Comparison of segmentation effect under different light sources

In order to compare the segmentation effect of the model under the three light sources,
this paper selects 60 pictures for experiment; the pictures are all from the camera used in the
experiment; each picture has the same resolution and is divided into three groups according
to the light sources. The overall results of the experiment are as follows: 651 examples
of top light source images, 638 successful segmentations, segmentation success rate of
97.81%; 794 examples of side light source images, 772 successful segmentations, segmen-
tation success rate of 97.23%; 1102 examples of dark light source images, 1088 successful
segmentations, segmentation success rate of 98.73%, as shown in Figure 13.
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Figure 13. Segmentation results under different light sources.

The result shows that the segmentation accuracy of the side light source is the lowest,
lower than that of the top light source, and lower than that of the dark light source. This
paper concludes that since the side light source produces shadows on the mushroom
surface when irradiating the mushroom, the light and dark demarcation line will affect
the extraction of the mushroom edge features to a certain extent, so it will affect the final
segmentation success rate. Based on the results of this experiment, considering that in
the natural state, most of the stacked mushroom racks are illuminated by lights with side
light sources, the direct photographs will affect the subsequent recognition and contour
reconstruction. Therefore, in this paper, the camera is equipped with a parallel light source
to assist illumination when taking pictures, to eliminate the influence of the side light
source on the subsequent recognition and segmentation of mushrooms, and to improve the
accuracy of recognition and contour reconstruction.

(6) Further validation of PR-SOLOv2 algorithm

There are 260 mushroom sample images of different mushroom rooms and layers
collected in the actual production environment from two plants, totaling 9362 mushrooms.
The mask RCNN, YOLACT, SOLOV2, and PR-SOLOv2 algorithms were used to segment
the sample images. The experimental outcomes are shown in Table 3. It is observed that the
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proposed approach achieves a segmentation success rate of 98.13%, which is significantly
higher than those of the other existing works.

Table 3. Mushroom segmentation success rate of different algorithms.

Plant Algorithm Number Num of Successful
Segment Mushroom

Segmentation
Success Rate (%)

Plant 1

Mask RCNN 4865 4209 86.52
YOLACT 4865 3908 80.33
SOLOv2 4865 4407 90.59

PR-SOLOv2 4865 4784 98.34

Plant 2

Mask RCNN 4497 3853 85.68
YOLACT 4497 3617 80.43
SOLOv2 4497 4077 90.66

PR-SOLOv2 4497 4403 97.91

There are two main reasons for the unsuccessful segmentation: first, multiple large
mushrooms are blocked at the same time, resulting in too serious small mushrooms; Second,
a small mushroom with a large area of dark lines on the surface. In the marking of the
dataset, the two cases are not common, resulting in poor learning effect of the segmentation
features of the model for these two cases. In the future, the segmentation efficiency of the
model can be improved by adding the marking of special cases.

6.2. Experimental Results and Discussion of Contour Reconstruction

The mask contour obtained by segmentation mask based on the PR-SOLOv2 algo-
rithm proposed in this paper is adopted. The process and effect of the classification and
reconstruction method according to the curvature and arc length of the mask contour
are shown in Figure 14: (a) the fruit-body mask obtained by PR-SOLOv2 segmentation
network processing proposed in this paper; (b) the extracted mask contour. Among them,
No. 1, 5, and 8 are mushrooms whose average curvatures are 0.01317, 0.01367, and 0.02313,
respectively, and corresponding lengths are 444, 427, and 246 pixels, respectively. They are
all mushrooms whose average curvature is less than 0.103 and whose contour length is
more than 100. No. 2, 3, 4, 6 and 7 are partially occluded fruiting bodies, whose average cur-
vatures are 0.02378, 0.01787, 0.01648, 0.02087, and 0.02252, respectively, and corresponding
contour lengths are 291, 257,335, 239,and 316 pixels, respectively, belonging to non-smooth
occluded contours. Among them, the arch curvature of the largest contour fragment of
No. 2, No.4, and No. 7 mushrooms is more significant than 0.9. The least-squares ellipse
fitting was used. The No. 3 and No. 6 mushrooms were extruded to produce a large
deformation, and their contour shape was irregular. However, the arch curvature of their
longest contour was greater than 0.9, so the ellipse fitting was also adopted. The figure
illustrates that both the regular mushroom and the severely blocked mushroom exhibit a
well-matched contour when employing the contour reconstruction method proposed in
this paper. The reconstruction effect is satisfactory.

More reconstruction effects of the mushroom cluster neutron entity are shown in
Figure 15. In general, the contour reconstruction method in this paper can fit the contour
of the densely overlapped fruit body well. For example, the surface damage of No. 1, 7,
8, 12, and 26 mushrooms and the surface dirt of No. 3 mushrooms will affect the image
segmentation effect and lead to a poor subsequent reconstruction effect. The SOLOv2-PR
algorithm proposed in this paper can accurately segment the mushroom mask and extract
the edge of the mask. On this basis, the mushroom contour reconstruction can have a good
effect. No. 6, 10, 13, 17, 18, 19, 20, 21, 22, 26, 23, 27, 28, and 29 mushrooms are mainly
adhered to a mushroom around them or are partially blocked by a single mushroom next
to them. Although these mushrooms are blocked or squeezed, the deformation of the
mushrooms is not severe, and the extracted mushroom outline is roughly smooth and
regular. The contour reconstruction method proposed in this paper can achieve a better
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effect than mushroom contour reconstruction. In addition, for the mushrooms squeezed
by two surrounding mushrooms, such as No. 4, 5, 9, 12, 15, 14, 16, 25, 31, 32, 34, and
33, the contour edge deformation is large, and the shape is irregular, so it is not easy to
reconstruct the contour. The mushroom contour reconstruction method realized in this
paper can restore the mushroom’s true contour.
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However, in cases of extremely dense growth, a majority of the fruiting bodies, like
mushrooms numbered 2, 11, 15, 24, 30, and 35, are either blocked or severely deformed by
the presence of multiple surrounding mushrooms. The PR-SOLOv2 algorithm is employed
to segment the mask contour of these severely deformed mushrooms and subsequently
reconstruct their contours. There may be some deviation between the fitted contour and the
actual contour. However, there will be missed recognition for the mushroom fruiting bodies
smaller than 30 pixels, such as the mushrooms in the area marked by the yellow rectangle
box. However, these are tiny mushrooms with fresh buds, so the missing identification
does not affect the picking or monitoring.
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6.3. Verification of Center Coordinates
6.3.1. Center Point Ground Truth Determination Method

In order to find the ground true of center point of each fruiting body in the mushroom
image, we use manual marking to determine the center point of each fruiting body, as
shown in the Figure 16. The center point of the daughter body with regular contour
is directly obtained by using circle annotation in labelme, and the daughter body with
irregular contour is obtained by using polygon annotation in labelme, as close as possible
to its true contour, as shown in Figure 16b. After all mushrooms are marked, the center
point of the child body marked with a circle is directly output as its benchmark, and the
center point of the child body marked with a polygon is obtained by ellipse fitting output,
as shown in Figure 16c. The coordinates of all the central green ‘x’ in the final output image
are used as the reference point of each sub-entity center.
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Figure 16. Benchmarking process for determining mushroom centers: (a) Original image; (b) Marking
image; (c) Fitting contour map.

6.3.2. Calculation of Fitting Accuracy

In order to quantify the contour reconstruction accuracy, the center point positioning
accuracy of the contour is used to characterize it. Firstly, the deviation from the center
datum is compared from the actual fitting effect graph, as shown in Figure 17: the center
point of the actual contour using manual labeling, as shown in Figure 17a; and the center
point of the contour reconstructed by PR-SOLOv2, as shown in Figure 17b; for comparison,
the comparison effect is shown in Figure 17c. It can be seen that the contour reconstructed
by PR-SOLOv2 fits better with the actual contour manually labeled, and the center point
deviation is very small.
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by this paper’s method; (c) Comparison result.

In order to calculate the deviation more quantitatively, the center point positioning
accuracy is calculated using the 2D coordinate deviation rate (CDR) [24] as depicted in
Equation (10).

E =

(∣∣∣∣ cj − ci

W

∣∣∣∣+ ∣∣∣∣ rj − ri

H

∣∣∣∣)× 100% (10)

where rj and cj are the row and column coordinates of the center point of the mushroom
contour fitted by manual marking, ri and ci are the row and column coordinates of the
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center point of the mushroom obtained by the research method in this paper, and W and H
are the width and height of the mushroom image, respectively.

The contour reconstruction comparison results of three more dense onsite mushroom
images (169 mushrooms in total) are provided to further verify the effectiveness of the
contour reconstruction method in this paper, as shown in Figure 18. The corresponding
CDR comparison of the four images is shown in Figure 19.
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As shown in Table 4, the average CDR between the centroid of the contour fitted by
the method in this paper and the actual contour is 0.30%, which shows that the centroid
positioning accuracy is higher, with better results.

Table 4. Mean deviation statistics for the average CDR coordinates of the four pictures.

Image Number 1 2 3 4 Average

The contour number 63 54 52 50
Average CDR 0.28% 0.32% 0.31% 0.30% 0.3%

7. Conclusions

This paper presents a high-precision segmentation and contour reconstruction method
for densely overlapping mushrooms based on an improved SOLOv2 model (PR-SOLOv2),
aiming to improve the segmentation accuracy and center point positioning accuracy of
highly dense mushrooms. The experimental results show significant improvement. The
PR-SOLOv2 model improves segmentation accuracy to 93.04% and segmentation rate
by 98.13%, about 10% higher than Mask RCNN and YOLACT. Meanwhile, the center
positioning error is as low as 0.3%, which proved that the proposed contour reconstruction
method in this study could accurately segment dense, overlapped, extruded, and tilting
fruiting bodies, effectively reconstruct mushroom contours that are severely occluded and
compressed, and achieve accurate center point positions. It is not only suitable for the
high-precision identification and positioning of the fruiting bodies of various edible fungi
but also those of other densely overlapping spherical-like fruits. However, there are still
some limitations. For example, for mushrooms with too a high tilt angle, occasionally it
will be mistaken to identify the stalk of the mushroom as a fungus cap. When the fruiting
body of the mushroom is severely obstructed, the reconstructed mushroom contour may
have some relatively larger deviations from the actual mushroom contour, which needs
to be further improved. In the future, we will continue to improve the structure of the
segmentation model, and even try some new occlusion segmentation algorithms such
as amodal instance segmentation, to further enhance the segmentation effect and reduce
processing time, and optimize the reconstruction fitness of the contour reconstruction
algorithm for contours covered by multiple positions or severely obstructed, to further
enhance center point position accuracy.
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