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Abstract: Cotton topping plays a crucial and indispensable role in controlling excessive growth and
enhancing cotton production. This study aims to improve the operational efficiency and accuracy of
cotton topping robots through a real-time and accurate cotton top bud detection algorithm tailored
for field operation scenarios. We propose a lightweight structure based on YOLOv8n, replacing
the C2f module with the Cross-Stage Partial Networks and Partial Convolution (CSPPC) module to
minimize redundant computations and memory access. The network’s neck employs an Efficient
Reparameterized Generalized-FPN (Efficient RepGFPN) to achieve high-precision detection without
substantially increasing computational cost. Additionally, the loss calculation of the optimized
prediction frame was addressed with the Inner CIoU loss function, thereby enhancing the precision
of the model’s prediction box. Comparison experiments indicate that the Bud-YOLO model is highly
effective for detecting cotton top buds, with an AP50 of 99.2%. This performance surpasses that of
other YOLO variants, such as YOLOv5s and YOLOv10n, as well as the conventional Faster R-CNN
model. Moreover, the Bud-YOLO model exhibits robust performance across various angles, occlusion
conditions, and bud morphologies. This study offers technical insights to support the migration and
deployment of the model on cotton topping machinery.

Keywords: cotton; cotton top bud; cotton topping; deep learning network; real-time detection;
Bud-YOLO

1. Introduction

Cotton is a vital crop in China, which is closely related to the daily life of the nation,
and China’s seed cotton production reached 18.122 million tons in 2022, ranking first in the
world’s production [1]. Within the cotton plant ecosystem, cotton top buds play a crucial
role in shaping the growth trajectory and yield [2]. Cotton topping is critical for reducing
the growth of ineffective branches, regulating nutrient distribution, and promoting early
and increased boll setting while minimizing shedding.

Cotton topping is typically performed through three methods: manual topping [3],
chemical topping [4], and mechanical topping [5]. Manual topping is labor-intensive and
inefficient; chemical topping is prone to environmental pollution; and mechanical topping
is prone to omission and misdirection. Domestic research institutes have investigated
mechanical equipment for cotton topping [6,7], focusing largely on automating control of
the operations. In the complex environment of a cotton field, factors such as variations in
lighting conditions, differences in cotton plant growth, weed growth, and changes in the
size and color of cotton top buds can significantly impact the accuracy of detection and
spatial positioning.

The ongoing advancements in artificial intelligence and deep learning have led to
substantial progress in object detection through convolutional neural networks (CNNs). At
present, mainstream object detection techniques are classified into two categories: two-stage
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and one-stage methods. Two-stage methods mainly include an RCNN [8], Faster R-CNN [9],
and Cascade R-CNN [10]; these detection algorithms offer higher detection accuracy but
slower detection speeds. One-stage methods mainly include SSDs [11], Retinanet [12], and
the YOLO [13] series; these detection algorithms have average accuracy but fast detection
speeds and are widely used in several fields.

The YOLO algorithm has seen numerous and diverse applications [14,15]. However,
maintaining model lightweightness while ensuring high detection accuracy during object
detection remains a research challenge. In order to design a lightweight target detector
for vehicle-mounted applications, Chen Xue et al. [16] proposed a new method called a
Sparsely Connected Asymptotic Feature Pyramid Network (SCAFPN). Jin Gao et al. [17]
used a cross-layer feature fusion network to retain model lightweightness in a model
designed to detect cherry tomatoes in unstructured environments. While these methods
can effectively decrease the number of model parameters, significant modifications to the
model structure might lead to performance degradation or require extensive tuning.

In recent years, researchers have proposed various crop detection methods [18–20].
Traditional approaches rely on color, shape, texture, and other background aspects of the
crops, extracting features through algorithms for crop recognition. For example, Longsheng
Fu et al. [21] employed RGB and depth features in an R-CNN-based approach to detect
apples in densely foliated fruit wall trees, facilitating robotic harvesting. Guichao Lin
et al. [22] developed a reliable algorithm based on Red-Green-Blue-Depth (RGB-D) images
for detecting and localizing citrus in real outdoor orchard environments for robotic picking.
However, the small size of cotton top buds, along with leaf shading, light conditions, and
uneven growth, poses challenges for cotton top bud detection.

Numerous researchers have conducted extensive studies on the detection and identifi-
cation of small targets in complex environments [23–25], making significant progress. Yifan
Bai et al. [26] proposed a real-time recognition algorithm (Improved YOLO) to accurately
identify strawberry seedlings, addressing issues of small flower and fruit size, similar color,
and overlapping occlusion. Yanxu Wu et al. [27] developed an enhanced end-to-end RGB-D
multimodal object detection network for tea bud detection based on YOLOv7, which has
an AP50 of 91.12% in the face of complex outdoor tea photography. In cotton topping
object detection, it is essential to maintain the accuracy of small object detection, improve
detection speed, and ensure the model’s lightweight nature to support the migration and
deployment of the model on cotton topping machinery.

Over the past few years, numerous improved object detection models have been intro-
duced to tackle the difficulties associated with detecting cotton top buds [28,29]. To address
the problem of cotton top bud detection, Peng Song et al. [30] proposed an improved
Cascade R-CNN to detect cotton top bud regions on RGB images, and three-dimensional
(3D) coordinates of objects were obtained by combining color images and depth images
from RGB-D cameras. C. Wang et al. [31] drastically reduced the parameter count in the
YOLOv3 model by applying deep separable convolution and enhanced the model’s ability
to learn multi-scale features through a hierarchical multi-scale approach. Xuan PENG
et al. [32] added an object detection layer to the YOLOv5s structure, incorporating the
CPP-CBAM attention mechanism with the SIoU bounding box regression loss function
to improve cotton top bud detection accuracy. While these methods enhance detection
accuracy to some extent, they suffer from slow detection speeds and do not account for the
shooting angles of the cotton top buds.

To address the limitations and shortcomings of existing research, this paper focuses on
cotton top bud recognition in complex environments and proposes an accurate, real-time
recognition algorithm for natural environments based on the YOLOv8n object detection
algorithm. This approach effectively handles variations in angles, shapes, and occlusion
scenarios. The research improves the detection accuracy of small objects by modifying the
YOLOv8n network structure, including changes to the loss function, lightweight convolu-
tion, and fusing of the pyramid feature network. Ultimately, the proposed object detection
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model not only enhances detection accuracy but also lays a robust foundation for future
research endeavors.

The key contributions of this study are as follows:

(1) We propose replacing the C2f module of the YOLOv8n backbone network with the
Cross-Stage Partial Networks and Partial Convolution (CSPPC) lightweight module
to reduce redundant computations and optimize memory access.

(2) The neck network employs the Efficient Reparameterized Generalized-FPN (Effi-
cient RepGFPN) to achieve high-precision detection without significantly increasing
computational cost.

(3) The study introduces the Inner CIoU loss function to compute regression loss, regulat-
ing the generation of auxiliary bounding boxes with a scale factor ratio to expedite
convergence. The enhanced model’s effectiveness in detecting cotton top buds under
natural conditions has been validated through experiments, offering technical support
for the advancement of intelligent cotton topping machinery.

The method was assessed and benchmarked against existing techniques using a cotton
top bud dataset. The results indicate that the proposed method attains higher precision,
recall, AP50, and F1 scores while maintaining real-time processing speed, significantly
enhancing detection performance compared to existing methods.

The structure of the remaining sections of the paper is as follows: Section 2 elaborates
on each module of the proposed Bud-YOLO model. Section 3 presents the experimental
setup, results, and discussion. Section 4 summarizes the paper and highlights its main
contributions.

2. Materials and Methods
2.1. Dataset Sample Collection

The cotton top bud dataset used in this paper was obtained from a cotton field in
the 10th Regiment of Alaer City, Xinjiang, China. The images were collected using a
smartphone HUAWEI P50E (manufactured by Huawei in Shenzhen, Guangdong Province,
China) from mid-June to mid-July 2022 and had a resolution of 4069 × 3072 pixels.

During the image data acquisition process, we used two angles, namely a top shot
and a side shot, and top buds with less than 30% occlusion were selected for photography.
In addition to the influence of the objective factors of acquisition time on the detection of
cotton top buds, their shape is also complex. The morphology of the cotton top bud varies
at different developmental stages, as shown in Figure 1. The cotton top bud is smaller and
lighter in color in the early stage of development, and more plump and darker in color in
the later stage of development.

The collected images of cotton top bud encompass different angles, occlusion situ-
ations, and morphologies to ensure data diversity and enhance the model’s robustness.
Together, these samples constitute the dataset, with a total of 800 raw images collected.
To verify the effectiveness of the model training, cotton top bud images were collected
from mid-June to late June 2023, However, these images were not included in the training,
validation, and testing datasets and were only used for prediction.

2.2. Annotation Alteration of the Dataset

We focused on cotton top bud detection under natural conditions. Manual labeling
is necessary before training on the cotton top bud image data, for which we utilized the
LabelImg tool [33]. Each cotton top bud was boxed and labeled as “bud”, and the labeling
focused on the location and category information of the cotton top bud. The labeled files
were saved in PASCAL VOC format as XML files. Following annotation, the cotton top
bud image data were converted to the YOLO dataset format.
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Figure 1. Images of cotton top bud data collected from mid-June to mid-July 2022. (a) Cotton top 
bud photographed from top view; (b) Cotton top bud photographed from side view; (c) Unocclu-
sion cotton top bud; (d) Occlusion cotton top bud; (e) Early shape of cotton top bud; (f) Late shape 
of cotton top bud. 
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Figure 2. Impact of data augmentation. (a) Brightness enhancement; (b) Brightness reduction; (c) 
Contrast enhancement; (d) Contrast reduction. 

Figure 1. Images of cotton top bud data collected from mid-June to mid-July 2022. (a) Cotton top
bud photographed from top view; (b) Cotton top bud photographed from side view; (c) Unocclusion
cotton top bud; (d) Occlusion cotton top bud; (e) Early shape of cotton top bud; (f) Late shape of
cotton top bud.

2.3. Dataset Augmentation

The sample size of the data in the cotton top bud dataset was insufficient for the
model to converge during training. To improve the generalization of the model and
prevent overfitting due to a lack of training data, we used data augmentation techniques,
including brightness and contrast adjustments, as shown in Figure 2, resulting in a total of
4000 object samples.
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2.4. Dividing the Dataset

The labeled dataset was partitioned into training, validation, and test subsets with a
ratio of 8:1:1. This distribution yielded 3200 images for training, 400 images for validation,
and 400 images for testing.

2.5. Bud-YOLO Model for the Detection of Cotton Top Buds
2.5.1. Selection of the YOLOv8 Model

Ultralytics released the YOLOv8 algorithm in January 2023 [34], representing a signifi-
cant technological improvement over the YOLOv5 object detection model. There are five
versions of YOLOv8: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x, which
progressively increase in width and depth. Considering the model size and its deployability
on mobile platforms, the YOLOv8n model was chosen as the base for the experiments.
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The YOLOv8 model consists of three main components: a backbone, neck, and head.
The backbone utilizes the C2f and SPPF modules for feature extraction, adjusting the
number of channels to improve the efficiency of this process. The neck network retains
the PAN-FPN architecture from the YOLOv5 model to achieve bidirectional fusion of
low- and high-level features, thereby improving target detection across multiple scales.
The head network comprises three detection layers designed to detect features of varying
scales generated by the neck network, employing an anchor-free approach to improve
detection accuracy and flexibility across multiple scales. The network structure of YOLOv8
is illustrated in Figure 3:
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2.5.2. Bud-YOLO Network Structure

For the cotton top bud dataset, we propose a lightweight detection algorithm: Bud-
YOLO. The algorithm reduces the model size and improves the computational efficiency
while increasing AP50 in object detection and reducing false detections and omissions,
thereby enhancing model robustness.

The backbone network uses the CSPPC module, reducing redundant computations
and memory access with minimal impact on detection accuracy. The neck network em-
ploys an Efficient Reparameterized Generalized-FPN (Efficient RepGFPN) to ensure high-
accuracy detection without significantly increasing computational cost. Finally, the Inner
CIoU function is introduced to compute the regression loss, with auxiliary bounding boxes
generated based on the scale factor ratio to compute the loss and accelerate convergence.
The network structure of Bud-YOLO is illustrated in Figure 4:
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2.5.3. CSPPC Module

In this study, the CSPPC module proposed by Liu [35], which has two PConvs [36] in
series in the output process, was used to replace the conventional convolution and reduce
the number of parameters. This module replaces the conventional C2f and is incorporated
into the algorithm’s backbone network. This integration removes redundant channel
characteristics, minimizes computational redundancy and memory accesses, accelerates
detection speed, and enables the more efficient extraction of spatial features. Suppose the
input size is (c, h,ω), the convolution kernel is κ× κ, and the output size is (c, h,ω). Then,
the FLOPs for regular convolution are shown in Equation (1) and the memory accesses are
shown in Equation (2):

h ×ω× κ2 × c2 (1)

h ×ω× 2c + k2 × c2 ≈ h ×ω× 2c (2)
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To maintain memory continuity, consecutive channels in the front or back segments
are chosen to represent the entire feature map. Then, the FLOPs of PConv are shown in
Equation (3), and the memory accesses are shown in Equation (4):

h ×ω× κ2 × c2
p (3)

h ×ω× 2cp + k2 × c2
p ≈ h ×ω× 2cp (4)

The architecture of the CSPPC module is depicted in Figure 5. The CSPPC module
significantly reduces the model size, facilitating seamless deployment on mobile devices
and lowering the costs associated with hierarchical device development.
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2.5.4. Efficient RepGFPN Module

In a Feature Pyramid Network (FPN), the purpose of multi-scale feature fusion is to
combine features from various layers of the backbone network, enhancing the expressive-
ness of the output features and improving model performance. Traditional FPNs introduce
a top-down path to fuse multi-scale features.

In this paper, we utilize the Efficient RepGFPN proposed by Xianzhe Xu et al. [37].
This Efficient RepGFPN enhances the FPN concept for object detection by fusing multi-scale
features more efficiently, capturing both high-level semantics and low-level spatial details.
The main improvements of the Efficient RepGFPN include the following:

(1) Adopting different channel dimensions for feature maps at different scales; optimizing
performance within computational resource constraints.

(2) Reducing latency by eliminating the additional up-sampling operation in Queen-Fusion.
(3) Combining CSPNet with an Efficient Layer Aggregation Network (ELAN) and repa-

rameterization to improve feature fusion without significantly increasing computa-
tional requirements.

The architecture of the Efficient RepGFPN network is shown in Figure 6.
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2.5.5. Improved Loss Function

The CIoU loss function in the YOLOv8n model effectively captures geometric dif-
ferences in bounding boxes, thereby enhancing model positioning accuracy. However, it
exhibits slower convergence and higher loss values when applied to the cotton terminal
bud dataset, primarily due to the considerable variation in bud shapes. The CIoU loss
function is defined as shown in Equation (8):

IoU =

∣∣∣∣b ∩ bgt

b ∪ bgt

∣∣∣∣ (5)

where the actual bounding box and the anchor box are denoted as bgt and b.

ν =
4
π2

[
arctan(

ωgt

hgt )− arctan(
ω

h
)

]2

(6)

α =
ν

1 − IoU + ν
(7)

LCIoU = 1 − IoU +
ρ2(b, bgt)

c2 + αν (8)
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In Equations (6)–(8), the width and height of the actual bounding box are denoted as
ωgt and hgt, respectively, and those of the anchor box are denoted as ω and h; ν measures
the consistency of the aspect ratio; α denotes the equilibrium parameter; b denotes the
prediction frame; bgt denotes the labeling frame; c is the diagonal distance encompassing
both the predicted and true boxes; ρ denotes the Euclidean distance between the centroid
of the prediction frame and the labeling frame; and LCIoU denotes the CIoU loss function.
From Equation (6), it is evident that when the aspect ratios of the predicted and labeled
boxes are identical, ν equals 0. At this point, the effectiveness of the CIoU loss function is
affected, leading to varying sensitivity to objects of different scales, which is particularly
unfavorable for small target localization. However, due to the large number of small targets
in the cotton top bud image, it is easy to miss detections using this loss function.

To address the aforementioned issues, this paper incorporates the Inner IoU loss
function, as proposed by Hao Zhang et al. [38]. This method accelerates convergence by
utilizing an auxiliary bounding box without introducing any additional loss terms. By
distinguishing different regression samples and using various ratios of auxiliary bounding
boxes to calculate the loss, the process of border regression can be effectively accelerated.

As shown in Figure 7,
(

xgt
c , ygt

c

)
denotes the centroid of the actual bounding box and

Inner actual bounding box, and
(
xc, yc

)
denotes the centroid of the anchor box and Inner

anchor box. The variable ratio corresponds to scale factors, which usually range from 0.5
to 1.5.
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The Inner CIoU loss replaces the standard CIoU loss in the original loss function, and
is defined as follows:



Agriculture 2024, 14, 1651 10 of 17



bgt
l = xgt

c − ωgt ∗ ratio
2

, bgt
r = xgt

c +
ωgt ∗ ratio

2
bgt

t = ygt
c − hgt ∗ ratio

2
, bgt

b = ygt
c +

hgt ∗ ratio
2

bl = xc −
ω ∗ ratio

2
, br = xc +

ω ∗ ratio
2

bt = yc −
h ∗ ratio

2
, bb = yc +

h ∗ ratio
2

(9)

inter =
(

min
(

bgt
r , br

)
− max

(
bgt

l , bl

))
∗
(

min
(

bgt
b , bb

)
− max

(
bgt

t , bt

))
(10)

union =
(
ωgt ∗ hgt) ∗ (ratio)2 + (ω ∗ h) ∗ (ratio)2 − inter (11)

IoUinner =
inter

union
(12)

LInner−CIoU = LCIoU + IoU − IoUinner (13)

In Equations (9)–(13), bgt
l represents the transverse coordinate of the auxiliary bound-

ing box’s left boundary, while bgt
r denotes its right boundary. The scaling factor ratio con-

trols the size of the auxiliary bounding box. The longitudinal coordinates of the auxiliary
bounding box’s lower and upper boundaries are represented by bgt

t and bgt
b , respectively.

Similarly, bl and br represent the transverse coordinates of the left boundary of the auxiliary
anchor frame, while bt and bb correspond to the longitudinal coordinates of the lower and
upper boundaries of the auxiliary anchor frame. The term “inter” refers to the area where
the auxiliary anchor frame intersects the auxiliary bounding box, and the term “union”
describes the merged area of these two regions. The IoU of Inner IoU is denoted by IoUinner,
and LInner−CIoU represents the Inner CIoU loss function.

2.6. Performance Evaluation Indicators

Model performance is typically evaluated based on three key factors: accuracy, real-
time processing capability, and complexity. The commonly used accuracy metrics for target
detection models include precision (P), recall (R), F1 score (F1), average precision (AP), and
mean average precision (mAP), which are defined as follows:

P =
TP

TP + FP
(14)

R =
TP

TP + FN
(15)

F1 =
2 ∗ P ∗ R

P + R
(16)

AP =
∫ 1

0
P(R)dR (17)

mAP =
∑n

i=1 APi

n
(18)

TP represents the number of actual positive samples correctly predicted as positive,
while FP denotes the number of actual negative samples predicted as positive. FN indicates
the number of actual positive samples predicted as negative. P is the proportion of predicted
positive samples that are actually positive. R represents the proportion of actual positive
samples that are correctly predicted by the model. To balance the trade-off between
precision and recall, the F1 score was introduced. AP represents the average precision for a
specific class of targets across various recall points, corresponding to the area under the
Precision–Recall (PR) curve. mAP is the average of the AP values across n target classes. In
this study, n was set to 1. The average precision is expressed in terms of AP, specifically
AP50 when the IoU threshold is set to 0.5.
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Real-time performance was evaluated using Frames Per Second (FPS). Higher FPS
values indicate better real-time detection performance. These metrics were used to evaluate
the model’s performance in detecting cotton top buds. Complexity metrics include FLOPs
and model size, the latter referring to the size of the best model after training.

3. Results and Discussion
3.1. Experimental Platform

The hardware environment of the server platform was Intel(R) Xeon(R) Gold 6152
CPU (manufactured by Intel, Santa Clara, CA, USA) and NVIDIA GeForce RTX 3090 (24GB)
GPU (manufactured by Nvidia, Santa Clara, CA, USA). The software environment was
the Linux operating system, CUDA version 12.1, Python 3.10 programming language, and
Pytorch 2.3.1 deep learning framework.

3.2. Experimental Parameters

The model received images with dimensions of 640 × 640 pixels as inputs. To optimize
performance while considering the parameters, computational requirements, and memory
usage associated with networks of varying depths and widths, the hyperparameters were
set as follows: the epoch was 150, the batchsize was 32, the workers was 8, the initial
learning rate was 0.01, the weight decay coefficient was 0.0005, the momentum parameter
was 0.937, and the optimizer was Adam. To mitigate overfitting, we implemented an
early stopping mechanism that terminated training if AP50 failed to exhibit significant
improvement over 30 consecutive iterations.

3.3. Comparative Performance Analysis against Alternative Models

Based on the cotton top bud dataset, the Bud-YOLO model was compared with six tar-
get detection algorithms: YOLOv5s, YOLOv7-tiny, YOLOv8n, YOLOv9T, YOLOv10n, and
Faster R-CNN. All models underwent training and validation in a controlled experimental
environment. The detection results are presented in Table 1.

Table 1. Results of comparative experiments.

Model P R AP50 F1 FPS

YOLOv5s 0.931 0.925 0.969 0.927 73.1
YOLOv7-tiny 0.841 0.778 0.853 0.808 45.1

YOLOv8n 0.990 0.960 0.991 0.974 70.9
YOLOv9T 0.962 0.897 0.973 0.928 39.1
YOLOv10n 0.964 0.941 0.987 0.952 86.9

Faster R-CNN 0.967 0.615 0.967 0.751 50.0
Bud-YOLO 0.977 0.990 0.992 0.983 69.3

The comparison experiments indicate that the AP50 of the Bud-YOLO model was 2.3%,
13.9%, 0.1%, 1.9%, 0.5%, and 2.5% higher than those of YOLOv5s, YOLOv7-tiny, YOLOv8n,
YOLOv9T, YOLOv10n, and Faster R-CNN, respectively. The recall of the Bud-YOLO
model exceeded these models by 6.5%, 21.2%, 0.1%, 9.3%, 4.9%, and 37.5%, respectively.
Similarly, the F1 score of the Bud-YOLO model was 5.6%, 17.5%, 0.9%, 5.5%, 3.1%, and
23.2% higher than those of YOLOv5s, YOLOv7-tiny, YOLOv8n, YOLOv9T, YOLOv10n, and
Faster R-CNN. The precision of the Bud-YOLO model was 0.977, with a recall of 0.99, an
AP50 of 0.992, an F1 score of 0.983, and an FPS of 69.3. Although its FPS was lower than
that of YOLOv8n and YOLOv10n, the Bud-YOLO model outperformed them in all other
evaluation metrics, making it more suitable for detecting cotton top buds.

Figure 8 illustrates an example of the detection results obtained using the Bud-YOLO
model. It demonstrates that the model is capable of effectively detecting cotton top bud
under varying brightness levels, shading conditions, and shapes.
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3.4. Effect of Inner CIoU Loss on the Model

To evaluate the impact of the Inner CIoU loss function on cotton top bud detection
in Bud-YOLO, we conducted training experiments with the Bud-YOLO model using both
the CIoU and Inner CIoU loss functions. The optimal weight files were then obtained for
comparative analysis, and the results are shown in Table 2. Compared with the CIoU loss
function, the model using the Inner CIoU (ratio = 1.0) loss function showed improvements
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of 0.1%, 2.4%, 0.3%, and 1.3% in P, R, AP50, and F1 score, respectively. This combined
advantage of incorporating the Inner CIoU loss function in model training is significant.

Table 2. Comparison of detection results using different loss functions with the YOLOv8n model.

Type P R AP50 F1 FPS

CIoU 0.990 0.960 0.991 0.974 70.9
Inner CIoU (ratio = 0.5) 0.985 0.982 0.993 0.983 44.6
Inner CIoU (ratio = 1.0) 0.987 0.991 0.989 0.988 75.1
Inner CIoU (ratio = 1.5) 0.991 0.984 0.994 0.987 70.4

Additionally, this study verifies the convergence of the Bud-YOLO loss function.
Figure 9 illustrates the curves of the two loss functions across the number of iterations. The
four curves represent the edge loss when different scale factors for Inner CIoU and CIoU
are used, respectively.
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As observed in Figure 9, all four edge losses eventually converge as the number of
iterations increases. However, compared to CIoU, Inner CIoU (ratio = 1.0) has a smaller
loss value and exhibits greater stability. Therefore, selecting Inner CIoU (ratio = 1.0) as the
border loss function in this study could improve the model’s detection performance for
cotton top buds.

3.5. Ablation Experiments

The Bud-YOLO model proposed in this study is based on the YOLOv8n framework
and is divided into three parts for improvement. To verify the validity of each improvement
stage, ablation experiments were conducted using the experimental dataset.

As shown in Table 3, all performance metrics of the model changed following the
modifications. The “

√
” in the table indicates that the method was used in the improvement

based on the YOLOv8n model. The FLOPs and model size of the CSPPC-only model were
significantly reduced. Although the model size increased by 0.6 MB with the addition of
the Efficient RepGFPN compared to the CSPPC-only model, the values of P, R, and F1 score
increased by 0.2%, 1.5%, and 0.9%, respectively. Compared to YOLOv8n, the Bud-YOLO
model experienced a 1.3% decrease in P, a 2.25% decrease in FPS, a 3% increase in R, a 0.1%
increase in AP50, and a 0.9% increase in F1 score. Despite a reduction in inference speed,
the Bud-YOLO model maintained a high frame rate of 69.3 FPS.
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Table 3. Comparison results before and after adding different modules.

Model CSPPC Efficient
RepGFPN

Inner
CIoU P R AP50 F1 FPS FLOPs Model Size

/MB

YOLOv8n 0.990 0.960 0.991 0.974 70.9 8.1 6.0
YOLOv8n-C

√
0.979 0.964 0.986 0.971 72.4 6.8 5.1

YOLOv8n-CG
√ √

0.981 0.979 0.983 0.980 64.6 7.1 5.7
Bud-YOLO

√ √ √
0.977 0.990 0.992 0.983 69.3 7.1 5.7

3.6. Detection Performance in Complex Scenarios in Cotton Fields

Detection performance evaluation experiments in complex cotton field scenes were
conducted to assess the models’ effectiveness for target detection by considering three
factors: shooting angle, occlusion, and varying morphologies. Images taken from mid-June
to late June 2023 were randomly selected for comparison and analysis. The detection effec-
tiveness of the YOLOv8n and Bud-YOLO models on cotton top bud images under varying
conditions was compared. Figure 10 displays some detection results, where red boxes
indicate correct recognition and blue boxes indicate non-recognition. Compared to the
YOLOv8n model, the Bud-YOLO model can detect cotton top buds of various morpholo-
gies, including those with different viewing angles, occlusion conditions, and different
shapes. These results demonstrate the robust performance of the Bud-YOLO model.
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Figure 10. Detection results of 2023 cotton top bud image. (a) YOLOv8n detects cotton top bud
photographed from top view; (b) Bud-YOLO detects cotton top bud photographed from top view;
(c) YOLOv8n detects cotton top bud photographed from side view; (d) Bud-YOLO detects cotton top
bud photographed from side view; (e) YOLOv8n detects unoccluded cotton top bud; (f) Bud-YOLO
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detects unoccluded cotton top bud; (g) YOLOv8n detects occluded cotton top bud; (h) Bud-YOLO
detects occluded cotton top bud; (i) YOLOv8n detects early cotton top bud; (j) Bud-YOLO detects
early cotton top bud; (k) YOLOv8n detects late cotton top bud; (l) Bud-YOLO detects late cotton
top bud.

3.7. Discussion

Comparison, ablation, and detection experiments were conducted to verify the perfor-
mance of the improved Bud-YOLO model for detecting cotton top buds in natural scenes.
The comparison experiments demonstrated that the Bud-YOLO model achieved the highest
mAP value. Although the FPS of the Bud-YOLO model is lower than that of YOLOv8n and
YOLOv10n, the speed loss is acceptable, and its inference speed meets real-time require-
ments. The ablation experiments indicate that the CSPPC module improves the inference
speed of the model and reduces its size without significantly affecting the AP50 of the
algorithm. Additionally, the inclusion of the Efficient RepGFPN module enhances the recall
of the model without adding more parameters, mitigating missed detections of cotton top
buds with varying shapes and under occlusion conditions. The Inner CIoU loss function
enhances the P, R, AP50, and F1 score, and simultaneously accelerates the convergence of
the model, stabilizing the loss value at 0.15. The model accounts for leaf shading, different
angles, and various shapes of cotton top buds, exhibiting a high detection rate and strong
resistance to external environmental conditions. Therefore, the model is more robust and
effective in detecting cotton top buds under complex natural scenarios.

4. Conclusions

This study proposes a Bud-YOLO detection algorithm capable of accurately identifying
cotton top buds in real-time. Initially, a dataset of cotton top bud images in complex natural
scenes was constructed, labeled using LabelImg (version 1.8.1). A total of 800 labeled
images were selected, and through data expansion, a dataset containing 4000 images was
generated. A network architecture for the accurate real-time detection of cotton top buds
was proposed, utilizing the CSPPC lightweight convolution module to replace the C2f
module in the backbone network, thereby reducing redundant computations and memory
access with minimal impact on detection accuracy. Incorporating an Efficient RepGFPN in
the neck network maintains high accuracy in cotton top bud detection without significantly
increasing computational costs. Finally, the Inner CIoU loss function was introduced to
compute the regression loss, with the generation of auxiliary bounding boxes controlled by
a proportional factor ratio to compute the loss and accelerate convergence. Comparative
experimental results indicate that the Bud-YOLO model achieved a precision of 0.977, a
recall of 0.99, an AP50 of 0.992, an F1 score of 0.983, and an FPS of 69.3, meeting the real-time
detection requirements. The performance evaluation experiments demonstrate that the
Bud-YOLO model achieves a high detection rate in complex natural scenes, including
varying shooting angles, occlusion, and different morphologies.

In future work, we plan to extend the cotton thimble image dataset by incorporat-
ing images taken under various weather conditions (e.g., sunny, cloudy, and rainy) and
different lighting scenarios. This will enhance the model’s generalization across different
environmental conditions, improving the reliability of cotton toppers in field operations.
Although the Bud-YOLO model shows promising results, further optimization such as
model pruning should be explored to reduce the model size and complexity, aiming for
more efficient deployment in real-world applications.
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5. Aydın, İ.; Arslan, S. Mechanical properties of cotton shoots for topping. Ind. Crop. Prod. 2018, 112, 396–401. [CrossRef]
6. Wang, J.; Hu, B.; Jia, S.; Xue, X.; Li, Z. Optimization and Experiment of 3MDZ-18 Hydraulic Driven Cotton Topping Machine. J.

Agric. Mech. Res. 2023, 45, 170–174. [CrossRef]
7. Zhang, J.; Zheng, C.; Zhao, J.; Zhang, R.; Zhao, X.; Zhao, F. Design and Experiment of Auto-follow Row Device for Cotton

Topping Machine. Trans. Chin. Soc. Agric. Mach. 2021, 52, 93–101.
8. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28
June 2014; pp. 580–587. [CrossRef]

9. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

10. Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving Into High Quality Object Detection. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162. [CrossRef]

11. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer
Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 21–37. [CrossRef]

12. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [CrossRef]

13. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
[CrossRef]

14. Zhao, C.; Bai, C.; Yan, L.; Xiong, H.; Suthisut, D.; Pobsuk, P.; Wang, D. AC-YOLO: Multi-category and high-precision detection
model for stored grain pests based on integrated multiple attention mechanisms. Expert Syst. Appl. 2024, 255, 124659. [CrossRef]

15. Cai, Y.; Yao, Z.; Jiang, H.; Qin, W.; Xiao, J.; Huang, X.; Pan, J.; Feng, H. Rapid detection of fish with SVC symptoms based on
machine vision combined with a NAM-YOLO v7 hybrid model. Aquaculture 2024, 582, 740558. [CrossRef]

16. Xue, C.; Xia, Y.; Wu, M.; Chen, Z.; Cheng, F.; Yun, L. EL-YOLO: An efficient and lightweight low-altitude aerial objects detector
for onboard applications. Expert Syst. Appl. 2024, 256, 124848. [CrossRef]

17. Gao, J.; Zhang, J.; Zhang, F.; Gao, J. LACTA: A lightweight and accurate algorithm for cherry tomato detection in unstructured
environments. Expert Syst. Appl. 2024, 238, 122073. [CrossRef]

18. Gao, W.; Zong, C.; Wang, M.; Zhang, H.; Fang, Y. Intelligent identification of rice leaf disease based on YOLO V5-EFFICIENT.
Crop Prot. 2024, 183, 106758. [CrossRef]

19. Chen, X.; Liu, T.; Han, K.; Jin, X.; Wang, J.; Kong, X.; Yu, J. TSP-yolo-based deep learning method for monitoring cabbage seedling
emergence. Eur. J. Agron. 2024, 157, 127191. [CrossRef]

20. Tang, Z.; Lu, J.; Chen, Z.; Qi, F.; Zhang, L. Improved Pest-YOLO: Real-time pest detection based on efficient channel attention
mechanism and transformer encoder. Ecol. Inform. 2023, 78, 102340. [CrossRef]

21. Fu, L.; Majeed, Y.; Zhang, X.; Karkee, M.; Zhang, Q. Faster R-CNN-based apple detection in dense-foliage fruiting-wall trees
using RGB and depth features for robotic harvesting. Biosyst. Eng. 2020, 197, 245–256. [CrossRef]

https://doi.org/10.1016/j.indcrop.2021.114087
https://doi.org/10.1016/j.cropro.2011.05.020
https://doi.org/10.1016/j.fcr.2022.108509
https://doi.org/10.1016/j.indcrop.2017.12.036
https://doi.org/10.13427/j.cnki.njyi.2023.12.004
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/CVPR.2018.00644
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1016/j.eswa.2024.124659
https://doi.org/10.1016/j.aquaculture.2024.740558
https://doi.org/10.1016/j.eswa.2024.124848
https://doi.org/10.1016/j.eswa.2023.122073
https://doi.org/10.1016/j.cropro.2024.106758
https://doi.org/10.1016/j.eja.2024.127191
https://doi.org/10.1016/j.ecoinf.2023.102340
https://doi.org/10.1016/j.biosystemseng.2020.07.007


Agriculture 2024, 14, 1651 17 of 17

22. Lin, G.; Tang, Y.; Zou, X.; Li, J.; Xiong, J. In-field citrus detection and localisation based on RGB-D image analysis. Biosyst. Eng.
2019, 186, 34–44. [CrossRef]

23. Li, G.; Suo, R.; Zhao, G.; Gao, C.; Fu, L.; Shi, F.; Dhupia, J.; Li, R.; Cui, Y. Real-time detection of kiwifruit flower and bud
simultaneously in orchard using YOLOv4 for robotic pollination. Comput. Electron. Agric. 2022, 193, 106641. [CrossRef]

24. Wang, T.; Zhang, K.; Zhang, W.; Wang, R.; Wan, S.; Rao, Y.; Jiang, Z.; Gu, L. Tea picking point detection and location based on
Mask-RCNN. Inf. Process. Agric. 2023, 10, 267–275. [CrossRef]

25. Shuai, L.; Mu, J.; Jiang, X.; Chen, P.; Zhang, B.; Li, H.; Wang, Y.; Li, Z. An improved YOLOv5-based method for multi-species tea
shoot detection and picking point location in complex backgrounds. Biosyst. Eng. 2023, 231, 117–132. [CrossRef]

26. Bai, Y.; Yu, J.; Yang, S.; Ning, J. An improved YOLO algorithm for detecting flowers and fruits on strawberry seedlings. Biosyst.
Eng. 2024, 237, 1–12. [CrossRef]

27. Wu, Y.; Chen, J.; Wu, S.; Li, H.; He, L.; Zhao, R.; Wu, C. An improved YOLOv7 network using RGB-D multi-modal feature fusion
for tea shoots detection. Comput. Electron. Agric. 2024, 216, 108541. [CrossRef]

28. Yin, L.; Wu, J.; Liu, Q.; Wu, W. Improved YOLOv5s recognition of cotton top buds with fusion of attention and feature weighting.
In Proceedings of the International Conference on Algorithm, Imaging Processing, and Machine Vision (AIPMV 2023), Qingdao,
China, 15–17 September, 2023; Zhou, H., Yang, Q., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, DC,
USA, 2024; Volume 12969, p. 1296928. [CrossRef]

29. Li, J.; Zhi, X.; Wang, Y.; Cao, Q. Research on Intelligent recognition system of Cotton apical Bud based on Deep Learning. J. Phys.
Conf. Ser. 2021, 1820, 012134. [CrossRef]

30. Song, P.; Chen, K.; Zhu, L.; Yang, M.; Ji, C.; Xiao, A.; Jia, H.; Zhang, J.; Yang, W. An improved cascade R-CNN and RGB-D
camera-based method for dynamic cotton top bud recognition and localization in the field. Comput. Electron. Agric. 2022, 202,
107442. [CrossRef]

31. Wang, C.; He, S.; Wu, H.; Teng, G.; Zhao, C.; Li, J. Identification of Growing Points of Cotton Main Stem Based on Convolutional
Neural Network. IEEE Access 2020, 8, 208407–208417. [CrossRef]

32. Peng, X.; Zhou, J.; Xu, Y.; Xi, G. Cotton top bud recognition method based on YOLOv5-CPP in complex environment. Trans. Chin.
Soc. Agric. Eng. 2023, 39, 191–197.

33. Tzutalin. LabelImg. 2015. Available online: https://github.com/tzutalin/labelImg (accessed on 12 September 2023).
34. Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLO (Version 8.1.0). 2024. Available online: https://github.com/ultralytics/

ultralytics (accessed on 25 March 2024).
35. Liu, R.M.; Su, W.H. APHS-YOLO: A Lightweight Model for Real-Time Detection and Classification of Stropharia Rugoso-Annulata.

Foods 2024, 13, 1710. [CrossRef] [PubMed]
36. Chen, J.; Kao, S.H.; He, H.; Zhuo, W.; Wen, S.; Lee, C.H.; Chan, S.H.G. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural

Networks. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver,
BC, Canada, 17–24 June 2023; pp. 12021–12031. [CrossRef]

37. Xu, X.; Jiang, Y.; Chen, W.; Huang, Y.; Zhang, Y.; Sun, X. DAMO-YOLO: A Report on Real-Time Object Detection Design. arXiv
2023, arXiv:2211.15444.

38. Zhang, H.; Xu, C.; Zhang, S. Inner-IoU: More Effective Intersection over Union Loss with Auxiliary Bounding Box. arXiv 2023,
arXiv:2311.02877.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.biosystemseng.2019.06.019
https://doi.org/10.1016/j.compag.2021.106641
https://doi.org/10.1016/j.inpa.2021.12.004
https://doi.org/10.1016/j.biosystemseng.2023.06.007
https://doi.org/10.1016/j.biosystemseng.2023.11.008
https://doi.org/10.1016/j.compag.2023.108541
https://doi.org/10.1117/12.3014605
https://doi.org/10.1088/1742-6596/1820/1/012134
https://doi.org/10.1016/j.compag.2022.107442
https://doi.org/10.1109/ACCESS.2020.3038396
https://github.com/tzutalin/labelImg
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://doi.org/10.3390/foods13111710
https://www.ncbi.nlm.nih.gov/pubmed/38890938
https://doi.org/10.1109/CVPR52729.2023.01157

	Introduction 
	Materials and Methods 
	Dataset Sample Collection 
	Annotation Alteration of the Dataset 
	Dataset Augmentation 
	Dividing the Dataset 
	Bud-YOLO Model for the Detection of Cotton Top Buds 
	Selection of the YOLOv8 Model 
	Bud-YOLO Network Structure 
	CSPPC Module 
	Efficient RepGFPN Module 
	Improved Loss Function 

	Performance Evaluation Indicators 

	Results and Discussion 
	Experimental Platform 
	Experimental Parameters 
	Comparative Performance Analysis against Alternative Models 
	Effect of Inner CIoU Loss on the Model 
	Ablation Experiments 
	Detection Performance in Complex Scenarios in Cotton Fields 
	Discussion 

	Conclusions 
	References

