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Abstract: Fire, a prevalent land management tool in rotational shifting cultivation (RSC), has long been
debated for its immediate disruption of surface soil, vegetation, and microbial communities. While
low-intensity and short-duration slash-and-burn techniques are considered beneficial for overall
soil function, the dual nature of fire’s impact warrants a comprehensive exploration. This review
examines both the beneficial and detrimental effects of fire on soil properties within the context of RSC.
We highlight that research on soil microbial composition, carbon, and nitrogen dynamics following
fire events in RSC is gaining momentum. After fires, soil typically shows decreases in porosity, clay
content, aggregation, and cation exchange capacity, while sand content, pH, available phosphorus,
and organic nitrogen tend to increase. There remains ongoing debate regarding the effects on bulk
density, silt content, electrical conductivity, organic carbon, total nitrogen, and exchangeable ions (K+,
Ca2+, Mg2+). Certain bacterial diversity often increases, while fungal communities tend to decline
during post-fire recovery, influenced by the soil chemical properties. Soil erosion is a major concern
because fire-altered soil structures heighten erosion risks, underscoring the need for sustainable
post-fire soil management strategies. Future research directions are proposed, including the use of
advanced technologies like remote sensing, UAVs, and soil sensors to monitor fire impacts, as well as
socio-economic studies to balance traditional practices with modern sustainability goals. This review
aims to inform sustainable land management practices that balance agricultural productivity with
ecological health in RSC systems.

Keywords: fire; slash-and-burn; prescribed burning; rotational shifting cultivation; soil property;
soil microbial

1. Introduction

Fire is a significant ecological disturbance that can profoundly affect terrestrial ecosys-
tems. It plays a crucial role in shaping vegetation patterns [1,2], influencing nutrient
cycling [3–5], and altering soil physicochemical properties [6–8]. In many regions, fire is
also an integral component of traditional agricultural practices, such as rotational shifting
cultivation (RSC) [9]. Fire plays a multifaceted role beyond nutrient release; it aids in
controlling pests and diseases and shapes the landscape by influencing plant succession
and diversity [10]. Over time, repeated applications of ash contribute to preserving or en-
hancing soil nutrient levels and organic matter content in agricultural systems that employ
crop rotation [11,12]. When these substances are combined with topsoil layers through the
process of rainfall, they become easily accessible for uptake by crops [13]. Additionally,
burning makes the process of clearing land faster and easier for farmers compared to using
their own hands. After numerous cycles of cultivation and burning, the soil’s fertility
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declines, at which time farmers abandon that plot and shift to a new place, resuming
the cycle.

RSC also referred to as slash-and-burn or swidden agriculture, is a traditional farming
technique that has been practiced by indigenous and rural communities for
millennia [14–17]. Historically, shifting agriculture has been prevalent in various trop-
ical regions of South and Southeast Asia [18–20], as well as parts of Africa and South
America [16,21–23]. This traditional practice is crucial for many communities, as it ensures
food security, preserves cultural heritage, and supports biodiversity. However, population
growth in many regions has altered fallow periods and led to the overexploitation of agricul-
tural resources [24,25]. While shifting cultivation offers significant agricultural benefits, it
also sparks debate over its ecological impact, particularly concerning soil sustainability and
long-term environmental health [26–30]. RSC involves cyclically clearing land—primarily
using fire—cultivating crops, and then allowing the land to lie fallow to recover. While fire
can enhance soil fertility in the short term by releasing nutrients from burned vegetation,
its repeated use can lead to long-term soil degradation, including the loss of organic matter,
deterioration of soil structure, and disruption of essential microbial communities.

In the context of RSC, the use of fire has evolved significantly due to technological
advancements and policy changes. Over time, technological progress has introduced new
methods that reduce dependence on fire, such as the application of fertilizers, mulching,
and incorporation [31,32], minimizing the need for extensive burning. Furthermore, pol-
icy changes and population pressures have increasingly influenced fire usage in RSC.
Many countries have implemented regulations to control or limit slash-and-burn as well
as prescribed burning, motivated by concerns over deforestation, soil degradation, and
environmental pollution. However, fire still serves as a crucial tool for clearing vegetation
and preparing the land for planting, a traditional agricultural method employed by some
indigenous and rural communities [33–35]. In Thailand, for example, the government
prohibited slash-and-burn in the 1960s [36], but enforcement of the ban was sporadic until
the 1980s. Currently, open burning is banned for short periods as part of hazardous air
pollution mitigation measures [37,38], particularly in Northern Thailand. However, burn-
ing in RSC fields still occurs in some areas [39–43]. These fields are managed in fallow
cycles, where one plot is temporarily cultivated and then abandoned, while the cultivator
moves on to another plot. The village remains a permanent settlement without relocating
to new sites.

To achieve this, the impact of fire on soil physicochemical properties and soil microor-
ganisms was discussed. For this review, existing peer-reviewed articles were searched
using electronic databases such as ISI Web of Science, Scopus, and Google Scholar. Articles
published up to May 2024 were collected, focusing on the impact of fire on soil properties
and soil microorganisms. Keywords used for the search included ‘fire’, ‘burning’, ‘swidden
cultivation’, ‘slash-and-burn’, ‘shifting cultivation’, ‘rotational shifting cultivation’, ‘pre-
scribed fire’, ‘soil properties’, ‘microorganisms’, and ‘post-fire management’. We selected
only articles written in English and included those reporting both field and laboratory
studies. This review delineates the role of fire in RSC, its effects on soil properties, soil
erosion, and soil microorganisms, as well as soil recovery post-fire and mitigation and
management strategies. The aim of this review is to explore and discuss the dual nature
of fire’s impact on soil within the context of RSC. By examining both the beneficial and
detrimental effects, the review seeks to provide a comprehensive understanding of how fire
influences soil properties and to highlight sustainable practices that can mitigate negative
outcomes while leveraging positive effects.

Recent international research on the impact of fire on soil, particularly in the context
of RSC system, distribution, and ecological effects, has significantly increased over the
past two decades, as shown in Figure 1. The overall growth trend in publications reflects
the evolving patterns in research findings over time. A total of 75 publications were
analyzed, and Figure 1 illustrates the dynamics of publication numbers over the past
20 years. Between 1998 and 2005, the annual number of published papers remained below
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10 papers. However, there was a notable increase from 2006 to 2010, with publications
rising from 5 to 13 papers. From 2010 to 2024, the growth curve shows an exponential trend,
with the number of publications increasing from 13 to 37 papers. This time series analysis
provides insights into research trends and highlights specific phases of research, particularly
in areas such as soil properties, microbial composition, soil carbon, and soil nitrogen.
Notably, from 2006 to 2020, the majority of publications focused on soil properties. Since
2016, there has been a significant rise in research topics related to microbial composition,
soil carbon, and soil nitrogen, indicating an emerging trend in these areas (Figure 2).
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In our review, we identified a total of 422 keywords in the literature on this research
field from 1998 to 2024. Figure 3 visualizes the 30 keywords with the highest co-occurrence
and frequency. The most frequent keywords were ‘microbial composition’ (11 occurrences),
‘soil nutrient’ (10), ‘wildfire’ (9), ‘carbon’ (9), ‘prescribed burning’ (9), ‘fire ecology’ (8),
‘soil properties’ (7), ‘nitrogen’ (6), ‘soil chemical’ (5), and ‘soil physical’ (5). This analysis
highlights that current research priorities and emerging topics are centered around soil
microorganisms, feedback processes post-fire, and soil properties within the context of
agricultural management ecosystems.
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The cycle of RSC begins with the selection of a suitable site in a previously fallow
area. Initially, vegetation cover is cleared using tools such as axes, machetes, and chainsaws
(Figure 4a). After clearing, the residues are left to dry for approximately one week to
two months, followed by burning to eliminate the vegetation residues, weeds, and plant
pathogens (Figure 4b). This burning process aims to release soil nutrients in the form
of ash (Figure 4c,d), temporarily enhancing soil fertility and supporting crop growth.
Subsequently, crops such as upland rice, tubers, vegetables, and flowers are planted and
tended until harvest time. After the harvest, the land is left fallow to regenerate its fertility,
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with this period varying from a few months to several years. The cycle then repeats with
the selection of a new site for cultivation.
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2. Effects of Fire on Soil Properties

The impact of fire on soil texture, structure, and porosity can vary depending on the
severity of the fire, resulting in both positive and negative effects [44]. Fire can profoundly
alter soil structure by combusting organic matter [45] and directly affecting its physical,
chemical, and biological characteristics through heating and combustion [5,46–48]. Indirect
effects include modifications to biological, pedological, and hydrological processes [5,49,50].

In a fire, organic materials such as wood, soil, and leaves rapidly oxidize, releasing
various gasses into the atmosphere, including carbon dioxide and water vapor. This
process accelerates the conversion of carbon contained in organic matter into atmospheric
carbon dioxide, surpassing the rate at which natural decomposition processes [51]. Here,
we illustrate the physical changes in topsoil (0–30 cm) over various periods, from before
burning to after burning, in an RSC field where ash covers the surface soil. The residual
ash, visible as a black substrate, remained on the surface soil 6 months and 12 months post-
burning (Figure 5). Intense fires can completely destroy the organic layer on the surface,
while low-intensity fires may promote decomposition by releasing nutrients. However,
large and intense fires frequently have the opposite effect [52]. Although fires can enhance
nutrient availability for decomposition by releasing them from organic matter, uncontrolled
and repeated burning can lead to nutrient loss through volatilization or leaching [53].
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Nutrient-poor conditions following a fire can reduce microbial activity and nutrient cycling
within the ecosystem, ultimately impacting soil health and productivity. These dynamics
highlight the complex interplay between fire intensity, nutrient cycling, and microbial
activity in post-fire soil recovery.
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Alcañiz et al. [54] reviewed the effects of prescribed fires on soil properties, highlight-
ing that these fires have a less severe impact compared to wildfires due to lower soil heating
and fire intensity. Intense heat from fires can also lead to the breakup of soil aggregates,
which are groupings of soil particles contributing to its crumbly texture [49]. The com-
bustion process leads to the collapse of organic-mineral aggregates and the destruction of
organic matter, reducing both soil bulk density and porosity [55–59]. Despite this, bulk
density may also increase due to soil compaction and the loss of organic matter, while
porosity typically decreases as soil pores collapse [60]. Fire also affects soil structural
stability, particularly altering the distribution and stability of soil aggregates ≥ 4 mm,
described by Thomaz [61] as the formation of fire-hardened aggregates through rapid
physical-chemical processes like mineral fusion and recrystallization. Moreover, prescribed
burning conducted on moist soil significantly reduces heat penetration compared to dry soil
conditions [62,63]. However, intermittent low-intensity fires can promote soil aggregation
under specific conditions. The residual ash generated from combustion may contain oxides,
such as aluminum and silica, which act as binding agents among mineral particles. This
process facilitates the formation of soil aggregates, enhancing the cohesion and clumping
of soil particles over time [64].

Post-fire, organic matter, and volatile substances burning alter soil composition, often
increasing sand or silt content [65]. In general, fire tends to reduce the organic content
of the soil and disturb its structure, temporarily giving the soil a sandier and less ag-
gregated appearance. However, in specific ecosystems, long-term aggregation can be
promoted by periodic low-intensity fires. The texture of the soil can be influenced by factors
such as the frequency of fires, their intensity, and the characteristics of the surrounding
environment [52]. Studies on slash-and-burn practices reveal varying impacts on soil
texture: an increase in sand content due to aggregate breakdown and particle loss during
combustion [33,55,56,66], fluctuating silt content influenced by fire severity and erosion
processes [33,52,57,67], and a decrease in clay content attributable to physical and chemical
transformations induced by fire [45,68].

Both RSC and prescribed burning significantly alter soil chemical properties, notably
nutrient availability, pH levels, electric conductivity (EC), and cation exchange capacity
(CEC). Fire can significantly affect soil EC due to the release of soluble ions from ash
and burned organic matter. The combustion of organic materials releases nutrients such
as nitrogen, phosphorus, potassium, calcium, and magnesium into the soil, temporarily
increasing their availability [42,45,68–70]. While low-intensity and short-duration fires may
not significantly alter some soil properties, they do result in notable increases in pH and
EC [41]. The ash produced from burning is rich in alkaline elements [71], which raises soil
pH and subsequently increases CEC [72]. The rise in pH is one of the most beneficial effects
of prescribed burning, as it enhances the availability of essential nutrients, particularly in
acidic soils [69]. The degree of pH alteration is contingent upon the severity of the fire,
as more intense burns result in higher amounts of ash, hence leading to more substantial
pH rises. The most significant elevations generally manifest in the upper layers of soil,
where there is a buildup of ash [45]. The EC often rises in the medium to long term as
soluble salts from ash accumulate, although there may be a short-term decrease as these
salts leach away [73]. The formation of biochar is also observed in cases of extremely high
temperatures, leading to the development of a more enduring alkaline nature compared to
ash alone [44]. Moreover, the high-porosity physical structure of biochar can increase the
soil’s water content [74].

Long-term impacts arise from the interactions between ash and carbonates, which fa-
cilitate the retention of pH and induce changes in the soil microbial community responsible
for organic matter breakdown [75–77]. This enhanced cation exchange capacity improves
the soil’s ability to retain essential nutrients, making them more accessible to plants.

Fires can have dual effects on soil nutrients: initially causing losses through volatiliza-
tion and combustion of organic matter or releasing nutrients like organic nitrogen from
burned plant material, which becomes available to soil microorganisms and plants. The
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breakdown of organic matter post-fire can release organic nitrogen [58] and increase the
availability of nitrogen, phosphorus, and potassium [12,33,54,55,58,67,78]. Generally, fire
temperatures vary from moderate to very high at the soil surface but have a short residence
time and rapidly decrease with soil depth [79]. Despite high temperatures, there is no
depletion of carbon content in the topsoil [58]. While combustion may lead to the loss of
some organic carbon, the charred residues left in the soil can contribute to long-term soil
carbon pools [8,80,81]. Organic and total carbon levels initially increase with the addition
of charred residues [41,55,80]. However, the volatilization of nutrients, which varies across
regions, can result in the depletion of labile soil carbon, nitrogen, and potassium pools
over time due to weathering processes [4,57,82]. Nitrogen dynamics are also significantly
affected by fire. Organic nitrogen often experiences a temporary increase following events
like fires [55,70,80], but total nitrogen tends to decline over time, largely due to processes
such as volatilization and soil erosion. While available nitrogen may show short-term
increases as fire releases nitrogen from organic matter, it typically declines in the long
term [55,66,82–84]. Phosphorus and potassium levels usually increase after a fire as these
nutrients are released from organic matter and minerals [12,33,56,67,78,84], although their
availability can fluctuate over time [55,85]. This loss of key nutrients in specific areas can
lead to decreased nutrient turnover in the long term, as observed in studies such as that
by Wang et al. [35]. Table 1 provides an overview of the effects of fire on changes in soil
physicochemical properties, as observed in studies of both slash-and-burn and prescribed
burning systems.

Table 1. Effect of fire on soil physicochemical properties.

Soil Properties Changes Post-Fire
Period References

Bulk density increase 5–15 years [56,60]
decrease 5–15 years [59,66]

Porosity decrease 0–7 years [55,59]

%Sand increase 0–2 years [33,66]

%Silt
increase 10–12 years [57]
decrease 5–15 years [66]

%Clay decrease 0–15 years [33,66]

Aggregation decrease 0–1 year [67,86]

pH increase 0–15 years [12,33,55,56,60,66,67,69,70,75,76,80,82,84–87]

EC
increase 5–15 years [33,55,56,66,67,69,80,84]
decrease 0–3 years [86]

CEC decrease 12 h after fire [67,88]

Organic carbon increase 0–1 year [47,55,88]
decrease 0–15 years [33,56,89]

Total C
increase 12 h after fire [80,87]
decrease 0–15 years [12,66,69,75,82,86,90,91]

Organic nitrogen increase 0–13 years [83]

Total N
increase 0–1 year [55,70,80]
decrease 1–7 years [55,66,75,82–84,86]

Available N
increase 0–7 years [55,80]
decrease 0–15 years [33,56,57,82,89]

Available P increase 0–15 years [12,33,56,67,76,78,84,85,88,90]

Available K
increase 0–20 years [56]
decrease 0–7 years [55,85,92]

Exchangeable ion
(K+, Ca2+, Mg2+)

increase 12 h after fire [66,67,69,80]
decrease 0–3 years [70,85]
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Fire significantly influences microbial activities (Table 2) that play crucial roles in soil
processes, including the decomposition of organic matter, nutrient mineralization, and
enzyme production. The impacts of fire on microbial activity are complex and varied,
with extreme temperatures and changes in nutrient availability substantially affecting
microbial dynamics [93]. High temperatures from fire can directly damage microbial cells,
leading to a significant decrease in overall microbial biomass immediately following the
fire [94]. However, the extent of the impact varies depending on fire severity and subse-
quent environmental conditions [95,96]. Low-to-moderate severity fires often stimulate
diverse microbial activities involved in decomposition, enzyme production, and nutrient
mineralization. Small, low-intensity fires can stimulate microbial activity and facilitate
nutrient mineralization by releasing organic nutrients such as nitrogen, phosphorus, and
sulfur into mineralized forms that are more available for microbial and plant consump-
tion [97,98]. However, in surface soils, microorganisms are often killed and organic matter
is consumed by combustion during intense fire events. Following such events, nutrient
mineralization rates slow down, and microbial activity is reduced [99]. Low-level fires may
improve microbial enzyme production by making enzymes bound to soil particles easier
to absorb. The heat from low-intensity fires causes structural alterations and increased
mobility of enzymes such as cellulases, proteases, and chitinases, allowing them to interact
with substrates and catalyze reactions vital for nutrient cycling [100]. Nevertheless, these
benefits are limited as the intensity of the fire increases. Temperatures over 200 ◦C can erad-
icate enzyme activity within surface soils. Conversely, high-severity fires can temporarily
inhibit several microbial processes until recovery [97]. Extreme burns not only eliminate
the existing enzymes but also negatively impact the quantity, variety, and activity of soil
microbial communities [101].

Fire also affects soil fungi and nitrogen-fixing bacteria. The intensity and duration of
flames, along with the fire regime—frequency and return interval—determine the extent of
this impact [102]. Arunrat et al. [103] found that bacteria exhibited greater sensitivity to fire
compared to fungi. Bacterial richness and diversity increased significantly and recovered
more rapidly than fungi one month after burning in RSC fields in Northern Thailand.
Some fungi, such as pioneer fungi (pyrophilous fungi), are fire-adapted and can survive
post-fire by colonizing and breaking down charred organic matter [104]. Mycorrhizal fungi,
which form symbiotic relationships with plant roots, are also affected by fire, altering
their diversity and abundance. Actinobacteria and Proteobacteria often become more
widespread after a fire, while other bacterial species may decline due to competition or
sensitivity to post-fire conditions [105]. High temperatures from fire can damage or reduce
the population of nitrogen-fixing bacteria, which are vital for nitrogen cycling within
ecosystems [106]. However, certain nitrogen-fixing bacteria adapted to fire conditions, such
as those associated with fire-adapted plants or residing in fire-resistant structures, can
persist or even increase in number following a fire event, including species like Clostridium
and Paenibacillus [107]. These changes influence plant establishment and growth during
post-fire recovery, ultimately altering the composition and dynamics of soil microbial
communities [104].

Table 2. Effect of fire on soil bacteria and fungi.

Microbial Parameter Post-Fire
Recovery Relate Factors References

Bacterial diversity and richness increase higher C source [88]
Actinobacteria increase higher N source [108]
Acidobacteria increase higher soil pH [75,77]
Proteobacteria increase higher P source [75–77]

Firmicutes increase higher soil pH [76]
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Table 2. Cont.

Microbial Parameter Post-Fire
Recovery Relate Factors References

Fungal community composition decrease lower C source [109]
Arbuscular Mycorrhizal Fungi

(AMF) decrease Lower MBC [110,111]

Ectomycorrhizal Fungi decrease lower C and N source [91,109]
Cellulolytic Fungi decrease lower C source [112]

Enzyme activities

Urease decrease denatured/lower N
source [55,86,113]

Phosphatase decrease lower P source [55,89,113,114]
β-glucosidase decrease denatured, lower MBC [86,89,90,113,114]

Microbial C utilization decrease Lower labile C [86,110,115]

Microbial Biomass Carbon (MBC) increase higher DOC [47,89,110]
decrease denatured/lower DOC [75,86,87]

DOC refers to soil dissolved organic carbon

3. Impacts of Fire on Soil Erosion

Fire disrupts soil structure by breaking down soil aggregates, resulting in a looser and
more granular soil texture prone to erosion. This is compounded by the formation of water-
repellent soil layers [7,116], which further exacerbates erosion by reducing water infiltration
and increasing surface runoff [117]. Are et al. [118] documented significant reductions in
structural stability, saturated hydraulic conductivity, sorptivity, and infiltration rate follow-
ing slash-and-burn practices. In prescribed burning, fires influence soil natural density, bulk
density, porosity, water repellency, and permeability, predominantly in the topsoil within a
5 cm depth [119]. Immediately following a fire, the soil’s susceptibility to erosion increases
dramatically due to the loss of vegetation and changes in soil properties [6]. Heating from
fires can induce significant changes in water repellency and structural stability, influenced
by fire intensity and initial soil characteristics [46,52,67,120,121]. Moreover, fire can increase
the soil’s susceptibility to wind erosion, which is associated with soil hydrophobicity. This
is due to water-repellent compounds released by burning vegetation [122,123]. Over the
long term, fire-induced changes in soil properties can have lasting effects on soil stability
and landscape morphology [54,69,124]. The degree of this effect is influenced by various
factors such as soil texture, slope grade, and rainfall intensity, with particles like clays
and ashes being the most susceptible to loss. The absence of proper gaps for regeneration
between repeated burns can accelerate erosion by inhibiting the complete restoration of
root systems and ground cover, which are essential for absorbing and dispersing runoff
energy [125]. Repeated fires can lead to persistent changes in soil structure and composition,
making the soil more prone to erosion even years after the initial fire event. The loss of
topsoil and nutrients can hinder vegetation regrowth, further perpetuating the cycle of
erosion [116,126].

In agricultural areas with sloping topography, the absence of proper management
practices can lead to uncontrollable runoff, causing erosion and the transport of both
particulate and dissolved nutrients downslope. Arunrat et al. [33] reported that average
soil surface loss ranged from 1.6 to 3.1 cm, with the highest loss observed during the rainy
season on the upper slope in RSC in Northern Thailand. The implementation of RSC
practices reduces fallow periods, limiting the time available for vegetation regeneration
and the restoration of soil organic carbon levels before subsequent rotations. Consequently,
erosion gradually reduces soil fertility by causing oxidation and the subsequent loss of
topsoil over time within these dynamic smallholder systems [9].
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4. Post-Fire Recovery, Successional Changes after Fire

Post-fire recovery and successional changes following agricultural burning are critical
for understanding the resilience and long-term health of affected ecosystems. The soil
recovery process after a fire is complex and varies based on several factors, including
soil characteristics, fire intensity, microbial communities, and prevailing environmental
conditions post-fire [105,127]. Creech et al. [128] found that after a fire with RSC, soil prop-
erties may take at least 6 years to return to pre-burn conditions, with changes in nutrient
levels and soil pH persisting post-burn. Aboim et al. [129] observed that maintaining
fallow plots for periods longer than 5 years can conserve soil quality in RSC in the Atlantic
forest region of Rio de Janeiro. In highly vulnerable ecosystems, such as pine stands, the
most significant changes in species composition and the lowest rates of post-fire plant
recovery were observed [130,131]. However, in revegetated woodland communities in
southeastern Australia, post-fire recovery has shown promising results. Pickup et al. [132]
found high survival rates of revegetation plantings and substantial recovery of soil function
to pre-fire levels within 5 years. Kutiel and Shaviv [133] observed that both bulk density
and aggregate stability experienced long-lasting impairments exceeding 15 years due to
the slow replenishment of organic matter. Similarly, Murdiyarso et al. [134] documented
persistent issues with bulk density and compaction in Indonesian soils over a duration
of 10–15 years, attributing these problems to the extended loss of organic matter caused
by repeated fires in RSC areas. Piché and Kelting [135] observed that surface soils recover
physical properties such as lower bulk density and higher macroporosity within 5–10 years.
However, subsoils displayed a legacy effect of agricultural compaction even 55–60 years
later. Arunrat et al. [43] reported that the total nitrogen stocks in soil under RSC in Northern
Thailand significantly decreased after burning and had not returned to pre-burning levels
even after 2 years.

Prescribed burning has minimal short-term effects on soil microbial community com-
position, likely due to limited soil heating and rapid post-fire vegetative recovery. Post-fire
impacts on soil properties can induce short-term microbial responses and shift soil nutri-
ent limitations [136–139]. Soil microbial activity plays a crucial role in nutrient recovery,
highlighting its importance in post-fire ecosystem restoration. Studies have revealed di-
verse temporal recovery patterns in soil microbial communities following burns associated
with RSC.

Leal et al. [51] observed that microbial biomass and activity in Amazon soils decreased
for 10–15 years post-fire. Similarly, Kutiel and Shaviv [133] found microbial recovery in
Israeli shifting plots extended beyond 15 years. In Thailand, Arunrat et al. [41] reported
significant changes in certain bacterial phyla, specifically Proteobacteria and Acidobacteria,
with soil bacterial communities beginning to recover during the rainy season despite
declining nutrient availability. Alpha diversity decreased immediately after the fire but
increased from the early rainy season until summer, with bacterial richness and community
diversity returning to pre-fire levels within a year.

Some species, such as mycorrhizal fungi, exhibit resistance to surface fires and con-
tribute to recovery [140]. Though severe burns can have long-lasting impacts, persisting for
10 years or more, Zhu et al. [141] found that burning led to relatively high bacterial diversity
but low fungal diversity, while mowing increased the abundance of Nitrospirae bacteria.
These findings underscore the complex and varied responses of soil microbial communities
to fire, emphasizing the need for long-term monitoring and tailored management practices
in different ecosystems.

Vegetation and plant communities play a crucial role in the soil recovery process after
fire, significantly influencing soil structure, nutrient cycling, and microbial activity. Post-fire
vegetation regrowth helps stabilize the soil, reducing erosion and promoting the retention
of nutrients [142]. For instance, Qiu et al. [143] found that vegetation restoration, including
the planting of trees and grasses, improved soil hydraulic properties and increased soil
infiltration capacity on the Loess Plateau in China. Additionally, the presence of plant
roots can enhance soil microbial activity by providing organic matter and root exudates,
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which serve as energy sources for soil microbes. Wang et al. [144] observed that coarse
root biomass and soil organic matter were strong predictors of soil infiltration capacity,
showing a significant positive correlation with infiltration rates after a severe forest fire in
Daxing’anling, Northeast China. Different plant species contribute varying amounts and
types of organic matter to the soil, influencing microbial community structure and function.
Randriamalala et al. [145] studied the slow recovery of endangered xerophytic thicket
vegetation after fire in Madagascar, highlighting the significant impact on soil as a driver of
plant biodiversity and the key role of shrub species growth in influencing diversity and
floristic composition along secondary succession stages. In RSC, the vegetation cover is
primarily designed by the farmer. Therefore, the successional process of biodiversity in
these areas is influenced by cropping practices and land management, as exemplified in
Northern Thailand (Figures 6 and 7). Overall, the complex and prolonged nature of soil
biological recovery after fire highlights the need for adequate fallow periods and targeted
management strategies to facilitate the complete restoration of soil biota and maintain
ecosystem functionality.
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5. Implications for Sustainability: Mitigation and Management Strategies

Effective mitigation and management strategies are crucial to minimizing the negative
impacts on soil health, biodiversity, and carbon emissions while promoting sustainable
agricultural practices. The practice of burning in RSC presents significant challenges and
opportunities for sustainability. This method involves clearing land by systematically
cutting down vegetation, followed by the controlled use of fire. Implementing careful burn
management strategies, such as regulated application and maintenance of buffer zones,
can help mitigate the risks of erosion caused by fires. The loss of vegetation that protects
soils from fire creates at least a short-term window of increased erosion risk, which can
alter long-term soil quality and productivity until cover is restored [146]. Arunrat et al. [43]
recommended three approaches for post-fire management in RSC: (1) leaving weeds and
grasses on the soil surface during vegetation cutting, (2) conducting burns in late winter or
early summer to reduce the complete combustion, and (3) constructing contour-felled log
erosion barriers using the trunks left after the fire to trap sediment and slow surface runoff.

Controlled burns in RSC fields are intentional and planned fires set by farmers as
part of their agricultural practices. Land zoning and establishing protected areas are
crucial for conserving valuable ecosystems and mitigating fire risks. Allocating distinct
zones for agriculture, forestry, and conservation helps prevent the expansion of RSC into
ecologically vulnerable areas. Protected areas act as buffer zones, mitigating fire spread and
safeguarding biodiversity. This methodology necessitates a thorough understanding of the
appropriate location, limited area, and vegetation cover to prepare the land for cultivation.
Additionally, conducting controlled burns in a sustainable manner requires taking into
account weather conditions and implementing safety procedures [147,148]. While burning
practices in RSC pose significant environmental risks, they also offer potential benefits if
managed with sustainable strategies [149,150]. Key measures include careful planning of
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burn locations, maintaining buffer zones, monitoring weather conditions, and following
safety protocols.

Rapid recovery, genetic adaptation, nutrient cycling, and organic matter decomposi-
tion are essential for restoring and functioning fire-affected ecosystems [151]. Some soil
microorganisms can quickly recolonize burned areas from less impacted or unburned
nearby regions [103,152]. Dispersal mechanisms like wind, water, or animal vectors aid in
moving microbes to fire-affected areas. This rapid rehabilitation preserves vital ecosystem
functions, facilitating plant regeneration. In post-fire pasture, soil organic matter is primar-
ily contributed by Brachiaria. At depths of 40–50 cm, alkyl and hydroaromatic compounds
accumulate in the pasture post-fire, while unspecific aromatic compounds (UACs) accu-
mulate in the pasture after burning. UACs and polycyclic aromatic hydrocarbons (PAHs)
are abundant in RSC practices, likely air-transported from the burn sites [48]. Over time,
soil microorganisms can genetically adapt to fire disturbances. Through natural selection,
some microorganisms develop traits that confer resistance or tolerance to fire, such as
heat resistance or the ability to metabolize fire-altered compounds. These genetic adapta-
tions enhance their survival and recovery in fire-affected soils, contributing to ecosystem
resilience [153].

Improperly managed RSC areas can lead to significant deforestation and biodiversity
loss. However, when executed with sustainable principles, these practices can enhance
soil fertility and biodiversity conservation. Conservation agriculture techniques, such
as no-tillage, cover cropping and mulching, and soil erosion protection, can reduce the
need for chemical substances. No-tillage reduces soil disturbance and improves moisture
retention, while cover cropping enhances soil fertility, decreases weed spread, and increases
organic matter content, promoting sustainable land management [154]. Extending the
fallow periods between agricultural cycles allows for the restoration and recovery of soil.
Longer fallow periods promote vegetation regeneration, replenishing organic matter and
nutrient levels, and enhancing microbial activity [150,155–157].

Alternative land management strategies can effectively minimize the adverse effects
of fire in these systems. A pivotal strategy involves transitioning from traditional practices
to agroforestry systems, integrating tree maintenance with crop production. Agroforestry,
integrating trees with crops, not only provides shade and mitigates soil erosion but also
contributes to biodiversity conservation and carbon sequestration, aligning with climate
action goals. Chowdhury et al. [158] demonstrated that agroforestry holds greater potential
for soil restoration after RSC compared to reforestation, showing significantly higher
concentrations of soil organic matter, available phosphorus, and exchangeable potassium
in agroforestry plots. Moreover, agroforestry extends the rotation period, thereby reducing
the frequency of land clearing and burning, and enhances carbon sequestration [149,159].

In conjunction with agroforestry, intercropping and crop rotation are effective agri-
cultural practices that contribute to soil conservation, nutrient cycling, and overall soil
health. These techniques have been extensively studied, revealing numerous ecological
benefits. Intercropping, the practice of growing multiple crop species in the same field,
offers significant advantages. It enhances soil carbon and nitrogen content, leading to in-
creased soil organic carbon and nitrogen levels compared to sole crops, thereby promoting
soil conservation through enhanced belowground productivity and root litter input [160]
Additionally, intercropping systems have been shown to improve soil fertility and microbial
activity essential for sustainable agriculture [161,162].

Crop rotation, which involves changing the types of crops grown in an area each
season, disrupts pest and disease cycles and improves soil quality. This practice helps
avoid the buildup of pathogens and pests while enhancing soil structure and fertility by
alternating deep-rooted and shallow-rooted plants [163]. Furthermore, crop rotations with
legumes, such as alfalfa and clover, significantly enhance soil organic carbon sequestration
and soil physicochemical properties, contributing to long-term soil sustainability [164]. Im-
plementing these practices can help maintain soil productivity, promote soil improvement,
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and ensure sustainable agricultural productivity, ultimately contributing to ecological and
economic benefits [165].

Education and awareness programs are essential for promoting sustainable land man-
agement practices among farmers, especially in the face of climate change. While RSC is
traditionally used by indigenous groups and has been inherently conservative, there is a
growing need to ensure these practices are sustainable in the long term. These programs
can equip farmers with the knowledge and tools necessary to adopt more sustainable
techniques, thereby enhancing the benefits of traditional methods and addressing climate
resilience. Engaging with indigenous communities in these programs ensures that tradi-
tional knowledge is respected and integrated with sustainable practices. This collaborative
approach fosters a sense of ownership and empowerment among local farmers, promoting
practices that benefit both the environment and local livelihoods. By aligning traditional
methods with modern sustainable practices and climate action strategies, education and
awareness programs can play a pivotal role in achieving long-term sustainability and
resilience in agricultural landscapes.

6. Future Research Directions

Future research in sustainable land management should focus on several key areas to
enhance our understanding and implementation of effective practices. A crucial avenue
is the development of technology and methodologies to investigate the interaction of fire,
soil characteristics, and soil microorganisms. Large-scale analysis using spatial techniques
such as remote sensing, unmanned aerial vehicles (UAVs), geographic information systems
(GIS), and field measurements can provide valuable insights into the interplay between
fire occurrences, land management, and soil degradation across extensive geographical
areas [166–168].

Monitoring and understanding soil properties in RSC can be significantly enhanced
with real-time information provided by soil sensor technology [169,170]. These sensors can
offer crucial insights into how fire and other land management methods affect soil prop-
erties, facilitating informed decision-making for sustainable land management. In-depth
studies on the dynamics of soil microorganisms and nutrient cycles can be advanced using
techniques such as stable isotope probing (SIP) and high-throughput DNA sequencing. SIP
allows researchers to trace nutrient flow through microbial communities by incorporating
isotopically labeled compounds into the DNA or RNA of active microorganisms [171].
High-throughput DNA sequencing enables comprehensive analysis of microbial diversity
and function by rapidly sequencing large volumes of genetic material from soil sam-
ples [141]. By integrating these advanced technologies and methodologies, researchers
can develop more effective and sustainable land management practices that address the
complex interactions between fire, soil characteristics, and soil microorganisms.

Last but not least, the socio-economic aspects of fire management in RSC should
focus on understanding the intricate balance between traditional practices, community
livelihoods, and sustainable land use. Investigations should delve into the socio-economic
drivers behind the use of fire in shifting cultivation, assessing how these practices affect
local economies, food security, and cultural heritage. Furthermore, research should explore
the effectiveness of community-based fire management strategies and their potential to
enhance resilience against environmental and economic pressures. By integrating socio-
economic analysis with ecological data, researchers can develop holistic fire management
policies that support sustainable development, improve the well-being of local communities,
and preserve essential ecosystem services. Furthermore, the economic trade-offs and
challenges faced by communities in adopting sustainable fire management practices should
be thoroughly investigated. These multi-disciplinary approaches will provide valuable
insights into the long-term viability of RSC in the face of changing environmental and
socio-economic conditions.
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7. Conclusions

This review underscores the intricate effects of low to medium-severity burning,
including slash-and-burn and prescribed burning, on soil properties and microbial commu-
nities in RSC systems. These fire practices have dual impacts: while they initially cause
nutrient losses through volatilization and combustion, they also release essential nutrients
such as nitrogen, phosphorus, and potassium from burned vegetation, enhancing their
availability to soil microorganisms and plants. The breakdown of organic matter post-fire
further increases nutrient availability. Although high surface temperatures during burning
may affect soil carbon content, charred residues contribute to long-term soil carbon pools.
Recovery of soil properties and microbial communities post-fire is influenced by fire inten-
sity, soil characteristics, and environmental conditions. Fire affects soil microbial diversity
and activity, with low-severity burns generally causing minimal short-term changes due
to rapid vegetative recovery, while severe burns can lead to long-lasting alterations in
microbial community structure. For instance, some microbial species, such as fire-adapted
fungi and nitrogen-fixing bacteria, may show resilience or even increased numbers post-
fire, whereas others may decline. Understanding these dynamics is crucial for ecosystem
restoration and function.

Effective management strategies, including controlled burns, proper land zoning,
and sustainable practices such as agroforestry, cover cropping, and crop rotation, are
essential for mitigating negative impacts on soil health and microbial communities. Future
research should prioritize advancements in technology, such as remote sensing, UAVs, GIS,
and soil sensors, to better understand fire interactions with soil and microbial dynamics.
Techniques like stable isotope probing and high-throughput DNA sequencing can provide
deeper insights into microbial diversity and nutrient cycles. Additionally, exploring the
socio-economic dimensions of fire management can help balance traditional practices
with sustainable land use, enhancing community resilience and preserving ecosystem
services. This holistic approach is vital for achieving long-term sustainability and resilience
in fire-affected agricultural systems.
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