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Abstract: The cultivation of citrus in the Mediterranean region is of considerable economic
importance. The viability of this industry is contingent upon a number of factors, with
adequate phytosanitary management being of particular significance. During the last
decade, the geographical range of the invasive psyllid, Trioza erytreae (Del Guercio, 1918),
has expanded to the mainland territories of Portugal and Spain. Trioza erytreae acts as a
vector for the Huanglongbing disease (HLB). This review presents the current knowledge
about the hosts of the psyllid and their attractiveness and suitability. A classification
of the hosts according to their suitability, as assessed in the literature, is provided. The
attributes of the hosts and the methods used to assess their suitability are described, as
well as the climatic factors that affect the psyllid–host interaction. The review emphasises
the importance of a comprehensive evaluation of the interactions between the psyllids and
their hosts to develop and implement more effective strategies for controlling T. erytreae.
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1. Introduction
The citrus industry is the most important fruit sector in the world, with an annual

production exceeding 166 million tonnes [1]. The industry is currently being confronted
with an incredibly devastating bacterial disease that is rapidly disseminating globally: the
Huanglongbing (HLB) disease. HLB is caused by Candidatus Liberibacter spp. bacteria,
which clog the phloem and limit the flow of nutrients in the tree, thereby affecting its
development, fruit production, and quality. The two functional vectors that transmit C.
Liberibacter are the psyllids Diaphorina citri (Kuwayama, 1908) (Hemiptera: Liviidae),
mainly present in the Asian and American continents, and Trioza erytreae (Del Guercio,
1918) (Hemiptera: Triozidae), mainly present in the African continent. The two vectors
have recently reached the European continent, posing a threat to Mediterranean citriculture.
Diaphorina citri is spreading from the East, having been detected in Israel and Cyprus [2,3],
while T. erytreae is spreading from the West, with observations in the Iberian Peninsula
dating back to 2014 in the north-western region near the coastline [4,5].

The Mediterranean basin is one of the few citrus-producing regions that has not
been affected by HLB. To date, no positive results have been obtained from the HLB
tests conducted in Europe on both vectors [3,6,7]. The potential spread of these harmful
insects in the Mediterranean region represents a substantial concern for citrus growers,
as their presence could facilitate the rapid dissemination of the HLB disease. The spread
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of D. citri carrying C. Liberibacter has been rapid in the citrus-producing regions on both
American continents over the 15-year period since HLB was first identified. This has
resulted in a 74% reduction in citrus production and a 62% decline in the number of citrus
producers in Florida [8], which serves to demonstrate the destructive capacity of this
disease. The management of HLB requires the elimination of infected plants [9] and a
significant alteration in cultural practices [10]. Several control strategies for this disease
have been tested, such as the injection of antibiotics into the stem, thermotherapy, and
the application of endophytes. However, no treatment has been shown to be effective in
controlling HLB [11–13].

The control of psyllid vectors represents a primary concern for the citrus industry.
Aidoo [14] comprehensively outlined the main management strategies. These strategies
encompass the use of chemical control, applying insecticides during peak flushing peri-
ods [15], and biological control, with the release of the parasitoids Tamarixia dryi (Waterston,
1922) [16,17], and T. radiata [14]. The release of Tamarixia dryi has been undertaken in France,
Spain, and Portugal, encompassing all territories that have been infested and contingent on
the relevant government authorities [4,7,18–22]. Furthermore, novel strategies based on
entomopathogens [23] and kaolin applications [24] are currently under investigation.

The presence of T. erytreae in the Iberian Peninsula represents a significant challenge
to the protection of Europe’s main citrus producers. A multitude of factors, including
climatic conditions [25], the presence of natural enemies [26], chemical treatments, and
host plants, exert a substantial influence on the survival and development of T. erytreae.
The insect exhibits a high degree of dependency on its hosts, as they play a pivotal role
in its establishment, development, and dissemination. Moreover, the adult psyllid has a
limited lifespan (85 h) when deprived of its hosts [27–29]. In the absence of the bacteria,
the psyllid’s direct damage to citrus hosts is considered negligible [30,31]. Nevertheless,
nurserymen have reported it to be of significant consequence, as the pit gall symptoms
that form in citrus leaves during nymph development impact the plants’ eligibility for
commercialisation [30,31]. A deeper understanding of the T. erytreae host range may
facilitate the design of more efficacious control strategies and the advancement of psyllid
epidemiological studies, given the pivotal role of the interactions between the vector,
the plant, and the pathogen. This review provides an update on the current knowledge
regarding the interaction between T. erytreae and its hosts, with a particular focus on the
factors influencing its establishment, oviposition, and development.

2. Trioza erytreae Hosts
Trioza erytreae feeds and develops mainly on Rutaceous plants [30,31]. Trioza erytreae

lays its eggs on the tips of young shoots. The nymphs hatch and settle on the underside
of the developing leaves, where they complete their five-instar development before a
new flying adult emerges. During its development, the nymphs form “pit galls”, which
are circular or oval-shaped depressions on the underside of the leaf. The pit galls are
perfectly fitted to the nymph, and on the upper side of the leaf, they are visible as convex
bulges [30,32].

The Aurantioideae subfamily, which is part of the Rutaceae family, comprises 33 genera.
The Citrus genus, which is part of this subfamily, comprises the preferred T. erytreae
hosts [32]. Three species from the Rutaceae, namely the two Aurantioideae, Clausena anisata
[(Willd.) Hook.fil., De Wild. & Staner] and Citrus × limon (L.) Burm, along with Vepris
lanceolata [(Lam.) G.Don] (non-Aurantioideae), have been historically linked with T. erytreae,
as they were the first psyllid hosts to be documented in the literature [21,30,31,33–35].
The first host to be recorded was Citrus × limon, which was formally described in 1918
in Eritrea [36]. Almost all species and varieties within the Citrus genus serve as hosts,
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including those used as rootstocks [37]. The term ‘suitability’ is used to refer to the host’s
ability to support all stages of psyllid development until the emergence of a new generation.
The suitability of some citrus species remains inconclusive, as is the case of C. australasica
(F.Muell) [21], or even contradictory, as observed in C. trifoliata (L.) [21,37] and C. japonica
(Thunb.) [21,25].

Plants from other genera of the subfamily Aurantioideae outside the Citrus genus
were described as suitable hosts. These included Murraya paniculata [(L.) Jacq.] and
Glycosmis pentaphylla [(Retz.) Corrêa], which are commonly used as ornamentals [38].
There is a lack of consensus regarding the suitability of certain Aurantioideae hosts for
the growth of the psyllid. For instance, C. anisata has been reported as a suitable host in
some studies [21,30,39,40], while in others, it has been identified as unsuitable due to the
absence of oviposition [33]. Similarly, Calodendrum capense [(L.fil.) Thunb.], which has been
described as a suitable host [39], has been deemed unsuitable in other studies [21,30,34].
Suitable Rutaceae hosts identified outside the Aurantioideae subfamily were V. lanceolata
and Zanthoxylum capense [(Thunb.) Harv] [21,30,34].

Possible host species outside the Rutaceae family are Ficus spp. (L.) [41], including
Ficus sycomorus (L.) (Moraceae family) [42], Pygeum africanum (Hook.fil.) (Rosaceae fam-
ily) [42], Stephania abyssinica [(Dill. & A.Rich.) Walp.] (Menispermaceae family) [41,42],
and Diospyros mespiliformis (Hochst. ex A.DC.) (Ebenaceae family) [41]. Trioza erytreae has
only been documented to feed on these hosts and to be the likely cause of leaf pit gall
symptoms. However, there is no evidence to suggest that nymphal development or the
emergence of a new generation of psyllids has occurred [41,42]. Therefore, in light of the
current knowledge, these species can only be considered as non-reproductive hosts or as
feeding hosts (Table 1).

Carrot plants [Daucus carota subsp. sativus (Hoffm.) Schübl. & Martens] were also
evaluated as possible hosts for the transmission of ‘Candidatus Liberibacter solanacearum’
to sour orange plants [C. aurantium (L.)]. However, despite oviposition, T. erytreae was
unable to complete its life cycle [43].

As outlined in the preceding paragraphs, the available data support the classification
of T. erytreae as oligophagous. The collected data indicate that hosts outside the Rutaceae
family are non-viable hosts. Some of these non-viable hosts may have the potential to be
used in psyllid control measures. For instance, researchers have suggested using Nicotiana
tabacum, a non-viable host, near citrus orchards as a control measure for D. citri [44].

Table 1 provides a concise overview of the T. erytreae host suitability data that have
been tested to date. The hosts were classified according to their attractiveness to the
psyllid and their suitability as hosts, based on an evaluation of the results described in the
literature.
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Table 1. Summary of T. erytreae hosts, including the host name and common name, as well as host suitability classification in the following categories: “Attraction”,
“Survival”, “Oviposition”, “Nymphal Development”, “Adult Emergence”, and “Host Classification”. Where “+ + + + +” represents the highest suitability, “+ + +
+” high suitability, “+ + +” good suitability, “+ +” medium suitability, “+” low suitability, “−” almost no suitability, “− −” no suitability. The “Host Category”
indicates host support for the T. erytreae life cycle; “R” represents the “reproductive hosts”, where the full life cycle is supported by the host; “NR” represents the
“non-reproductive hosts”, where oviposition is observed but the full life cycle cannot be completed; “F” represents the solely “feeding hosts”, where oviposition was
tested but not supported. The “NR/R” combination represents hosts where oviposition was supported, but the following stages were not analysed (reproductivity
was not ascertained); the “F/NR” combination represents hosts where feeding was observed, and oviposition was not analysed (oviposition support was not
ascertained). The designation “NT” indicates that the host comparison studies have not been conducted, while “NC” indicates that they are not classifiable.

Host; Common Name Attraction Survival Oviposition Nymphal
Development

Adult
Emergence

Host
Classification

Host
Category References

Family: Rutaceae; Subfamily: Aurantioideae; Genus: Citrus

Citrus × limon [(L.)
Burm. f.]; Lemon + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + R [15,21,31,33,34,37,40,

45–56]

Citrus × latifolia
(Yu.Tanaka);
Tahiti lime

+ + + + + NT + + + + + NT NT + + + + + * R [48,49]

Citrus medica (L.);
Citron + + + + + + + + + + + + + + + + + + + + NT + + + + + R [21]

Citrus × aurantiifolia
[(Christm.) Swingle];
Lime

+ + + + + + + + + + + + + + NT + + + + R [21,25,48,49,51]

Citrus trifoliata × Citrus
× sinensis; Citrange + + + + + + + + + + + NT NT + + + + ** NR/R [37]

Citrus macrophylla
(Wester) + + + + + + + + + + + NT NT + + + + ** NR/R [37]

Citrus ×sinensis [(L.)
Osbeck];
Sweet orange

+ + + + + + + + + + + + + + + + + + R [21,25,27,28,31,37,40,
41,46,48–50,56–64]

Citrus reticulata
(Blanco);
Mandarin

+ + + + + + + + + + + NT + + + R [21,25,37,41,48–51,56]
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Table 1. Cont.

Host; Common Name Attraction Survival Oviposition Nymphal
Development

Adult
Emergence

Host
Classification

Host
Category References

Citrus reticulata ×
Citrus × sinensis;
Tangor

+ + + + + + + + + + + + + + + + R [21,25,48,49,56,60]

Citrus reticulata ×
Citrus × paradisi;
Tangelo

+ + + NT + + + NT NT + + + * R [40,48,49,61]

Citrus × paradisi
(Macfadyen);
Grapefruit

+ + + + + + + + + + NT + + R [21,25,48,49,56,60]

Citrus maxima [(Burm.)
Merril]; Pomelo + + + + + + + + NT + + R [21]

Citrus reshni (Engl) Yu.
Tanaka;
Cleopatra mandarin

+ + + + + NT NT + ** NR/R [37]

Citrus japonica (Thunb.);
Kumquat + + + + − − NT + NR [21,25]

Citrus trifoliata × Citrus
reticulata; Citrandarin + + + + NT NT + ** NR/R [37]

Citrus trifoliata (L.) + + − − − − NT − F [21,25,37]

Citrus australasica
(F.Muell.);
Caviar lime

+ + − − − − NT − F [21]

Citrus × aurantium (L.);
Sour orange + + + *** + + *** + + *** + + *** + + *** R [25,41,43,50,52]

Citrus × jambhiri
(Lush.);
Rough lemon

+ + + NT NT NT NT NC R [41,65,66]
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Table 1. Cont.

Host; Common Name Attraction Survival Oviposition Nymphal
Development

Adult
Emergence

Host
Classification

Host
Category References

Citrus × paradisi x
Citrus trifoliata;
Citrumelo

NT NT NT NT + + + + + NC R [40]

Family: Rutaceae; Subfamily: Aurantioideae; Genus: Other than Citrus
Murraya koenigii [(L.)
Spreng.] + + + + + NT + + + + + + + + + + + + + + + + + + + R [39,40]

Clausena anisata
[(Willd.) Hook.fil., De
Wild. & Staner]

+ + + + + + + + + + + + + + + + + + + + + + R [21,27,28,30,33,34,39,
40,42,57,62,67]

Murraya paniculata [(L.)
Jacq.] + + + + + + NT + R [21]

Glycosmis pentaphylla
[(Retz.) Corrêa] NT NT NT NT NT NC F/NR [30]

Triphasia trifolia
[(Burm.fil.) P.Wilson] NT NT NT NT NT NC F/NR [30]

Family: Rutaceae; Subfamily: Other than Aurantioideae

Vepris lanceolata [(Lam.)
G.Don]; White
ironwood

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + R [21,27,30,33,34,67]

Vepris nobilis [(Delile)
Mziray] + + + NT + + + + + + + + + + + + + + R [39]

Zanthoxylum capense
[(Thunb.) Harv.] + + + + + + + + + + + R [21,30,33,34,67,68]

Vepris bilocularis
[(Wight & Arn.) Engl.] + NT + + + + + + + + + + + R [39]

Calodendrum capense
[(L.fil.) Thunb.]; Cape
chestnut

+ + + + − − − R [21,33,34,39]

Zanthoxylum asiaticum
[(L.) Appelhans,
Groppo & J.Wen]

+ + + − − NT − NR [21]
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Table 1. Cont.

Host; Common Name Attraction Survival Oviposition Nymphal
Development

Adult
Emergence

Host
Classification

Host
Category References

Vepris Comm. (ex
A.Juss.) NT NT NT NT NT NC R [21,69]

Ruta graveolens (L.);
English rue NT NT NT NT NT NC NR [30]

Agathosma ciliaris [(L.)
Druce] NT NT NT NT NT NC NR [30]

Choisya ternata (Kunth);
Mexican orange NT NT NT NT NT NC F/NR [70]

Family: Other than Rutaceae
Morus alba (L.);
Mulberry + NT NT NT NT NC F/NR [47]

Tropaeolum majus (L.);
Garden nasturtium + NT NT NT NT NC F/NR [47]

Daucus carota subsp.
sativus (Hoffm.) Schübl.
& Martens;
Carrot

+ + + − − NT − /**** NR [43]

Stephania abyssinica
[(Dill. & A.Rich.)
Walp.]

NT NT − − NT NT NC F [39,41,42]

Ficus sycomorus (L.) NT NT − − NT NT NC F/NR [39,42]
Ficus thonningii (Blume) NT NT − − NT NT NC F [39]
Diospyros mespiliformis
(Hochst. ex A.DC.) NT NT NT NT NT NC F/NR [41]

Pygeum africanum
(Hook.fil.) NT NT NT NT NT NC F/NR [42]

NC denotes that the classification is not applicable; * classification based only on two tested categories; ** comparison study limited to rootstocks; *** the only comparison made regarding
the oviposition was for sour orange and a non-Rutaceae host (a more comprehensive analysis involving additional hosts would be necessary to classify this host) [43]; **** In the case of
carrot, classification has been applied despite the species not being a viable host. However, it is important to note that this is based on a single study [43].
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With regard to the Citrus genus, which comprises more than 30 species, only 17 have
been evaluated as potential hosts for T. erytreae. Ten of the species have been classified as
having high to highest suitability for T. erytreae. The highest suitability was identified for
lemon (C. × limon), citron (C. medica), and lime (C. × aurantiifolia) (Table 1). The two most
widely cultivated citrus trees [1], sweet orange (C. ×sinensis) and mandarin (C. reticulata),
were classified as having good host suitability (Table 1). Additionally, Clausena anisata and
M. koenigii (L.) Spreng., two additional species within the Aurantioideae subfamily, were
classified as having high and highest suitability, respectively (Table 1).

It appears that species belonging to the Rutaceae family that are not part of the
Aurantioideae subfamily are less suitable for T. erytreae. Only two members of the Vepris
genus exhibited a suitability classification above the medium level (Table 1).

In view of the paucity of studies on hosts outside the Rutaceae family, it is not yet
possible to conclude that they are unsuitable. However, current evidence suggests that the
hosts examined so far are unsuitable (Table 1).

While the majority of citrus hosts exhibited comparable levels of attractiveness and
suitability for oviposition (Table 1), two hosts, namely citrange (C. trifoliata × C. × sinen-
sis) [37] and Vepris bilocularis [(Wight & Arn.) Engl.] [39], exhibited a low level of attraction
and a high oviposition rate. This suggests that these hosts possess a quality that allows for
optimal oviposition without attracting T. erytreae (Table 1).

3. Host Characteristics and Their Influence on Trioza erytreae
Development

The suitability of a host for T. erytreae depends on intrinsic and extrinsic factors. The
following aspects related to young flushes are particularly important in determining host
suitability: the intensity of flushing, the timing of flushing, leaf length, shoot length, and
tissue softness/succulence. Additionally, the nutritional status, age, and phytosanitary
condition of the host plant are of considerable importance. The significance of these host
traits resides in the requirement of young leaves and shoots for successful oviposition and
nymph development [28,57,58,64,69,71] (Figure 1).
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Figure 1. The various stages of leaf development and the symptoms of infestation by Trioza erytreae,
along with the developmental stages of the psyllid. The upper half of the figure depicts the leaf
appearance and phenological stages of Citrus × limon according to the Biologische Bundesanstalt,
Bundessortenamt und CHemische Industrie (BBCH) scale [72] when infested with the T. erytreae
stages. The lower portion of the figure depicts the developmental stages of Trioza erytreae: stage
0—eggs; stage 1—first instar nymph; stage 2—second instar nymph; stage 3—third instar nymph;
stage 4—fourth instar nymph; stage 5—fifth instar nymph; and stage A—adult.
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The phytosanitary status of the host plant exerts an influence on the flushing rhythm
and the nutritional status of the shoots and leaves, which, in turn, affects the growth and
development of psyllids. For example, a decrease in leaf nitrogen levels substantially
hampered psyllid development [59]. Additionally, in a C. × sinensis orchard, the presence
of chlorotic young shoots caused a high mortality rate of T. erytreae. Furthermore, the
surviving nymphs were observed to exhibit reduced size and flattened morphology, along
with an extended period of developmental stages [59], contrary to a more rapid spread of T.
erytreae observed in young, healthy, and vigorous trees [61].

Trioza erytreae shows a tendency to transit between suitable hosts in the vicinity of
citrus orchards, contingent upon the availability of fresh flush growth. The prevalence
of psyllids is higher when citrus orchards undergo alternate flushes with out-of-season
flushes in hosts situated outside the orchards [58,62,68]. Therefore, the development of T.
erytreae is facilitated when a host plant produces young flushes throughout the year [69].
Citrus × limon is a highly attractive host for psyllids due to the continuous formation of
young flushes throughout the year, which provides consistent opportunities for settlement
and growth [58,73].

The nymphs of T. erytreae can move over a distance of 300 mm in search of optimal
feeding spots, which are characterised by the presence of young flushes and soft tissues [57].
The greater the hardness of the tissue, the longer the nymphs will spend searching, thereby
increasing the probability that the nymphs will become dehydrated, preyed upon, or
parasitised [57]. In comparison to nymphs developing on either side of leaves (softer
tissues), fewer nymphs complete their development on branches (harder tissues), which
act as a deterrent to oviposition [53,57]. It was observed that longer shoots, which are
characteristic of lemon and satsuma mandarin trees [73], tend to attract a higher number of
psyllids [60]. As the leaf matures and grows, a reduction in the hatching rate of the eggs
and the survival of the nymphs is observed. Therefore, mature, longer, and larger leaves
are detrimental to T. erytreae development [59,60]. This may be attributed to the hardness
of the leaves, which impairs the eggs’ ability to absorb water, a vital requirement for their
survival [59,74].

Trioza erytreae is able to extend its longevity and the pre-oviposition period in the
absence of young flushes. However, this phenomenon has only been observed to occur for
a limited duration of time [58]. In citrus orchards in South Africa, a high flushing intensity
rendered the plant highly attractive to T. erytreae, while a low number of young flushes
resulted in a high mortality rate for the psyllid. This indicates that the number of flushes is
an important factor in the psyllid’s attraction to the host plant [61,64].

The timing of flushing is of pivotal relevance, as when it coincides with optimal cli-
matic conditions for T. erytreae development, significant population peaks are observed [58].
The efficacy of parasitoids in targeting T. erytreae is enhanced when psyllid population
levels are high [75].

Previous studies have demonstrated that plants infected with HLB flush at different
periods in comparison to their healthy counterparts [76]. Having both healthy and HLB-
infected plants exhibiting asynchronous flush periods provides more favourable conditions
for psyllid proliferation [58]. This aspect should be considered in the management of
HLB-affected orchards.

To ensure its own survival and reduce conspecific competition for resources, T. erytreae
avoids flushes with high levels of infestation. This behaviour contributes to insect dispersal,
leading to the search for new, uncolonized shoots. In their study, Van den Berg et al. [77]
observed a positive correlation between the number of eggs, nymphs, and adults on the
host and the dispersion rate.
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Pruning is a cultural practice that regulates the growth of new shoots [73]. Heading
cuts stimulate the development of new shoots [78] and make citrus trees more attractive to
psyllids. Topping is an operation that consists of multiple heading cuts applied to the top
of the trees [73], thereby inducing the development of numerous new shoots and attracting
psyllids [79]. This operation has already been tested to control D. citri in conjunction with
the application of insecticides to the pruned trees [79]. Furthermore, deficit irrigation has
been shown to extend the period during which the citrus plant exhibits no flushes. This was
evidenced in lemon orchards subjected to deficit irrigation over a 12-week period during
the winter, although the same procedure did not affect sweet orange trees [71]. It can be
reasonably deduced that the cultivation of sweet oranges and lemons in the same orchard
or in adjacent orchards is not recommended, given that lemon trees exhibit continuous
flushing [73]. During the flushing period of the sweet orange tree, an influx of insects
migrating from the lemon trees to the orange trees has been observed, leading to an increase
in the psyllid population [58]. A comprehensive understanding of citrus flushing cycles and
effective management techniques is essential for the implementation of cultural practices
that mitigate T. erytreae populations.

4. The Influence of Climatic Conditions on Trioza erytreae and Its Hosts
The climatic variables exert an influence on the duration of insect development [30,32,69], as

well as on the intensity and timing of host flushing [80]. The two main studies described
in this section were conducted in climatically controlled conditions, and both used C. ×
limon as the T. erytreae host [5,55]. Other studies do not specify the citrus host [30,32,54]
or are based on field studies on sweet orange (C. × sinensis) orchards [63,64]. It has been
established that the duration of the developmental process, from the egg stage to the adult
stage, is significantly influenced by temperature [5,55]. The optimal temperature range for
the growth of the T. erytreae population is between 18 ◦C and 24 ◦C [5,55]. This aligns with
the spring average daily temperature range of 12 ◦C to 20 ◦C in subtropical regions, where
citrus trees produce a considerable number of short shoots [80].

Temperatures above 27 ◦C or below 10 ◦C severely delay or prevent the completion of
the T. erytreae life cycle, and if the temperature is constant at 10 ◦C, 27 ◦C, or 30 ◦C, the life
cycle is not completed [5]. It is well documented that citrus hosts enter a state of dormancy
when the daily average temperatures fall below 12 ◦C [80]. Therefore, temperatures below
10 ◦C will restrict the development of both the host and the psyllid. While temperatures
above 30 ◦C appear to exert a deleterious effect on the psyllid, the same does not occur with
regard to host flushing, given that citrus hosts produce long new shoots at daily average
temperature ranges between 25 ◦C and 35 ◦C [80]. The specific conditions required for each
developmental stage have been the subject of considerable research. The pre-oviposition
period, at 25 ◦C, lasts between 3.4 and 10.5 days [5]. The viability of eggs is compromised
when temperatures are below 8 ◦C and above 33 ◦C [5]. The successful development of
eggs and nymphs is contingent upon a temperature range of 15 ◦C to 24 ◦C [5,55]. Aidoo
et al. [55] observed that the mortality rate of the first nymphal instar was highest at 15 ◦C
and lowest at 18 ◦C, whereas the third instar exhibited the highest survival rates at 20 ◦C.

The duration of the T. erytreae life cycle is also subject to the influence of humidity.
Recent studies conducted under controlled conditions showed that at a relative humidity
of 65% and at a temperature of 15 ◦C, the development period is 56.23 days, whereas
at 24 ◦C, it is reduced to 19.95 days. Similarly, at a temperature of 15 ◦C and a relative
humidity of 70%, the developmental period is 46.7 days, whereas at 25 ◦C, it is reduced
to 23.9 days [5,55]. With respect to nymphal development, no development was observed
at a constant temperature of 25 ◦C when both 40% RH and 90% RH were maintained. In
these conditions, the psyllid only reached the third instar stage, and the time taken for
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pre-oviposition and egg hatching was extended. However, at 70% RH, the entire life cycle
of the psyllid was completed in 23.9 days [5].

The influence of climatic conditions on insect development times also has an indirect
impact on the overall population size of T. erytreae [49,63,70]. High mortality rates have
been attributed to hot and dry summer days [30]. A 100% mortality rate of eggs and
first-instar nymphs was observed when temperature and humidity parameters, reported as
the saturation deficit index (SD), were 45 mbars or higher. At 35 mbars, the mortality rate
was 70%, while at 15 mbars, it decreased to 10% [21]. As a result, Catling [64] introduced
the term “lethal days” to describe periods when values exceeded 34.6 mbars, which had a
significant impact on egg viability and the first instar stage of development [55,64].

Studies carried out before 1970 utilising citrus branches (the species of citrus is not
specified) have demonstrated that the requisite duration for egg hatching is 7–9 days, with
a range of 5–17 days during summer and winter conditions, respectively. The nymphal
stage lasted, on average, 20–27 days, with summer conditions requiring 18 days and winter
conditions requiring 34 days [30,32,54]. Additionally, the lifespan of the adult insect during
periods of warm weather ranges from 26 to 36 days [32]. More recent studies conducted
under controlled conditions showed a similar trend to the aforementioned branch studies,
with slight differences. The eggs hatched, on average, between 7.2 and 13.5 days after
oviposition, while the development of nymphs lasted from 16.4 to 33.4 days [5]. The
specified timeframes are specific to constant temperatures of 15 ◦C and 25 ◦C, respectively.
Pérez-Otero et al. [5] additionally observed that female adults outlive male adults across all
tested temperatures. The mean survival of female specimens was 44.2 days at 15 ◦C, while
the mean survival of male specimens was 17.2 days at 25 ◦C. In citrus plants cultivated in
temperate climates, the duration from bud break to complete leaf development is 60 days
when daily average temperatures exceed 13 ◦C [81]. This timeframe enables T. erytreae to
generate at least one generation. Under optimal climatic conditions, two generations may
occur per flushing season [58].

It is necessary to evaluate the climatic conditions in relation to the region’s orography,
as well as the presence or absence of suitable hosts, to identify the geographic regions
where T. erytreae can thrive. This systematic approach enables the delineation of regions
where T. erytreae may be able to establish and proliferate, thereby facilitating the prompt
implementation of protective measures [16,82,83].

5. Methods to Study T. erytreae Host Attraction and Suitability and Their
Applications

Several methodologies have been employed in order to facilitate a comprehensive
understanding of insect–host interaction and host suitability. These include population
surveys, choice tests, no-choice tests, studies of insect development and morphometrics,
and chemical and molecular interaction studies. Some studies focus on the factors that
guide T. erytreae to the host, while others focus on the factors that affect the insect’s survival
and growth subsequent to the selection of a host (Figure 2).

In population surveys, hosts are sampled within a defined geographical area and
time range to record the presence and/or symptoms of T. erytreae. This approach enables
the determination of the psyllid’s natural preference. Such surveys may be designed at a
national level or at the level of individual orchards.

Extensive population surveys constitute a valuable initial step in identifying the
hosts of the psyllids and discerning their preferences [4,41,84]. To illustrate, a national-
level survey conducted in Uganda documented the proportion of each host species in the
total number of identified infested plants. The findings demonstrated that mandarins (C.
reticulata) were the preferred host (66.7%), followed by sour orange (C. aurantium) and
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rough lemon C. × jambhiri (Lush.) (both with 13.3%), in addition to the least-attractive
sweet orange variety “Washington Navel” (6.7%) (C. sinensis) [41]. In the same study, three
non-Rutaceae plants were identified as bearing galls and T. erytreae adults, namely Stephania
abyssinica (Dill. & A. Rich) Walp. var. tomentella (Oliv.) Deils (Menispermaceae family),
Diospyros mespiliformis (Ebenaceae family), and Ficus spp. (Moraceae family). However, the
absence of the observation of nymphs [41] indicates the necessity for further investigation
to ascertain the suitability of these hosts for T. erytreae.
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Figure 2. Host effect on Trioza erytreae. Orange arrows represent host cues/signals; blue arrows
represent insect decision pathways.

The study of psyllid populations at the orchard level offers considerable advantages in
terms of the information they provide regarding host attractiveness and their suitability to
T. erytreae. This is primarily due to the reduced edaphoclimatic and orographic variability
observed in such studies. The results of studies conducted in multi-species orchards have
provided valuable insights into host attractiveness for T. erytreae. The findings of Samways
and Manicom [60] demonstrated that the ‘Valencia’ cultivar (C. × sinensis) exhibited a
higher mean number of branches with eggs and T. erytreae adults in comparison to the
‘Navel’ orange (C. × sinensis), the ‘Ortanique’ tangor (C. reticulata × C. × sinensis), and
the grapefruit (C. × paradisi (Macfadyen)). Conversely, a comparable study conducted
by Van den Berg et al. [25] found that the ‘Navel’ orange was more attractive than the
‘Valencia’ orange, which demonstrates how variables inherent to the experimental field and
methodology may influence the results.

A considerable number of mandarin cultivars (C. reticulata), along with their hybrids,
tangor (C. reticulata × C. × sinensis) and tangelo (C. reticulata × C. × paradisi), were eval-
uated for their attractiveness for T. erytreae in different multi-species orchards [48,51,77].
The findings of these studies indicate that mandarins have a high degree of intra-species
variability in terms of attractiveness for T. erytreae. The “Satsuma” subgroup of cultivars,
including ‘Owari’, ‘Saigon’, and ‘Wase’, was found to be highly attractive to the psyllid. In
contrast, the cultivars ‘Dancy’, ‘Fortune’ (a ‘Dancy’ hybrid), and tangelo hybrid cultivars,
such as ‘Page’ and ‘Osceola’, show a low attractiveness for T. erytreae (Table 2) [48,51,77].



Agriculture 2025, 15, 101 13 of 24

Table 2. Host attractiveness and effect on different stages of Trioza erytreae infestation.

Host: Common Name; Species; Group; Subgroup;
‘Cultivar’/ Variety Attractiveness Oviposition Survival Nymph

Development
Adult

Emergence

Family: Rutaceae; Subfamily: Aurantioideae; Genus: Citrus

Citrus reticulata (Blanco); Mandarin

Mandarin hybrid (Clementine × Ponkan); ‘Fremont’ 1H [48],
1M [51]

1M [48],
1L [51] NA NA NA

Mandarin hybrid (Satsuma × King) ‘Kara’ 1H [48] 1H [48] NA NA NA

Satsuma

‘Saigon’ 1H [48] 1H [48] NA NA NA

‘Wase’ 1H [48] 1H [48] NA NA NA

‘Owari’ 1H [48] 1H [48] NA NA NA

‘Saint Jean’ 1M [48] 1M [48] NA NA NA

‘Kowano’ 1M [48] 1L [48] NA NA NA

Ponkan 1M [48] 1H [48] NA NA NA

Clementines
Clementine 1M [48] 1M [48] NA NA NA

Clemenules 1M [56] 1M [56] 1M [56]

Willowleaf mandarin 1M [21] 1M [21] 1M [21] 1M [21] NA

Madagascar 1H [48] 1M [48] NA NA NA

King of Siam 1M [48] 1L [48] NA NA NA

Green Rind 1L [25] NA NA NA NA

Mandarin hybrid (Clementine x Tangelo)

‘Fairchild’ 1M [48] 1M [48] NA NA NA

‘Osceola’ 1M [48] 1L [48] NA NA NA

‘Page’ 1L [48] 1L [48] NA NA NA

Mandarin ‘Dancy’ 1L [48] 1L [48] NA NA NA

Mandarin hybrid (Clementine × Dancy) ‘Fortune’ 1L [48] 1L [48] NA NA NA

Mandarin ‘Emperor’ 1L [25] NA NA NA NA
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Table 2. Cont.

Host: Common Name; Species; Group; Subgroup;
‘Cultivar’/ Variety Attractiveness Oviposition Survival Nymph

Development
Adult

Emergence

Total

7H [41,48],
11M

[21,25,48,51,56],
6L [25,48]

4H [48],
9M [21,37,48,56],

7L [48,51]
3M [21,56] 2M [21] NA

Citrus × sinensis [(L.) Osbeck]; Sweet orange

‘Valencia’
1H [60],
1M [25],

4L [41,48,56]

1H [60],
2L [48,56] 1M [56] NA 1M [40]

‘Hamlin’ 1M [48] 1M [48] NA NA NA
‘Pineapple’ 1M [48] 1L [48] NA NA NA
‘Mid Season’ 1M [25] NA NA NA NA
‘Mouton’ 1L [25] NA NA NA NA
‘Oom Louis’ 1L [25] NA NA NA NA

Common
oranges

‘Pera’ 1L [25] NA NA NA NA

‘Navel’ 1H [25],
1M [60] 1M [60] NA NA NANavel

oranges
‘Navelina’ 1H [56] 1M [56] 1M [56] NA NA

Total
3H [25,56,60],

7M [21,25,48,60],
5L [25,48,56]

1H [60],
4M [21,48,56,60],

3L [48,56]
3M [21,56] 1M [21] 1M [40]

Citrus × limon [(L.) Burm. f.]; Lemon

‘Lisbon’ 1H [48] 1H [48] NA NA NA

‘Eureka’ 1H [48] 1H [48] NA NA NA

‘Villafranca’ 1H [51] 1M [51] NA NA NA

‘Fino 49’ 1M [56] 1L [56] 1M [56]

Total
8H

[21,33,47,48,50–52],
1M [56]

4H [21,33,48],
1M [51],
1L [56]

2H [21,34],
1M [56]

1H [21],
1M [34] 2H [34,40]

Citrus × aurantiifolia [(Christm.) Swingle]; Lime

‘Mexican’ 1H [51],
1L [48]

1H [51],
1L [48] NA NA NA

‘Likeland’ 1H [48] 1H [48] NA NA NA
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Table 2. Cont.

Host: Common Name; Species; Group; Subgroup;
‘Cultivar’/ Variety Attractiveness Oviposition Survival Nymph

Development
Adult

Emergence

Total
2H [48,51],
2M [21,25],

1L [48]

2H [48,51],
1M [21],
1L [48]

1M [21] 1M [21] NA

Citrus × paradisi (Macfadyen); Grapefruit

‘Red Blush’ 1M [48] 1M [48] NA NA NA

‘Shambar’ 1M [48] 1M [48] NA NA NA

‘Marsh’ 1L [48] 1L [48] NA NA NA

‘Star Ruby’ 1M [56] NA NA NA NA

Total 4M [21,25,48,56],
2L [48,60]

3M [21,48],
2L [48,60] 1M [21] 1M [21] NA

Citrus reticulata × Citrus × sinensis; Tangor

‘Ortanique’ 2H [48,56],
1M [60]

1H [56],
2M [48,60] 1M [56] NA NA

‘Murcott’ 1L [25] NA NA NA NA

Total
2H [48,56],
2M [21,60],

1L [25]

1H [56],
2M [48,60] 2M [21,56] 1M [21] NA

Citrus × aurantium (L.);
Sour orange

1H [43],
1M [41],

3L [25,50,52]
1H [43] 1H [43] 1H [43] NA

Citrus maxima [(Burm.) Merril]; Pomelo 1L [21] 1L [21] 1M [21] 1L [21] NA
Citrus reticulata × Citrus × paradisi; Tangelo

Minneola 1H [48] 1H [48] NA NA 1L [40]

Orlando 1L [48] 1L [48] NA NA NA

Total 1H [48],
1L [48]

1H [48],
1L [48] NA NA 1L [40]
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Table 2. Cont.

Host: Common Name; Species; Group; Subgroup;
‘Cultivar’/ Variety Attractiveness Oviposition Survival Nymph

Development
Adult

Emergence
Citrus trifoliata × Citrus reticulata; Citrandarin

Forner-Alcaide 5 1L [37] 1M [37] 1L [37] NA NA
Forner-Alcaide 517 1L [37] 1L [37] 1L [37] NA NA

Total 2L [37] 1M [37],
1L [37] 2L [37] NA NA

Citrus trifoliata (L.)
Flying Dragon 1L [37] NA 1L [37] NA NA

Total 3L [21,25,37] 1O [21] 2L [21,37] 1O [21] NA
Citrus japonica (Thunb.);
Kumquat

1M [25],
1L [21] 1L [21] 1L [21] 1O [21] NA

Citrus ×latifolia (Yu. Tanaka);
Tahiti lime 1H [48] 1H [48] NA NA NA

Citrus medica (L.), Citron 1H [21] 1H [21] 1H [21] 1H [21] NA
Citrus macrophylla (Wester) 1H [37] 1H [37] 1L [37] NA NA
Citrus australasica (F.Muell.); Caviar lime 1L [21] 1O [21] 1L [21] 1O [21] NA
Citrus reshni (Engl) Yu.Tanaka; Cleopatra mandarin 1L [37] 1M [48] 1L [37] NA NA
Citrus trifoliata × Citrus ×sinensis; Citrange 1L [37] 1H [37] 1H [37] NA NA
Citrus (L.) ** 1H [25] NA NA NA NA
Citrus × jambhiri (Lush.); Rough lemon 1M [41] NA NA NA NA
Citrus ×paradisi × Citrus trifoliata; Citrumelo NA NA NA NA 1H [40]
Family: Rutaceae; Subfamily: Aurantioideae; Genus: Other than Citrus

Clausena anisata [(Willd.) Hook.fil., De Wild. & Staner]
1H [21],
1M [39],
1L [33]

2H [21,39],
1L [33]

1H [21],
1M [34] 3H [21,34,39] 2M [34,39],

1L [40]

Murraya koenigii [(L.) Spreng.] 1H [39] 1H [39] NA 1H [39] 1H [39],
1M [40]

Murraya paniculata [(L.) Jacq.] 1L [21] 1L [21] 1M [21] 1L [21] NA
Family: Rutaceae; Subfamily: Other than Aurantioideae
Vepris lanceolata [(Lam.) G.Don]; White ironwood 2H [21,33] 2H [21,33] 2H [21,34] 2H [21,34] 1M [34]

Zanthoxylum capense [(Thunb.) Harv.)] 2L [21,33] 1M [33],
1L [21] 2M [21,34] 1M [34],

1L [21] 1L [34]

Vepris nobilis [(Delile) Mziray] 1M [39] 1M [39] NA 1H [39] 1M [39]
Vepris bilocularis [(Wight & Arn.) Engl.] 1L [39] 1H [39] NA 1L [39] 1M [39]
Zanthoxylum asiaticum [(L.) Appelhans, Groppo & J.Wen] 1L [21] 1L [21] 1L [21] 1O [21] NA
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Table 2. Cont.

Host: Common Name; Species; Group; Subgroup;
‘Cultivar’/ Variety Attractiveness Oviposition Survival Nymph

Development
Adult

Emergence
Family: Other than Rutaceae

Daucus carota subsp. sativus (Hoffm.) Schübl. & Martens; Carrot 1L [43] 1L [43] 1L [43] 1O [43] NA
Tropaeolum majus (L.); Garden nasturtium 1L [47] NA NA NA NA
Morus alba (L.); Mulberry 1L [47] NA NA NA NA
Ficus thonningii (Blume) NA 1O [39] NA NA NA
Ficus sycomorus (L.) NA 1O [39] NA NA NA
Stephania abyssinica [(Dill. & A.Rich.) Walp.] NA 1O [39] NA NA NA

“Total” represents the sum of all comparisons described for each host; it should be noted that the number of comparisons may exceed those specified in the aforementioned subgroups,
as some studies do not specify the assayed cultivar or variety; NA means “Not Applied”; OLMH nomenclature: “O” represents a value of zero, “L” represents low comparative values,
“M” represents intermediate comparative values, and “H” represents high comparative values. The number preceding the OLMH nomenclature represents the number of hosts classified.
This number is sometimes higher than the number of references, as some studies compared more than one variety of the same species. ** “Citrus” represents studies where the host was
mentioned as “citrus miscellaneous crosses”.
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The attraction of T. erytreae to Citrus × limon has been well documented [85]. In an
orchard of sour oranges (C. aurantium), a single C. × limon tree was found to have twice
the number of psyllids in yellow sticky traps compared to the other traps placed near sour
oranges [50]. In contrast to C. × sinensis and C. reticulata cultivars, different C. × limon
cultivars have been observed to consistently exhibit high levels of attraction and oviposition
rates [48,51]. The ‘Fino 49’ lemon was the sole exception, as despite the high oviposition
rate when grafted onto the Carrizo citrange (C. trifoliata × C. × sinensis) rootstock, there
was a low oviposition rate when grafted in other tested rootstocks [56] (Table 2). It can be
inferred that for certain citrus species, the attraction and oviposition by the psyllid are less
dependent on the cultivar, probably due to a lower genetic variability of these species [86].

The host’s characteristics and the signals they release to either attract or repel the
psyllid can also be explored through choice experiments. The results of choice test studies
performed in a controlled environment have provided insights into the characteristics of
psyllids that influence their preference and attraction. The study revealed that the sex of the
psyllid may exert an influence on its attraction towards a host. In a dual-choice settlement
assay, the probability of selecting a sour orange (C. aurantium) was 39% for males and 19%
for females [52].

A choice experiment study showed that leaf softness affects the oviposition rates
of T. erytreae; however, it had no impact on the settling behaviour of the psyllid [33,53].
Furthermore, choice experiment studies revealed that no oviposition occurred on leaves
with a hardness rating exceeding 90 g/mm [53]. Hardness values represent the weight
required for a 0.254 mm diameter flat-tipped pin to puncture 1 mm of leaf tissue [53,87].

A choice test and a no-choice test were used to compare the attraction and oviposition
of T. erytreae on ungrafted rootstocks. The results showed C. macrophylla as the most
appealing host, while ‘Carrizo’ citrange (C. trifoliata × C. × sinensis) exhibited the highest
oviposition rate [37]. The lowest incidence of oviposition was observed in C. trifoliata,
which was identified as the least attractive host [37]. The available evidence indicates that
citrus rootstocks may affect the volatile profiles of the host scion, which may, in turn, affect
the attraction of psyllid pests to them [88]. It can also affect the suitability of the scion for
T. erytreae, affecting both attractiveness and oviposition rate. Some cultivars appear to be
more affected, as evidenced by the case of ‘Fino 49’ C. × limon [56].

The use of no-choice experiments, in which the insect is presented with a single host
option, enables the study of the host’s suitability, as well as the survival and behaviour
patterns of the insects after settlement. This approach provides valuable data for epidemio-
logical studies, including the number of adults that form in a new generation [34] and the
number of generations that form in a year [58].

In a no-choice experiment, Aidoo et al. [39] observed oviposition differences among
eight non-citrus hosts from the Rutaceae family. Clausena anisata had the highest percentage
of flushes with eggs (52%), while C. capense had the lowest values (24%). Ficus thonningii,
F. sycomorus, and S. abyssinica showed no oviposition. The carrot (D. carota subsp. sativus)
was found to be unsuitable as no nymphs were able to reach the adult stage [43].

Studies on the morphometrics of T. erytreae developing in different hosts have provided
insights into the host species’ impact on the development of the psyllid. A comparative
analysis was conducted on five non-citrus hosts from the Rutaceae family. The results
showed that C. capense yielded the fewest and smallest adults of T. erytreae, Clausena anisata
the second highest number and the largest adults, and Murraya koenigii the highest number
of emerged adults with sizes similar to those formed in Clausena anisata [39]. Additionally,
the morphology and size of T. erytreae wings [40] also differed across distinct host species,
which could potentially influence the psyllid’s ability for flight and dispersal.
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The attraction of psyllids to hosts is influenced by plant volatiles. Valterová et al. [89]
conducted a study on the psyllid Dyspersa apicalis Foerster, which belongs to the Triozidae
family, across a diverse range of host species. The study examined the psyllid’s feeding
and oviposition preferences in relation to the volatiles derived from the hosts and con-
cluded that the least attractive host species exhibited a higher limonene content. In citrus,
the concentration of volatiles in young leaves was higher than in mature leaves despite
the absence of any change in their attractiveness when assessed using a choice test [66].
Nevertheless, these findings suggest that the higher concentration of volatiles in young
leaves may increase the likelihood of T. erytreae detecting them in field settings. Among the
volatiles produced by the hosts, the terpenes appear to play a role in their attractiveness to
T. erytreae [66]. The volatile profile of both young and mature leaves of C. × jambhiri, specif-
ically (S)-(−)-limonene, sabinene, and β-ocimene, was used as synthetic blends, isolated
and in various ratios, in choice tests. These volatiles were more effective at attracting T.
erytreae when combined with others from the plant’s volatile profile rather than when used
alone [66]. The leaves of Vepris lanceolata [(Lam.) G. Don] have a lemony scent similar to
that of C. × limon [(L.) Burm. f.], which may be linked to the high attractiveness and high
rate of T. erytreae oviposition observed in this plant species [21,33] (Table 1). In light of these
promising results, plant-based volatiles (acetic acid, (R)-(+)-limonene, sabinene, an ocimene
isomer mix comprising cis-ocimene and ß-, myrcene, ethyl butyrate, methyl salicylate, and
p-cymene) have been incorporated into yellow-sticky traps to attract T. erytreae. However,
in field conditions, this addition proved ineffective [90].

An analysis of the volatiles of non-host plants revealed that T. erytreae avoided the
volatiles of guava (Psidium guajava L.), garlic (Allium sativum L.), and lemongrass (Cym-
bopogon citratus (DC.) Stapf) [65]. Studies suggested that the practice of interplanting
citrus trees with guava (P. guajava) in open fields decreased the populations of D. citri in
the orchards. However, the effects were not evident under controlled greenhouse condi-
tions [91,92]. It would be interesting to study the impact of intercropping guava, garlic,
and/or lemongrass in citrus orchards on T. erytreae to ascertain the repelling effect in field
conditions.

The majority of studies on the interaction of T. erytreae with its hosts have been
focused on the analysis of plant volatiles. Nevertheless, a recent study performed by our
research group that used a no-choice experimental design and proteomic analysis found
that the proteomic response of lemon and sweet orange plants to T. erytreae was distinct.
The proteomic response of sweet orange plants to the psyllid was more pronounced and
extensive [46]. This study suggests that citrus host plants adjust their proteome in response
to T. erytreae infestation, which may be related to host suitability.

6. Final Remarks and Future Perspectives
The objective of this review was to provide a synthesis of the existent knowledge

regarding the hosts of T. erytreae and their interaction with the psyllid. Despite the extensive
research conducted on T. erytreae, further research is required to elucidate the host influence
on nymphal development and adult emergence. This encompasses the analysis of the
quantity and proportion of hatching eggs and nymphs, nymph development time, adult
emergence, and morphometrics of emerged adults. Understanding insect–host interactions
at the molecular level is essential for developing effective control strategies for the psyllid.
The formulation of efficacious artificial diets for T. erytreae and the improvement of diets
already tested, such as the one proposed by Russell and Pelz-Stelinsk [93] for D. citri,
may facilitate the study of the effects of isolated diet compounds on the psyllids. This
could potentially result in the development of an effective strategy for controlling psyllid
populations.
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A major challenge identified in this review was the gap in knowledge on the molecular
aspect of this specific insect–host interaction. Omics-based approaches provide a compre-
hensive understanding of the interactions between insects and plants [94]. The application
of omics approaches to the study of D. citri has facilitated a more profound understanding
of the host’s response to the psyllid infestation [95,96]. Furthermore, the identification
of characteristic proteins related to psyllid phenotypes [97] and development stages has
been made possible [98]. A meta-analysis of omics on the molecular profiles of citrus hosts
would also be advantageous in identifying potential molecular correlations with T. erytreae
preferences. This approach has been employed to study citrus hosts tolerant to HLB [99].

Another major challenge identified in this review was the dispersed nature of the data
and the diverse types of reporting on T. erytreae interaction with its hosts. Hence, the con-
struction of an accurate database on potential T. erytreae hosts is of significant importance,
as it facilitates informed decision-making regarding citrus management strategies, includ-
ing control policies, breeding programs, research lines, and orchard management [14]. In
addition, the implementation of a standardised methodology for the reporting of T. erytreae
populations to a centralised repository would contribute to a more complete and accessible
knowledge base of the psyllid populations, behaviour, and hosts, improving the precision
of the prediction models, as was already developed for D. citri and HLB [16,100].
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