
Received: 5 December 2024

Revised: 3 January 2025

Accepted: 3 January 2025

Published: 5 January 2025

Citation: Wei, D.; Zhang, Z.; Yan, L.;

Yu, J.; Zhang, Y.; Wang, B. A Specific

Time Lag Regulation of Soil Moisture

Across Layers on Soil Salinization in

the Northeast Tibetan Plateau

Agroecosystem. Agriculture 2025, 15,

106. https://doi.org/10.3390/

agriculture15010106

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Specific Time Lag Regulation of Soil Moisture Across Layers on
Soil Salinization in the Northeast Tibetan Plateau Agroecosystem
Di Wei 1,† , Ziqi Zhang 1,†, Lin Yan 1, Jia Yu 1, Yun Zhang 1,2,* and Bo Wang 1

1 Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and
Environmental Sciences, Lanzhou University, Lanzhou 730000, China; weid20@lzu.edu.cn (D.W.);
zhziqi2023@lzu.edu.cn (Z.Z.); 220220948470@lzu.edu.cn (L.Y.); yuj2023@lzu.edu.cn (J.Y.);
wangbo@lzu.edu.cn (B.W.)

2 Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold
and Arid Regions, Lanzhou 730000, China

* Correspondence: zhangyun@lzu.edu.cn
† These authors contributed equally to this work.

Abstract: The evaporation of soil water drives the upward movement of salt and its ac-
cumulation on the surface, which ultimately leads to soil salinization in agroecosystems.
With the rapid development of remote sensing technology, the soil water and salt transport
can be monitored accurately. Based on Landsat 8 satellite imagery and ERA5-Land reanaly-
sis datasets, this study explored the variation characteristics of soil water and salt in the
northeast Tibetan Plateau from 2013 to 2023, inferred by geostatistical methods like ridge
regression, windowed cross correlation, and machine learning algorithms. The results
show that the negative correlation effect between deep soil moisture (100–289 cm) and soil
salinization is stronger. Moreover, soil water and salt also have a time lag effect compared
with instant responses, meaning that the soil salinization caused by deep soil moisture
may require longer transport times. As the potential driving factors, an increase in soil
organic carbon and runoff is beneficial for alleviating salinization while abundant runoff
also promotes soil humidification. This study has elucidated the specific regulation of soil
salinization by soil moisture within different profiles, which is beneficial for understanding
the ecological balance of soil water and soil salt in agroecosystems.

Keywords: soil salinization; soil moisture; agroecosystem dynamic change; remote sensing
image; Tibetan Plateau

1. Introduction
Soil salinization caused by the imbalance of water and salt transport processes is one of

the key limiting constraints of agroecosystems [1], which refers to the gradual accumulation
of soluble salts on the soil surface [2]. Global warming accelerates the upward movement of
water-soluble ions in soil, leading to an inevitable salinization and dramatically dwindled
agricultural water resource [3]. It has adverse effects on nutrient availability and plant
growth, leading to crop reduction and land desertification [4]. Meanwhile, agricultural
soil salinization leads to a negative socio-economic impact on environmental health and
human well-being [5]. The accompanying degradation of forage in the plateau ecosystem
will increase the cost of ecological restoration and cause an imbalance in the alpine plateau
agroecosystem [6]. These both call for an attention to the soil salinization of agroecosystems
due to its ecological importance.

Soil salinization is a significant global issue, particularly severe in Asia, where large
areas of land are affected [7]. It is mainly caused by factors such as climate, topography, and
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soil properties. For example, in arid and semi-arid regions with high temperatures, intense
evaporation, and low precipitation, salts tend to accumulate in the soil [8]. Soil moisture,
on the other hand, is crucial in the hydrological cycle and affects many processes at the
land–atmosphere interface [9]. There is a complex interaction between soil salinization
and soil moisture. High soil moisture may lead to the leaching of salts in certain areas,
reducing soil salinity. However, in other situations, excessive soil moisture can also cause
problems like waterlogging, which may in turn affect the solubility and migration of
salts [10]. Conversely, soil salinization can also impact soil moisture characteristics. The
presence of salts can change the physical and chemical properties of the soil, altering its
water-holding capacity and infiltration rate [11]. All in all, understanding the relationship
between soil salinization and soil moisture is essential for effective land management and
sustainable agricultural development.

In recent decades, the advancement of remote sensing technologies has revolutionized
how we monitor the environment and changes in global ecosystems [12]. This progress,
coupled with the development of machine learning technology, helps us better explore
the dynamic changes in the pedosphere [13], which has made it possible to capture the
spatiotemporal variation characteristics of soil water and salt transport on a large scale [14].
Scholars and practitioners obtain high-resolution data by interpreting satellite imagery [15],
informing sustainable agricultural management decisions and strategies [16]. Normally,
the surface reflection radiation band in satellite imagery is used to extract soil character-
istics [17] and then the moisture content, organic matter, and salt content are calculated
through a prediction model [18]. Moreover, integrating remote sensing data with other
data (such as reanalysis datasets) can achieve more accurate soil ecological information
by complementing each other’s strengths and limitations [19]. It can be obviously seen
that the significant growth of remote sensing technology has solved many problems for the
ecological assessment of soil water and salt elements, including high data resolution, wide
spatiotemporal coverage, convenient processing costs, etc. [20].

Most published studies have demonstrated the feasibility of using remote sensing
techniques to explore soil salinization and its ecological regulation. The use of quantitative
indicators from different datasets to construct feature space inversion models with multiple
dimensions is gradually becoming the mainstream tool for soil salinization assessment [21].
Seifi et al. [19] used Landsat image spectral data as input variables and combined partial
least squares regression to predict soil salinity, which showed a high degree of agreement
with field sampling results. Ding et al. [22] extracted soil moisture data from remote sensing
images of an arid oasis and found a good correlation with surface soil salinity. Bian et al. [23]
constructed a feature space model based on surface albedo to quantify the relationship
between soil salinity and surface parameters, which has strong predictive power. Jiang
et al. [24] developed a soil salinity inversion model using multi-source remote sensing data,
demonstrating that the vegetation moisture coefficient is an important regulating variable
for soil salinity.

The ecological impact of soil salinization is often characterized in the coupling space
between vegetation greenness and soil salt. To quantitatively describe the coupling space,
the spectral index has been used among many researchers, which is a combination of
pixel values from specific spectral bands [25]. Compared with the variance in reflectance
between the near-infrared red band (NIR), red band (R), and blue band (B), it is proven to
be useful in soil salinization detection [26]. The studies conducted in the Qom Valley and
the Great Hungarian Plain both have demonstrated the excellent performance of multi-
spectral data in predicting soil salinization, with an accuracy rate of over 75% [27]. It can be
concluded that in recent years, the research focus on soil salinization detection has shifted
from traditional field investigation to remote sensing spectral data analysis.
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The northeastern part of the Tibetan Plateau has three typical inland river basins,
which are ecologically fragile and climate-sensitive, resulting in complex changes in soil
water and salt elements, and they are often prone to soil degradation processes such as soil
salinization [28]. Therefore, the regulation of soil moisture across layers on the soil salin-
ization of the northeast Tibetan Plateau has been explored in this study to better describe
the regional characteristics of soil water and salt transport. After clarifying the variation
pattern through trend test, ridge regression and windowed cross correlation were applied
to determine the time lag effect of dominant soil moisture and, ultimately, potential driving
factors were identified by a machine learning algorithm. This study is beneficial for under-
standing the characteristics of soil water and salt cycling at the regional scale, providing a
scientific basis and theoretical reference for sustainable agricultural development.

2. Method and Materials
2.1. Study Area

The rock soil parent material in the Tibetan Plateau contains a significant amount of
salt, which is gradually released into the soil through long-term geological processes such
as weathering and leaching [29]. In addition, the scarce precipitation in the Tibetan Plateau
and the strong evaporation caused by drought jointly result in the continuous accumulation
of salt in groundwater on the surface, ultimately leading to soil salinization [30]. As an
important river source area in northwest China, the regulation of water and salt transport
processes in the northeast Tibetan Plateau is relatively complex due to the influence of
underlying surface conditions in cold regions such as glaciers, permafrost, and snow
cover [31]. Three typical river basins located in the northeast Tibetan Plateau are selected as
the study area (Qaidam, Hexi, Yellow), with an altitude from 1763 m to 6474 m, as shown
in Figure 1. The climate type belongs to the plateau temperate zone, with the highest
monthly average temperature being above 10 degrees Celsius, the water supply decreasing
from southeast to northwest, and the even seasonal distribution of light resources [32].
The unique climatic conditions render it an area with a high concentration of agriculture,
forestry, and animal husbandry on the Tibetan Plateau [33].
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2.2. Data Sources and Preprocessing

As for soil salinization and soil moisture, the Landsat 8 OLI scenes and the ERA5-Land
reanalysis dataset can provide the most forward-looking data, ensuring research for the
latest period from 2013 to 2023 can be conducted. A series of consecutive Landsat 8 OLI
scenes covering this specific area and period were selected, which were rectified to the
Universal Transverse Mercator (UTM) coordinate system using the World Geodetic System
(WGS) 1984 datum allocated to the UTM Zone 44N [34]. After preprocessing, several
reflectances of single bands were extracted, including the near-infrared band, the red band,
and the blue band. Meanwhile, with the help of the Copernicus Climate Change Service,
the ERA5-Land reanalysis dataset was used to acquire the soil moisture across layers with
homology [35], providing the soil moisture across layers at a spatial resolution of 0.1◦

as follows [36]: Level 1 (0–7 cm), Level 2 (7–28 cm), Level 3 (28–100 cm), and Level 4
(100–289 cm).

Additionally, the boundary data of the Tibetan Plateau came from the National Tibetan
Plateau/Third Pole Environment Data Center (http://data.tpdc.ac.cn, accessed on 20 April
2024), while the river basin dataset was provided by the National Cryosphere Desert Data
Center (http://www.ncdc.ac.cn, accessed on 20 April 2024). When considering potential
driving factors, climate elements were also obtained from the ERA5-Land monthly averaged
data from 1950 to present (https://cds.climate.copernicus.eu, accessed on 30 May 2024)
and soil texture data were taken from the Harmonized World Soil Database version 2.0
(https://gaez.fao.org/pages/hwsd, accessed on 30 May 2024).

In order to quantitatively characterize soil salinization based on multi-band remote
sensing images, it was necessary to define a salinization detection index (SDI) inferred by
the feature relationship between the normalized difference vegetation index (NDVI) and
salinity index (SI) [26], calculated by Formulas (1) and (2) [37].

NDVI =
ρnir − ρred
ρnir + ρred

(1)

SI =
√

ρred × ρblue (2)

where ρnir, ρred, and ρblue are the reflectances of the corresponding band of Landsat images,
respectively. Based on the Google Earth Engine (GEE) platform, Landsat 8 OLI images
within the spatiotemporal range of this study have been screened, and quality control
conditions (including radiometric correction, atmospheric correction, and cloud correction)
were added to extract surface reflectance data for different bands. Due to that, the NDVI is
the normalized difference between the near-infrared band and red band; the normalized-
Difference function of GEE is used to calculate the NDVI and generate new raster images.
Similarly, the arithmetic square root of the product of red band reflectance and blue band
reflectance is used to calculate the salinity index.

In the two-dimensional feature space trajectory of vegetation greenness and soil salt,
there is a significant nonlinear relationship between the NDVI and SI, and the distance to
the extremum point can indicate the degree of soil salinization, where the extremum point
means that the NDVI achieves 1 and the SI achieves 0. The NDVI and SI obtained from
spectral data are used to calculate the SDI, as shown in Formula (3) [26].

SDI =
√
(NDVI − 1)2 + SI2 (3)

The spectral reflectance from original Landsat 8 OLI images with a spatiotemporal
resolution of 16 days and 30 m is synthesized to a monthly scale and resampled to a spatial
resolution of 1 km. At the same time, a bilinear interpolation towards 1 km has also been

http://data.tpdc.ac.cn
http://www.ncdc.ac.cn
https://cds.climate.copernicus.eu
https://gaez.fao.org/pages/hwsd
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performed on soil moisture data from the ERA5-Land meteorological reanalysis dataset to
ensure consistent resolution.

2.3. Geostatistical Methods
2.3.1. Spatiotemporal Variation

The spatial characteristics of soil water and salt elements during the study period were
determined using Sen’s slope trend test [38], expressed as Formula (4).

θ = mean
( xj − xi

j − i

)
, j > i (4)

where θ is the calculated Sen’s slope and xi and xj are the values at times i and j within the
dataset. In addition, a two-tailed t-test is used to verify the robustness, and the results with
p < 0.05 are defined as significant variation trends at a 95% confidence interval.

Meanwhile, the Z-score standardization method was used to observe the temporal
changes in time-series data, expressed as Formula (5).

ϵstandardized =
ϵ − µ

σ
(5)

where ε refers to time-series data, µ is the average value, and σ is the standard deviation. The
calculated εstandrdized can standardize the raw data, that is, convert it into a dimensionless
relative position to the mean so that comparisons can be made among different datasets.

2.3.2. Quantitative Contribution

Multiple linear regression can quantify the impact of soil moisture across layers on
surface salinization [39], expressed as Formulas (6) and (7).

SDI =
n

∑
m=1

βmxm + b (6)

β =
(

XTX
)−1

XTy (7)

where each xm represents a normalized independent variable aiming for the normalized
SDI, which refers to soil moisture across layers in this study; n denotes the total number of
variables; b is the constant term; X is a correlation matrix while y is a scalar of the matrix;
and β is the regression coefficient of the linear regression model.

Ridge regression was used to determine the relative and absolute contribution rates
of each soil moisture to the SDI [40]; moreover, the dominant factors were identified by
comparing the contribution rates [41] and can be calculated together.

Ym =
n

∑
i=1

aiXim + d (8)

ηc1 = a1 × X1s_trend (9)

ηrc1 =
|ηc1|

|ηc1|+ |ηc2|+ |ηc3|+ · · · (10)

ηac =
ηc1

Yn_trend
× Ytrend (11)

where Ym is the normalized dependent variable, Xim is the normalized independent vari-
ables, ai is the regression coefficient, d is the residual, X1s_trend is the variation trend in the
first variable, and Ytrend and Yn_trend are the variation trends in specific dependent variables
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and all dependent variables, respectively. Finally, ηrc1 is the relative contribution and ηac is
the absolute contribution amount.

2.3.3. Windowed Cross Correlation

The windowed cross correlation (WCC) method was developed to analyze the associa-
tion between cyclically varying covariates with a time effect [42]. When generic variable
B responds within a certain period of time after generic variable A changes, it can be
considered that B lags behind A and vice versa [43]. Therefore, the cross correlation of two
time-series datasets (X, Y) is given by

r(X, Y, m) =
1

N − m

N−m

∑
i=1

(
Xi − X

)(
Yi − Y

)
var(X) var(Y)

(12)

where m denotes the lag window in months within N. X and Y represent two variables,
while var(X) and var(Y) mean the standard deviations, respectively.

2.3.4. Statistical Machine Learning

As a robust tool for driving factor identification in geostatistical methods, the random
forest algorithm of machine learning evaluates the importance of each feature by reducing
the impurity caused during the construction of decision trees, which divided the dataset by
bootstrap resampling and calculated the mean decrease accuracy (MDA) across all decision
trees [44,45].

Additionally, the SHapley Additive exPlanation (SHAP) is utilized to evaluate the
concise causality relationships between feature variables and is often used for further
descriptions of black box models such as random forests [46]. The SHAP method has been
widely adopted due to its ideal characteristics, including local accuracy, omission, and
consistency [47]. The bee colony graph obtained by SHAP analysis can display the global
distribution of feature variables and sort the feature variables from high to low according
to the average SHAP value.

3. Results
3.1. Interannual Trend

The interannual variation in the calculated SDI of the river basin in the northeast
Tibetan Plateau is investigated, as shown in Figure 2. In Figure 2a, it can be seen that the
extent of soil salinization roughly increases from southeast to northwest; more than 80%
of the areas in the Qaidam River Basin exhibit severe salinization or above, while nearly
75% of the areas in the Yellow River Basin are still at a relatively low risk of salinization.
Unlike the significant spatial pattern presented by these two basins, Hexi River Basin
remains consistent with the overall study area, manifested as a multi-level distribution of
soil salinization. Figure 2b shows the trend in soil salinization during the study period.
The extent of soil salinization in the northeast Tibetan Plateau has slightly increased from
2013 to 2023, with an average rate of 0.0079 decade−1. Meanwhile, from the perspective of
basin differentiation, areas with severe soil salinization are gradually weakening, while
areas with mild levels are worsening. Interestingly, the most notable increase is located at
the junction of the Hexi River Basin and the Yellow River Basin.

The interannual average and variation trend in soil moisture across layers are shown
in Figures 3 and 4. Accompanied by an increase in depth, soil moisture fluctuates and
increases from 0.2566 m3/m3 to 0.2874 m3/m3, meaning the deep soil becomes more
humid. The multi-year average of soil moisture values between basins are Qaidam, Hexi,
and Yellow in ascending order, which is exactly opposite to the soil salinization extent.
Except for the Yellow River Basin, where all soil layers show an increasing trend in soil
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moisture, other basins and the whole study area have experienced a gradation of first
drying and then wetting along the soil profile. The soil layer with abrupt changes between
basins is different, and the whole study area undergoes changes in the Level 2 layer, while
in Qaidam River Basin, it is the Level 3 layer; eventually, Hexi River Basin shows a Level 4
layer below the crop root zone.
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To facilitate a more comprehensive comparison of the dynamic changes in soil water
and salt transport, the annual data have been standardized with the Z-score method, shown
in Figure 5. Although the variation trend in salt elements is relatively chaotic, there is
a common characteristic in soil moisture across layers such that the research period can
be divided into two different sub-periods. From 2013 to 2019, soil moisture shows an
increasing fluctuation, while it shows an opposite decreasing fluctuation from 2020 to 2023.
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3.2. Time Lag Correlation

A pixel-by-pixel comparison has been conducted on the correlation between soil
salinization and soil moisture across layers in the northeast Tibetan Plateau, and the results
are shown in Figure 6. Overall, the main associated factor of soil salinization in this region is
the Level 4 deep soil moisture, accounting for around 40% in all soil water and salt transport
processes. The areas with soil moisture above the root zone (from Level 1 to Level 3) as
the main parameter are mostly concentrated in the southeast and around Qinghai Lake.
Similarly with Level 4 soil moisture as the dominant factor, Qaidam River Basin has the
highest proportion, accounting for nearly half, followed by the Hexi River Basin (42%) and
the Yellow River Basin (34%). Compared to other basins, the special habitat of the Qaidam
River Basin leads to less disturbance from agricultural and pastoral activities, perhaps
making soil water and salt transport in the region inclining towards natural evolution,
causing Level 4 to become dominant in the transport process.
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Figure 6. Relative contribution of soil moisture across layers for soil salinization.

Figure 7 shows the result of a sliding window experiment at a month scale within
a complete hydrological year, and the time lag within one month to three months is
considered as the cumulative effect on one seasonal period. Therefore, the whole sliding
window period is divided into four seasonal duration periods. Different time lag results
mean that soil water transport processes require a corresponding lasting time, only then
leading to a feedback phenomenon of surface soil salinization. Compared with instant
correlation, there is a time lag effect in the Level 1 layer; nevertheless, as the sliding window
extends, the cumulative area proportion of the corresponding time lag effects in each
seasonal period remains at around 20%. The time lag effect of the Level 2 layer and Level 3
layer has the highest proportion in the duration of the two seasonal periods (30.96% and
27.80%, respectively); it is speculated that the salinization phenomenon caused by soil
water and salt transport affected by 7–100 cm soil moisture probably takes approximately
six months. At the same time, the lag effect of the Level 4 layer has the highest proportion
among the four seasonal periods (31.34%), suggesting that soil moisture below the crop
root zone requires longer transport times to cause feedback on surface salinization.
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3.3. Potential Driving Factor Analysis

Several studies have demonstrated that climate factors including runoff [48] and
surface solar radiation (SSR) [49], as well as soil texture including soil organic carbon
(SOC) [50] and cation exchange capacity (CEC) [51], can both affect soil water and salt
transport processes. Therefore, this study utilized the random forest algorithm and SHAP
analysis to explore the regulation effects of four variables on the SDI and Level 4 layer
deep soil moisture (DSM), which is the discovered critical element in the northeast Tibetan
Plateau, including runoff, SSR, SOC, and CEC, as mentioned earlier.

Figure 8a,b shows the feature importance and the summary plot obtained from the
experiment with the SDI as the explained variable, respectively. For the SDI, the feature
importance from highest to lowest ranks as SOC > runoff > SSR > CEC. When SOC and
runoff values increase, the negative regulation on the SDI becomes more pronounced,
indicating that an increase in soil organic carbon and runoff is beneficial for alleviating
soil salinization. When discussing DSM, runoff becomes the most critical variable with
an explanatory power of over 80%, followed by SSR, while the two types of soil texture,
SOC and CEC, have a non-significant influence, shown in Figure 8c. An increase in runoff
will promote the humidification in deep soil, and the stable wetting phenomenon at lower
surface solar radiation levels will be disrupted as radiation levels increase, inferred from
Figure 8d.
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Figure 8. Driving factor identification combined machine learning for the salinization detection
index (SDI) and deep soil moisture (DSM). Each row in the figure represents a feature, with the
horizontal axis representing the SHAP value, and the features are sorted from high to low based on
the absolute average SHAP value. The redder the color, the greater the numerical value of the feature
itself, whereas a bluer color means the smaller the numerical value of the feature itself. Wide areas
indicate a large concentration of samples.

When the soil organic carbon content is low, the soil structure becomes more compact,
resulting in an uneven water infiltration. Soil salt accumulates on the surface as water
evaporates, leading to an increase in surface soil salinity. In areas with relatively flat
terrain or strong permeability, a large amount of infiltration is accompanied by runoff.
Along with the infiltration into shallow soil, water can be more effectively transported
to deep soil through the synergistic effect of gravity and capillary forces, promoting soil
humidification. Therefore, using the dominant factors as environmental indicators can
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scientifically understand its importance in maintaining regional soil water and salt balance,
which has profound significance for ecological balance and sustainable development.

Furthermore, two climate factors have both spatial and temporal characteristics; simi-
larly to soil water and salt elements, an in-depth exploration is conducted with the help of
SHAP analysis, as shown in Figure 9. There is an evident negative relationship between
runoff and the SDI, which means that the soil salinization extent gradually improves as
runoff increases. After exceeding 4.08 m of equivalent, the increase in runoff at this time
will lead to a significant decrease in the SDI. Simultaneously, the relationship between the
SDI and SSR is mainly positive, indicating that high-intensity solar radiation can exacerbate
soil salinization, while this intensification phenomenon will weaken after 150.15 W·m−2.
Additionally, when runoff exceeds 3.91 m of equivalent, the deep soil humidification effect
caused by increased runoff will become more pronounced. Similarly to it, the increase in
surface solar radiation induces deep soil drying, and the threshold point for intensification
appears at 141.62 W·m−2.
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4. Discussion
4.1. Result Robustness

As a satellite image covering the globe, the Landsat series has been proven to be a
reliable basis for soil salinization mapping [52] and has empirical cases in specific areas [53].
Considering that there are no publicly available measured data on soil salinization in
the Tibetan Plateau from 2013 to 2023, we have obtained the soil salinization observation
data in the Syr Darya River Basin on May 2017 from the National Tibetan Plateau/Third
Pole Environment Data Center (https://doi.org/10.11888/Soil.tpdc.270458, accessed on
21 November 2024). The observed values of soil salinization are processed, analyzed,
and organized in accordance with the provisions of the agricultural industry standards
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of the People’s Republic of China (NY/T 1121.16-2006, Soil Testing Part 16: Method for
determination of total water-soluble salt). Meanwhile, the salinization detection index
has been calculated by the spectral data of the Landsat 8 OLI images within the region
and has been compared with observation data at the same latitude and longitude position.
The coefficient of determination (R2) between the model results and the observed values
achieves 0.7334 at a 95% confidence interval, as seen in the Supplementary Information,
which indicates the goodness and accuracy of the salinization prediction. Similarly, utilizing
the ERA5-Land reanalysis dataset to evaluate multiple profiles of soil moisture in the
Tibetan Plateau has been strongly proven in several studies [54–56]. In comparison with
other meteorological datasets, ERA5-Land also exhibits high accuracy, which achieves a
correlation coefficient of above 0.7 with measured soil moisture data in general [57].

Although the acquisition and processing of remote sensing spectral data and me-
teorological reanalysis datasets are proposed to deviate from actual values (inevitable
overestimation or occasional missing data), it remains a powerful explanatory tool. On
the whole, the coupling of Landsat 8 OLI images and ERA5-Land data can reveal the
spatiotemporal features of soil water and salt transport in the northeast Tibetan Plateau.

4.2. Fluctuation Similarity

The increase in soil moisture observed in the previous stage has also been validated in
other studies [58,59], and the response of potential water sources and evapotranspiration
conditions to climate change may be one of the reasons [60]. The increase in soil moisture
could indicate that the synergy between atmospheric circulation and monsoon movement
leads to the warming and humidification of Tibetan Plateau [61]. However, under the
influence of global warming, changes in atmospheric circulation patterns have led to
precipitation shortages and soil drought in the Tibetan Plateau [62]. This, together with
unreasonable agricultural and pastoral activities, lead to a decrease in soil moisture in the
second stage [63]. In addition, compared to the first three soil layers, the peak value of
the Level 4 soil layer moisture lags slightly behind. The presence of plateau soil organic
matter can alter soil properties and land atmosphere feedback, leading to the drying of near
surface soil but cooling of deep soil [64], ultimately resulting in a delayed drying response
of deep soil.

4.3. Dominant Factor Comparison

In previous studies, the dominant soil moisture which is most closely related to soil
salinization may vary depending on study sites and evaluation periods. A study conducted
in the Jiefangzha irrigation district of Inner Mongolia has demonstrated that the shallow
soil moisture significantly affects the groundwater reflux process, leading to differential
surface soil salinization [65]. However, in the Songnen Plain of Northeast China, which
is covered with permafrost, the response relationship between soil water and soil salt is
most significant at the critical soil freezing depth [66]. A field survey conducted in the
Ebinur Lake Wetland National Nature Reserve has shown that soil salinization is regulated
by deep soil moisture during the wet season and changes to shallow soil moisture during
the dry season [67]. In our study, deep soil moisture plays a significant dominant role in
regulating soil salinization in the northeast Tibetan Plateau. This may be related to the
active evapotranspiration phenomenon in the region, where deep soil moisture transport is
intensified to supply surface soil water and bring more soil salt to the surface.

4.4. Associated Ecological Threat

The transport of soil water and soil salt is crucial in plateau agroecosystems and is
extremely sensitive to rapidly developing global climate change [68]. High concentrations
of salt inhibit plant growth, leading to a decrease in vegetation coverage and species,
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often threatening the stability and biodiversity of plateau agroecosystems and inducing
more fragile habitats in the Tibetan Plateau [69]. With the continuous increase in salt
lake quantity on the Tibetan Plateau [70], a large amount of saline water in the lake has
overflowed [71], causing severe soil salinization and making it difficult for vegetation to
grow [72]. Desertification and soil erosion occur consequently [73], causing the loss of
mature substrate and declining fertility on the surface soil [74], further reducing the area
of arable land and hindering the sustainable development of agroecosystems [75]. These
together constitute the ecological threat of soil salinization for plateau agroecosystems;
therefore, clarifying the basic process of water and salt transport is of great significance.

5. Conclusions
As an important component of agroecosystems, the process of soil water and salt

transport determine soil endowment, and the associated soil salinization problem often
affects sustainable agriculture development at the regional scale. This study couples multi-
source remote sensing images to elucidate the regulation mechanism of soil salinization
among typical basins in the northeast Tibetan Plateau. Several analytical methods are
employed to comprehensively evaluate this complex process, such as spectral synthesis,
a trend test, attribution assessment, time lag analysis, and dominant factor identification.
The findings yield several key conclusions as follows:

(1) The soil salinization in the northeast Tibetan Plateau shows a space pattern increas-
ing from southeast to northwest, with differentiation among river basins. Different profile
data indicate that deep soil is more humid than shallow soil, and the variation trend is
mostly manifested as drying in the shallow layer and wetting in the deep layer gradually.

(2) The main associated element of soil salinization in this region is Level 4 soil moisture,
there is a time lag effect of soil moisture across layers on the regulation of soil salinization,
and the window period of time lag effect for deep soil moisture is longer correspondingly.

(3) The influence of various driving factors on soil salinization and deep soil moisture
are different. An increase in soil organic carbon and runoff helps alleviate salinization,
while habitat conditions with abundant runoff and low-level surface solar radiation are
more conducive to deep soil humidification.

Supplementary Materials: The relevant statements about the ground truthing of salinization detec-
tion index are shown in the supplementary information. The following supporting information can be
downloaded at: https://www.mdpi.com/article/10.3390/agriculture15010106/s1, Figure S1: Fitting
curve of measured soil salt content and calculated SDI; Table S1: Comparison between measured soil
salt content and calculated SDI.
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