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Abstract: Leaf chlorophyll content (LCC) and leaf area index (LAI) are crucial for rice
growth and development, serving as key parameters for assessing nutritional status,
growth, water management, and yield prediction. This study introduces a novel canopy
radiative transfer model (RTM) by coupling the radiation transfer model for rice leaves
(RPIOSL) and unified BRDF model (UBM) models, comparing its simulated canopy hyper-
spectra with those from the PROSAIL model. Characteristic wavelengths were extracted
using Sobol sensitivity analysis and competitive adaptive reweighted sampling methods.
Using these wavelengths, rice phenotype estimation models were constructed with back
propagation neural network (BPNN), extreme learning machine (ELM), and broad learning
system (BLS) methods. The results indicate that the RPIOSL-UBM model’s hyperspectra
closely match measured data in the 500–650 nm and 750–1000 nm ranges, reducing the root
mean square error (RMSE) by 0.0359 compared to the PROSAIL model. The ELM-based
models using the RPIOSL-UBM dataset proved most effective for estimating the LAI and
LCC, with RMSE values of 0.6357 and 6.0101 µg · cm−2, respectively. These values show
significant improvements over the PROSAIL dataset models, with RMSE reductions of
0.1076 and 6.3297 µg · cm−2, respectively. The findings demonstrate that the proposed
model can effectively estimate rice phenotypic parameters from UAV-measured hyperspec-
tral data, offering a new approach to assess rice nutritional status and enhance cultivation
efficiency and yield. This study underscores the potential of advanced modeling techniques
in precision agriculture.

Keywords: RPIOSL model; UBM model; LAI; LCC; UAV

1. Introduction
1.1. Importance of LCC and LAI

Leaf chlorophyll content(LCC) and leaf area index (LAI) are vital for rice growth and
development, serving as key indicators of the crop’s nutritional status [1–3]. Chlorophyll
absorbs light energy and converts it into chemical energy to promote photosynthesis and
absorbs different wavelengths of light and converts them into energy that can be used
by plants [4]. The lack of chlorophyll affects photosynthesis, leading to a decrease in
photosynthetic efficiency and affecting plant growth and development [5–7]. The LAI is
a measure of the density of the plant leaf area, which reflects the plant’s ability to absorb
light energy [8], and a higher LAI also helps to regulate the water balance of the plant,
while a lower LAI leads to a limitation of photosynthesis, affecting the plant’s growth and

Agriculture 2025, 15, 11 https://doi.org/10.3390/agriculture15010011

https://doi.org/10.3390/agriculture15010011
https://doi.org/10.3390/agriculture15010011
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0009-0000-5076-8809
https://doi.org/10.3390/agriculture15010011
https://www.mdpi.com/article/10.3390/agriculture15010011?type=check_update&version=4


Agriculture 2025, 15, 11 2 of 27

development and, then, affecting the yield of rice [9,10]. Therefore, monitoring the LCC
and LAI of rice leaves is important for understanding rice growth, water management, and
yield prediction, which can help improve the efficiency and yield of rice cultivation [11–13].

1.2. Rationale for Combining Radiative Transfer and Machine Learning Models

Hyperspectral imaging technology is increasingly used in agriculture and has become
an important driver of change in modern agriculture [14] . By obtaining spectral informa-
tion on crops, it is possible to accurately identify crop health, detect pests and diseases,
assess nutritional levels, and monitor water content [15–18]. Estimating the phenotypic
traits and nutrient elements of rice using hyperspectral data for diagnosing its nutritional
status has become a significant research topic for experts and scholars in the field of agri-
cultural information technology, both domestically and internationally [19]. At present, the
construction of models to estimate rice phenotypic parameters often adopts a data-driven
approach, which is mainly based on machine learning techniques, by constructing a veg-
etation index or screening characteristic wavelengths [20–22]. Although the data-driven
approach is simple and easy to implement, it is affected by multiple factors, such as test
locations, varietal differences, and data collection methods, so the generalizability of the
model is weak and lacks deep-level mechanistic explanations. In contrast, the crop ra-
diative transfer model (RTM) can emulate the reflectance of the crop canopy by entering
phenotypic parameters and explain the association between the spectra and thephenotypic
parameters from a mechanistic perspective [23]. Estimating the phenotypic parameters of
rice with the help of the RTM can help to make up for the deficiencies of the data-driven
approach in terms of mechanism and improve the explanatory power and generalization
ability of the estimation model.

1.3. Limitations of Current Methods

The RTM for vegetation leaves simulates the light transmission mechanisms within
the foliage, accurately reflecting and transmitting light based on the dynamic changes
in various components throughout plant growth [24,25]. The most typical leaf RTM of
vegetation is the PROSPECT model, which consists of four phenotypic parameters, that
is, structural parameters, chlorophyll, equivalent water thickness, and dry matter weight.
Jiang et al. proposed that the layered structure of the leaf blade caused the difference
in optical properties and proposed the FASPECT model, in which the upper and lower
surfaces of the leaf blade were symmetrically treated as a four-layer structure. Yu et al. [15]
adopted the same idea as that of the FASPECT model to construct the FASPECT model. The
same idea as in the FASPECT model was used to construct the PIOSL model [26]. Xiang
et al. [27] proposed the assumption of layered optical properties of the rice blade structure,
combined the PIOSL model based on the assumption of layered optical properties with
the structure of the rice blade, and proposed the RPIOSL model capable of simulating the
reflectance spectra of rice blades. The model was able to simulate the reflectance spectra of
rice leaves with more accuracy by entering the structural parameters of the stratification of
the rice leaf, the LCC, the equivalent thickness of water, and the weight of the dry matter.
The canopy RTM describes the propagation and interaction of light within the vegetation
canopy based on the bidirectional reflectance properties of the vegetation. This model is
grounded in the principles of physical optics and takes into account the structure of the
vegetation, as well as the processes of light absorption, scattering, and reflection. One
of the most well-known canopy RTMs is the SAIL model, which, when combined with
the PROSAIL leaf RTM, becomes one of the most commonly used mechanistic models for
describing the RT processes in vegetation canopies. However, this model is built on the
assumption that the canopy is uniformly distributed, which does not accurately reflect the
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condition of rice canopies during the early tillering stage. To address this limitation, Xu
et al. [28] developed a vegetation bidirectional reflectance distribution function (BRDF)
model based on geometric optics and re-aggregation probability theory, incorporating the
structural characteristics of row planting. They optimized the quantitative expression of
the optical properties of the canopy in a row structure and provided results for the canopy
BRDF model. Since RPIOSL optimizes the internal structure compared with the PROSPECT
model, so that the model results are more in line with the measured results of rice leaves,
and the UBM breaks the assumption that the vegetation canopy is uniformly distributed
compared with the SAIL model, and fully takes into account the structural characteristics
of the row structure of the row sown crops, the RPIOSL model coupled with the UBM
model was chosen to construct the simulation data set of rice canopy reflectance for the
present study. Therefore, in this study, the RPIOSL model coupled with the UBM model
was chosen to construct the rice canopy reflectance simulation data set.

Due to the complex non-linear relationship between hyperspectral data and pheno-
typic covariates, traditional linear regression methods have some limitations in dealing
with such problems [29,30]. However, neural networks have powerful nonlinear process-
ing capabilities, and, thus, have been widely used in research related to hyperspectral
estimation [31,32]. Luo et al. [33] successfully constructed a model for estimating antho-
cyanins in peony leaves by using hyperspectral data and employing multiple stepwise
regression (MSR), partial least squares (PLS), BPNN, and random forest (RF). In addition,
the broad learning system (BLS) proposed by Zhu et al. [34] used ridge regression approxi-
mation to compute the pseudo-inverse of the output weights and iteratively updated the
pseudo-inverse for regression prediction. Neural networks have the advantage of multiple
inputs and multiple outputs and are able to estimate multiple phenotypic covariates at the
same time; therefore, in this paper, BPNN, ELM, and BLS neural networks were used for
estimation to better deal with the complex nonlinear relationship between hyperspectral
data and phenotypic parameters.

1.4. Aim of the Study

Compared to multispectral data and RGB images, hyperspectral data provide richer
spectral information [35,36], effectively representing a wide range of plant phenotypic
traits [37–39]. However, these data also contain redundancy, as the features of adja-
cent wavelengths tend to be similar, leading to wasted computational resources and in-
creased model runtime, which limits the application of large-scale phenotypic parameter
estimation [40]. Therefore, extracting sensitive wavelengths for chlorophyll and leaf area
index (LAI) from hyperspectral data can significantly enhance the efficiency of estimation
models. To achieve this goal, this study proposes to employ the competitive adaptive
reweighted sampling (CARS) method combined with Sobol sensitivity analysis to extract
the sensitive wavelengths for chlorophyll and LAI. The extracted sensitive wavelengths
will be used to construct estimation models. The objective of this study is to develop a
fast, accurate, and mechanistic estimation model for rice leaf area index (LAI) and leaf
chlorophyll content (LCC) by integrating the advantages of data-driven methods with
radiative transfer models.

2. Materials and Methods
2.1. Overview of the Study Area and Experimental Design

The study area is located at the Precision Agriculture Aviation Research Base in
Gengzhuang Town, Anshan City, Liaoning Province, China (122◦43′33′′ E, 40◦58′43′′ N).
Gengzhuang Town has flat terrain, fertile soil, and a temperate continental monsoon
climate, which is characterized by four distinct seasons, the same rainy and hot seasons,
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concentrated precipitation, and abundant sunshine. The temperature difference is large.
The average annual precipitation os 652 mm, the average annual temperature is 8.4 ◦C, the
average annual sunshine hours is 3663 h, the annual effective cumulative temperature is
3400 ◦C–3500 ◦C, and the mean yearly frost-free duration is 165 d. The rice variety in the
test area is Shennong 9816, with a fertility period of about 157 d, which is a medium-late
maturing variety. The seedling leaf color is green, the leaf blade is straight, the plant shape
is compact, and the tillering capacity is a medium-strong, semi-upright spike type. The
experimental area was divided into 11 plots, and the management of all plots was the same,
as shown in Figure 1. The experiment was carried out twice in the field at the nodulation
and tasseling stages of rice, on 11 July and 15 August 2023, respectively, and representative
rice holes were selected to collect canopy spectra, which were analyzed in the laboratory to
determine the biochemical parameters. A total of 22 groups of samples were collected in
this study, with a digital footprint of 10 GB/ha [41].

Figure 1. Overview of the study area. (a) Vector map of Liaoning Province, with Anshan City in
the yellow area; (b) vector map of Anshan City, with Gengzhuang Town in the pink area; (c) map
of instrumentation, including the UAV hyperspectral acquisition system, the LAI 2200C, and the
visible-ultraviolet spectrophotometer; and (d) map of the experimental area, with the sampling areas
labelled 1–11 in the map.

2.2. Data Acquisition
2.2.1. Acquisition of Hyperspectral Data

Canopy hyperspectral acquisition was performed using a UAV-mounted imaging
hyperspectrometer (Dualix Spectral Imaging, Wuxi, China). A DJI M600 PRO rotor UAV
(DJI-Innovations Inc., Shenzhen, China) was used to carry a built-in GaiaSky-mini push-
scan airborne hyperspectral imaging system (Dualix Spectral Imaging, Wuxi, China), which
measured the spectral range of 400–1000 nm, with a spectral resolution of 3 nm, a spectral
sampling interval of 0.7 nm, and a flight altitude of 100 m. Under clear and cloudless
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weather conditions, with good midday light and low wind speeds, it is possible to ensure
both stable light and smooth UAV flight. The lens was calibrated with a white board on
the ground before measurement, and photos were taken with a standard white cloth for
post-collection reflectance calibration after takeoff. After take-off, photos with standard
white cloth were taken for post-collection reflectance calibration. The hyperspectral remote
sensing data from the UAV platform were collected between 11:00 and 13:00, and during
the measurement, the UAV flight speed was set to 2 m/s and the average flight time was
150 min/ha. In the process of data acquisition, the pilot manually controls the UAV hover;
the UAV hovered above the test plot and waited for the imaging to complete. Reflectance
calibrations and atmospheric corrections were made using the white cloth calibration
curve by selecting the captured image with the standard white cloth in the SpectView
software (Dualix Spectral Imaging, Wuxi, China). The sampling points were extracted
using ENVI5.3+IDL tool software (GeoScene Information Technology Co., Beijing, China),
and then, the spectra were resampled and smoothed using Gaussian smoothing method
using MATLAB R2023 software with a spectral sample interval of 5 nm after resampling.

2.2.2. Measurement of Sample Data

Data on biophysical and biochemical factors determined in this study included LAI,
leaf chlorophyll, equivalent water thickness, and dry matter content. The determination
methods were as follows:

• LAI: The LAI was measured using the LAI-2200C canopy analyzer (Li-Cor, Inc.,
Lincoln, NE, USA), and three LAI values were measured in each graph and then
averaged to represent the LAI of the graph; the specific formula is as in Equation (1).

LAI =
LAI1 + LAI2 + LAI3

3
, (1)

Among them, LAI1 is the first measured LAI, LAI2 is the second measured LAI, and
LAI3 is the third measured LAI.

• LCC: A rice leaf was sampled, and its maximum length and width were measured to
calculate the average leaf area.

Alea f = a ∗ b ∗ 0.7746 (2)

where a is the maximum length of leaves, b is the maximum width of leaves, and
0.7746 is the leaf area correction coefficient of rice leaves. A weight of about 0.1 g of
fresh rice leaf sample was put into a grinding container, a little quartz sand was added,
and the mixture was ground into a homogeneous paste; grinding continued until the
tissue became obviously white, and then, it was put on the table to stand. A piece
of filter paper was placed in a funnel, the filter paper was moistened with a small
amount of ethanol solution, and the extract was slowly injected into the funnel using
a glass rod, filtered into a 50 mL volumetric flask. The mantle, the grinding rod, and
the glass rod were rinsed with a small amount of ethanol solution, and finally, poured
together into a volumetric flask. When it reached the 50 mL mark the volume was
fixed at 50 mL by using a rubber burette, and was shaken well. The solution was kept
in the dark for up to 24 h (to prevent chlorophyll degradation) until all the chlorophyll
had been extracted and a small amount of chlorophyll extract was taken up with
a rubber burette and dropped into a colorimetric cup of 1 cm diameter. As blank
solution, 95% ethanol was taken and the absorbance of the liquid fraction containing
chlorophyll at 665 nm and 649 nm wavelengths was quantified using uv1800pc UV-Vis
spectrophotometer (Macylab Instrument Co., Shanghai, China). The concentration
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values of chlorophyll a and chlorophyll b were calculated using Equations (3) and (4)
and then converted to µg·cm−2 unit [27,42].

Ca = 13.95 ∗ A665 − 6.88 ∗ A649 (3)

Cb = 24.96 ∗ A649 − 7.32 ∗ A665 (4)

where A665 indicates the absorbance of the 665 nm sample and A649 indicates the
absorbance of the 649 nm sample, Ca is the content of chlorophyll a, Cb is the content
of chlorophyll b, and LCC is equal to the sum of chlorophyll a and chlorophyll b.

• Equivalent water thickness: A rice leaf was first weighed for its fresh weight M f resh,
then, placed in an oven at 105 ◦C for 30 min, and subsequently, dried at 70 ◦C until
a constant weight was achieved. The dried leaves were reweighed to obtain the dry
matter weight Mdry and the equivalent water thickness of the leaves was calculated
using Equation (5).

Cw =
(

Mdry − M f resh

)
/Alea f (5)

• Dry matter content: Dry matter content was calculated based on the dry matter weight
Mdry and the average leaf area Alea f .

Cm = Mdry/Alea f (6)

2.3. Methodology
2.3.1. The RPIOSL Model

The RPIOSL model is a sophisticated radiation transfer model tailored for rice leaves,
created by refining the parameters of the PIOSL model. Leveraging the Non-dominated
Sorting Genetic Algorithm-III (NSGA-III) for parameter optimization, the RPIOSL model
precisely simulates the complex processes of light reflection, scattering, and transmission
within rice leaves. This model is pivotal in advancing our understanding of the optical
properties of rice leaves, thereby enabling the development of highly accurate hyperspectral
detection methods for evaluating the physical and chemical parameters of rice. Its applica-
tion is instrumental in enhancing the monitoring, management, and overall productivity of
rice crops, making it a valuable tool for modern agricultural practices.

In this study, both field observations and insights from the existing literature were em-
ployed to establish the range of input parameters for the RPIOSL model. These parameters
are detailed in Table 1, providing a comprehensive foundation for the model’s accurate
simulation of light interactions within rice leaves.

Table 1. RPIOSL parameter list.

Parameter Symbol Scope Unit

Structural parameters of the first-layer blade N1 1–3
Structural parameters of the second-layer blade N2 1–3

Leaf chlorophyll content Cab 0–100 µg·cm−2

Leaf moisture content Cw 0.004–0.04 µg·cm−2

Leaf dry matter content Cm 0.0019–0.0165 µg·cm−2

The leaf chlorophyll ratio between the first and second layers Cab12 0–1
The leaf water ratio between the first and second layers Cw12 0–1

Leaf dry matter ratio between the first and second layers Cm12 0–1

2.3.2. Unified BRDF Model for Plants

The Unified BRDF model (UBM) gives an analytical expression of the primary and mul-
tiple scattering reflectance for different incident light conditions and vegetation types [28].
Based on geometrical optics, the foothold is shifted from the tree canopy to the vegetation
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elements, and the nonisotropic character of the primary scattering term is attributed to the
geometrical relationship between the sun-target sensor, the multiscale cluster superposition,
and the ratio of the direct sun and sky scattering to the irradiance of the target. As different
vegetation types are the result of multiscale cluster superposition, the method of obtaining
the four-component area ratio is re-given based on Poisson distribution, so that it is appli-
cable to various vegetation types, and then, an approximate analytical expression for the
primary scattering term is obtained. With the help of the theory of “recollision probability”,
the multiple scattering processes within the canopy and between the canopy and the soil
are considered, the formation principle of the multiple scattering term is revealed, and the
model parameters are shown in the Table 2.

Table 2. UBM parameter list.

Parameter Symbol Scope Unit

Leaf area index LAI 1–8
Zenith angle θi 0–90 ◦

Observational angle θv 0–90 ◦
Plant height H 0.1–2.5 m

Gathering index Clup 0–1
Sky-scattered light ratio β 0–1

G function G 0.5
Background reflectivity background_re f lectance 0–1

2.3.3. The PROSAIL Model

The PROSAIL RTM integrates the PROSPECT leaf optical model with the BRDF SAIL
model of the vegetation canopy [43], and has been extensively utilized in recent years for
estimating vegetation canopy parameters. The PROSPECT model conceptualizes the leaf
structure as a multilayered flat plate with rough surfaces. It generates the reflectance and
transmittance of leaves across different spectral bands through a sophisticated simulation
process that requires the input of various leaf biochemical parameters, such as LCC, dry
matter content, equivalent water thickness, and structural parameters.

Conversely, the SAIL model assumes a homogeneous vegetation canopy with leaves
exhibiting uniform characteristics in all directions. It is grounded in the theory of RT
equations. The reflectance and transmittance outputs from the PROSPECT model serve as
inputs for the SAIL model, which then simulates the vegetation structure as a multilayered,
rough-surfaced flat plate. This simulation process accurately reproduces the RT phenomena,
including multiple reflections and scattering within the vegetation canopy. The parameters
used in the model are detailed in Table 3.

Table 3. PROSAIL parameter list.

Parameter Symbol Scope Unit

Leaf structure parameters N 1–3
Leaf chlorophyll content Cab 0–100 µg·cm−2

Leaf moisture content Cw 0.004–0.04 g · cm−2

Leaf dry matter content Cm 0.0019–0.0165 g · cm−2

Leaf area index LAI 1–8
Zenith angle tts 0–90 ◦

Observational angle tto 0–90 ◦
Relative azimuth angle psi 0–360 ◦

Type of leaf inclination angle distribution TypeLIDF 1/2
Agrotype rsoil 1/2

Hot parameter hspot 0–1

2.3.4. Extraction of Hyperspectral Characteristic Wavelengths

Competitive adaptive reweighting sampling (CARS) is a statistical method tailored for
variable selection, particularly effective in high-dimensional data analysis such as chemo-
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metrics and bioinformatics involving spectral data [44]. The essence of CARS lies in its
iterative and adaptive approach to reducing the number of unimportant variables through
a competitive process. This enhances both the predictive performance and interpretability
of models. CARS excels in handling high-dimensional datasets by minimizing redundancy
and noise, thereby improving the accuracy and robustness of predictive models. Its adap-
tive adjustment and competitive mechanism allow CARS to dynamically customize the
variable selection process based on the data’s characteristics, resulting in more precise and
reliable outcomes.

2.3.5. Machine Learning Methods

• Back propagation neural network: The core advantage of the BPNN algorithm lies in
the process of the forward propagation of data and backward propagation of errors,
and the use of gradient descent to continually adjust the connection weights and
thresholds between neurons in order to bring the results of the network’s output
layer closer and closer to the desired value. Among many artificial intelligence
or neural network algorithms, BPNNs are able to deeply mine, identify, and learn
multidimensional nonlinear relationships embedded in massive data. Therefore,
with the help of the BPNN’s ability to learn intelligently, model highly, and predict
accurately in the face of complex multidimensional nonlinear relationships, an attempt
can be made to establish an intelligent prediction method, the network structure
diagram is shown in Figure 2.

Figure 2. Schematic of BPNN, where blue is the input layer, pink is the implied layer, orange is the
output layer, x1, x2 · · · xN is the input variable, y1, y2 · · · yN is the intermediate variable, Z1, Z2 · · ·
ZN is the output variable, and wih, whj is the weight.

• Extreme learning machine: The extreme learning machine (ELM) is an efficient al-
gorithm designed for the rapid training of feedforward neural networks, offering
significantly faster learning speeds compared to traditional methods. It operates by
randomly generating the weights and biases of the hidden layer and, then, directly
computing the output layer weights using the least squares method, thereby greatly
simplifying the training process. Unlike traditional neural networks, the ELM does
not require iterative optimization, which avoids the local minima issues of gradient
descent and significantly accelerates training [45]. Renowned for its speed, simplicity,
and robust generalization capabilities, the ELM is widely utilized in a range of ma-
chine learning tasks, such as classification, regression, and feature learning, due to its
efficiency and rapid training capabilities. Its efficiency in handling large-scale datasets



Agriculture 2025, 15, 11 9 of 27

and real-time applications makes the ELM a highly effective and practical approach to
neural network training [46]. The network structure is illustrated in Figure 3.

Figure 3. Schematic diagram of the ELM, where blue is the input layer, pink is the hidden layer,
orange is the output layer, 1 · · · D is the input variable, 1 · · · L is the intermediate variable, 1 · · · m
is the output variable, and ωL, bL is the weight.

• Broad learning system: The broad learning system (BLS) is a single-layer incremental
learning framework that offers rapid convergence and high accuracy, distinguishing
it from traditional deep network models. Its incremental learning capability allows
the network model to efficiently scale with growing datasets [34,47]. BLS employs a
horizontal scaling strategy, utilizing input-mapped features as the network’s feature
nodes. These nodes are then expanded into augmentation nodes with randomly
generated weights. Both the mapped features and augmentation nodes are directly
connected to the outputs, and the corresponding output coefficients are determined
using the pseudo-inverse method [48,49]. Therefore, upon the introduction of new
neural nodes (including newly incorporated feature nodes), BLS circumvents the ne-
cessity for retraining from the ground up. Instead, it merely requires the recalibration
of the weights corresponding to the newly added nodes, facilitating rapid incremental
learning. The network structure is depicted in Figure 4.

Figure 4. Schematic diagram of BLS. (a) Schematic diagram of a neural network connected by
traditional random vector functions, where blue is the input layer, pink is the enhancement node,
and orange is the output layer; and (b) schematic diagram of BLS, including the input layer, feature
nodes, enhancement nodes, and the output layer.
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2.3.6. Construction of the Model

In this study, 50,000 sets of parameters corresponding to the model were randomly
generated based on the measured ranges of physical and chemical parameters based on
the PROSAIL model and the RPIOSL-UBM model, respectively. Based on the measured
canopy spectra and physicochemical parameter data, the unknown parameters (e.g., N1,
N2, etc.) in the RPIOSL model were optimized using the NSGA-III optimization algorithm,
and the specific optimization steps are shown in Figure 5.

Figure 5. Parameter optimization flowchart. Based on the parameters in the measured data as
well as the measured spectral data, the parameters (N1, N2, etc.) were optimized based on the
NSGA-III optimization algorithm with the model output spectra and the measured spectral errors as
evaluation indexes.

Based on the optimized parameters as well as the measured parameters, the dataset
is screened so that the model parameters match the measured data. Sensitivity analyzes
of the two RTMs were performed using the Sobol sensitivity analysis method, and the
characteristic wavelengths were screened based on the competitive adaptive reweighted
sampling method. After the feature wavelengths and parameters screened were randomly
divided according to the 7:3 ratio for the training set, the test set, LAI, and LCC were
estimated and modeled using the BP neural network, ELM, and BLS, respectively, and
precision was verified and evaluated using the measured hyperspectral data from the
UAV. Among them, the evaluation indexes of the estimation model are R2 and RMSE, and
the model accuracy validation index is the RMSE of the measured data.The technology
roadmap is illustrated in Figure 6.

R2 = 1 −
(

∑
i

(
yi − y′i

)2/n

)
/

(
∑

i
(yi − ȳ)2/n

)
(7)
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RMSE =

√
∑

i

(
yi − y′i

)2/n (8)

where yi and y′i represent the measured and simulated values, respectively; ȳ is the mean
value of measurement; and n is the sample size.
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rice canopy spectra, respectively. In both models, the same values were used for the same
input parameters (e.g., LAI, LCC, equivalent water thickness, dry matter weight). In
addition, the solar zenith angle and observed azimuth angle were also consistent with the
measured data. The simulation outcomes are illustrated in Figure 7, and are analyzed in
comparison with the measured data. Since the SAIL model is constructed based on the
assumption of a uniformly distributed vegetation canopy, the simulation results of the
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3. Results
3.1. Spectral Simulation Results

In this study, the RPIOSL-UBM model and the PROSAIL model were used to simulate
rice canopy spectra, respectively. In both models, the same values were used for the same
input parameters (e.g., LAI, LCC, equivalent water thickness, dry matter weight). In
addition, the solar zenith angle and observed azimuth angle were also consistent with the
measured data. The simulation outcomes are illustrated in Figure 7, and are analyzed in
comparison with the measured data. Since the SAIL model is constructed based on the
assumption of a uniformly distributed vegetation canopy, the simulation results of the
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SAIL model in the near-infrared band range will be biased higher than those of the UBM
model and the measured data, as discussed in the analysis in Section 4.1. The RMSE of the
model simulation results in the critical band range is shown in Table 4.

400 500 600 700 800 900 1000
0.0

0.1

0.2

0.3

0.4

R
ef
le
ct
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ce

Wavelength(nm)
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Figure 7. Spectral simulation and sensitivity analysis results.

Table 4. RMSE of model simulation results in the critical band range.

450–700 nm 800–1000 nm

RPIOSL-UBM 0.0089 0.0082
PROSAIL 0.0115 0.0655

As illustrated in Figure 7 and Table 4, the spectral simulation performance of the
RPIOSL-UBM model surpasses that of the PROSAIL model. Notably, the spectra generated
by the RPIOSL-UBM model exhibit a closer alignment with the measured spectra. The
RMSE of the simulation results in the range of 400–1000 nm for the RPIOSL-UBM model
is 0.0086, compared to 0.0446 for the PROSAIL model. This represents a reduction in
the RMSE of 0.0359 for the RPIOSL-UBM model, indicating a substantial improvement
in simulation accuracy. Moreover, there is a large reduction in the RMSE in both the
450–700 nm and 800–1000 nm band ranges separately.

3.2. Feature-Wavelength Extraction Results

In this study, sensitivity analyses of the two RTMs were conducted independently
using the Sobol sensitivity analysis method. The results of these analyses are presented in
Figure 8. The sensitivity analyzes were mainly carried out on rice phenotypic covariates,
and some of the optically related parameters were not subjected to sensitivity analyses. As
depicted in Figure 8a,b, the RPIOSL-UBM model shows that chlorophyll-sensitive bands are
primarily located between 400 and 750 nm, while LAI-sensitive bands span the entire range
from 400 to 1000 nm, with higher sensitivity observed in the 750–1000 nm range compared
to the 400–750 nm range. In contrast, the PROSAIL model indicates that chlorophyll-
sensitive bands are mainly confined to the 400–750 nm range, and LAI-sensitive bands are
predominantly found in the 750–1000 nm range.
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Figure 8. Graph of the sensitivity analysis results, where (a) shows the RPIOSL-UBM model sensitivity
analysis results and (b) shows the PROSAIL model sensitivity analysis results.

In this study, the parameter sets simulated by the two RTMs were screened using
measured data, the training and validation datasets were constructed, and the characteristic
wavelengths of LAI and LCC were extracted by the competitive adaptive reweighted
sampling method, respectively. The LAI and LCC and their corresponding spectral data
were subjected to the CARS variable selection process 50 times, respectively, repeatedly
selecting the number of generation sampling times and comparing the RMSECV values of
each sampling until the optimal subset of variables contained in the smallest RMSECV value
was found. The results of feature selection are shown in Figure 9, where 24 chlorophyll
feature wavelengths were selected in the RPIOSL-UBM model, namely 415, 430, 435, 440,
445, 465, 470, 480, 530, 535, 540, 575, 580, 585, 590, 620, 680, 780, 820, 830, 860, and 870 nm;
15 LAI characteristic wavelengths were selected, which were 425, 440, 535, 560, 580, 645,
720, 745, 750, 765, 815, 825, 850, 855, and 865 nm. A total of 19 chlorophyll characteristic
wavelengths were screened in the PROSAIL model, which were 400, 410, 415, 430, 435, 440,
445, 450, 475, 485, 490, 500, 510, 560, 615, 650, 665, 695, and 700 nm; and 13 LAI characteristic
wavelengths were screened as 765, 770, 775, 790, 800, 860, 865, 870, 880, 915, 920, 940, and
945 nm. In the PROSAIL model, the results after feature wavelength extraction using CARS
are consistent with the sensitivity analysis results. However, in the RPIOSL-UBM model,
the extracted chlorophyll characteristic wavelengths contained wavelengths between 750
and 1000 nm, which was inconsistent with the sensitivity analysis results. Therefore, in
this study, the 780 nm, 820 nm, 830 nm, 860 nm, and 870 nm data in the RPIOSL-UBM
model were removed, and only the characteristic wavelengths in the wavelength range of
400–750 nm were used for modeling.
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Figure 9. Graphs of feature wavelength screening results, where (a,b) are the LCC feature wavelength
results based on the RPIOSL-UBM model screening; (c,d) are the LAI feature wavelength results
based on the RPIOSL-UBM model screening; (e,f) are the LCC feature wavelength results based on
the PROSAIL model screening; (g,h) are the PROSAIL model-based screening LAI characteristic
wavelength results; (i) is a schematic diagram of the LCC characteristic wavelength band of the two
RTMs; and (j) is a schematic diagram of the LAI characteristic wavelength band of the two RTMs.
The pink lines in (b,d,f,h) respectively correspond to the minimum RMSECV in (a,c,e,g).

3.3. Model Results Based on BPNN Method

To develop a rice phenotypic parameter estimation model for predicting LCC and LAI,
a BPNN model was employed. The dataset was divided into training and test sets in a
7:3 ratio and validated using measured data. Due to the differing mechanisms of the two
RTMs, the number of neurons required in the hidden layer for the estimation models varied.
For the LAI estimation models based on the RPIOSL-UBM and PROSAIL datasets, the
number of hidden layer neurons ranged from one to si. For the LCC estimation models, the
number of neurons in the hidden layer ranged from 10 to 60 for both datasets. The training
results are illustrated in Figure 10, which presents the evaluation metrics. The primary
focus of this study is on the validation results using the measured dataset, as the goal is to
develop a practically applicable rice phenological parameter estimation model. The graphs
reveal that the optimal LAI estimation model, derived from the RPIOSL-UBM dataset,
was attained with the incorporation of four hidden layer neurons, yielding an RMSEreal

of 1.4288. For the PROSAIL dataset, the best LAI estimation model was obtained with
one hidden layer neuron, resulting in an RMSEreal of 3.5525. Regarding LCC estimation,
the optimal model based on the RPIOSL-UBM dataset was achieved with 60 hidden layer
neurons, with an RMSEreal of 18.08 µg·cm−2. The best model based on the PROSAIL dataset
was obtained with three hidden layer neurons, resulting in an RMSEreal of 14.5123 µg·cm−2.
In summary, the BPNN model demonstrated that the LAI estimation model constructed
using the RPIOSL-UBM dataset and the LCC estimation model constructed using the
PROSAIL dataset performed the best (Table 5).
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Figure 10. BP neural network-based estimation of LAI and LCC result plots, where (a–f) are based
on the RPIOSL-UBM model to estimate LAI result plots, with the number of implied layers from
1–6, respectively; (g–l) are based on the RPIOSL-UBM model to estimate LCC result plots, with the
number of implied layers from 10–60, respectively; (m–r) are the result plots of estimated LAI based
on the PROSAIL model, with the depth of hidden layers from 1–6, respectively; and (s–x) are the
result plots of estimated LCC based on the PROSAIL model, with the depth of hidden layers from
1–6, respectively.

Table 5. Table of results of estimating LAI and LCC evaluation indexes based on BPNN.

Model Evaluation Indicator 1 2 3 4 5 6

LAI

RPIOSL-UBM

Train set R2 0.8476 0.9864 0.7484 0.7081 0.9354 0.7478
Test set R2 0.8106 0.9785 0.6871 0.6401 0.8655 0.6720

Train set RMSE 0.74 0.2201 0.9460 1.0279 0.4793 0.9468
Test set RMSE 0.8461 0.2846 1.0847 1.1719 0.7202 1.1067
Real set RMSE 5.7549 3.9280 3.4980 1.4288 9.0464 2.5146

PROSAIL

Train set R2 0.9991 0.9997 0.9997 0.9997 0.9996 0.9996
Test set R2 0.9988 0.9997 0.9996 0.9995 0.9995 0.9994

Train set RMSE 0.0515 0.028 0.0279 0.0313 0.0325 0.0334
Test set RMSE 0.0593 0.029 0.0317 0.0389 0.0387 0.0408
Real set RMSE 3.5525 4.5736 6.4012 5.7027 6.0567 6.2243

LCC

RPIOSL-UBM

Train set R2 0.7228 0.7033 0.6692 0.7135 0.7071 0.6756
Test set R2 0.6012 0.6147 0.6036 0.6369 0.6194 0.6258

Train set RMSE 5.6530 5.8467 6.1743 5.7407 5.8084 6.1070
Test set RMSE 7.0133 6.6393 6.7994 6.3914 6.6278 6.4353
Real set RMSE 37.5623 22.9874 19.0587 26.2064 29.0904 18.0800

PROSAIL

Train set R2 0.9994 0.9993 0.9993 0.9994 0.9994 0.9993
Test set R2 0.9993 0.9992 0.9993 0.9994 0.9994 0.9993

Train set RMSE 0.2490 0.2631 0.2558 0.2443 0.2435 0.2503
Test set RMSE 0.2657 0.2896 0.2677 0.2516 0.2582 0.2690
Real set RMSE 19.7256 54.3931 14.5123 16.1608 14.9091 15.9118
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3.4. Model Results Based on ELM Method

To develop a rice phenotypic parameter estimation model for predicting the LCC and
LAI, the ELM model was employed. The dataset was partitioned into training and test sets
in a 7:3 ratio and validated against empirical data. Due to the differing mechanisms of the
two RTMs, the number of neurons required in the hidden layer varied. For the LAI and LCC
estimation models based on the RPIOSL-UBM dataset, the number of hidden layer neurons
ranged from 10 to 60, whereas for the models based on the PROSAIL dataset, the number
of neurons ranged from one to five and included 10. The results of the model training, as
depicted in Figure 11, indicate that the LAI estimation model utilizing the RPIOSL-UBM
dataset achieved optimal performance with 10 neurons in the hidden layer, achieving an
RMSEreal of 0.6357, while the PROSAIL-based model performed best with two neurons,
achieving an RMSEreal of 0.7433. Similarly, the LCC estimation model using the RPIOSL-
UBM dataset was optimal with 10 neurons, achieving an RMSEreal of 6.0101 µg·cm−2,
whereas the PROSAIL-based model was optimal with one neuron, achieving an RMSEreal of
12.5478 µg·cm−2. Overall, the ELM model showed that the estimation models for LAI and
LCC constructed using the RPIOSL-UBM dataset were the most effective, outperforming
those based on the PROSAIL dataset (Table 6).
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Figure 11. Estimated LAI and LCC result plots based on ELM, where (a–f) are estimated LAI result
plots based on the RPIOSL-UBM model, with the depth of hidden layers from 10–60 respectively;
(g–l) are estimated LCC result plots based on the RPIOSL-UBM model, with the depth of hidden
layers from 10–60 respectively; (m–r) are estimated LCC result plots based on the PROSAIL model
estimated LAI result plots, with the depth of hidden layers from 1–5 and 10, respectively; and (s–x)
are estimated LCC result plots based on the PROSAIL model, with the depth of hidden layers from
1–5 and 10, respectively.
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Table 6. Table of results of estimating LAI and LCC evaluation indexes based on ELM.

Model Evaluation Indicator 1 2 3 4 5 6

LAI

RPIOSL-UBM

Train set R2 0.4369 0.6088 0.7128 0.7390 0.7776 0.8071
Test set R2 0.3373 0.5151 0.6158 0.6622 0.6879 0.7140

Train set RMSE 1.4139 1.1785 1.0098 0.9627 0.8886 0.8276
Test set RMSE 1.5739 1.3470 1.2025 1.1272 1.0799 1.0348
Real set RMSE 0.6357 0.6672 0.7760 0.9928 1.7747 1.9839

PROSAIL

Train set R2 0.6612 0.6813 0.7009 0.8065 0.9847 0.9988
Test set R2 0.6021 0.6253 0.6545 0.7897 0.9783 0.9984

Train set RMSE 1.5761 0.9756 0.9453 0.7604 0.2136 0.0603
Test set RMSE 1.5501 1.0275 0.9891 1.7705 0.2472 0.0677
Real set RMSE 1.2377 0.7433 2.0863 4.4998 8.9954 48.2324

LCC

RPIOSL-UBM

Train set R2 0.4044 0.4675 0.6385 0.6603 0.6751 0.7227
Test set R2 0.4082 0.3638 0.5715 0.6389 0.6238 0.6542

Train set RMSE 8.2733 7.8232 6.4453 6.2484 6.1111 5.6448
Test set RMSE 7.9128 8.2650 6.8419 6.2044 6.5088 6.2459
Real set RMSE 6.0101 6.1523 7.2157 9.1982 13.9596 29.1397

PROSAIL

Train set R2 0.5128 0.7263 0.8922 0.9351 0.9618 0.9973
Test set R2 0.5276 0.7372 0.8903 0.9303 0.9627 0.9973

Train set RMSE 9.7402 5.1313 3.2179 2.4976 1.9157 0.5109
Test set RMSE 9.9350 5.1196 3.3117 2.6359 1.9289 0.5210
Real set RMSE 12.5478 26.0820 35.8104 46.3862 31.1645 156.3313

3.5. Model Results Based on BLS Method

In order to build a rice phenotypic parameter estimation model to estimate the LCC
and LAI, this subsection was modeled using a BLS framework, with the dataset partitioned
into training and test sets at a 7:3 ratio and, subsequently, validated against the measured
dataset. Due to the different mechanisms of the two RTMs, the regularization parameters
for sparse regularization in building the estimation model are also different. In the LAI
and LCC estimation model developed with the RPIOSL-UBM dataset, the regularization
parameters were set from 2−40 to 2−10. In the LAI and LCC estimation model developed
with the PROSAIL dataset, the regularization parameters were configured to span from
2−5 to 2−10 to 2−30. The outcomes of the model training are illustrated in Figure 12.
The evaluation indexes are demonstrated in Table 7. As can be seen in the graphs, the
LAI estimation model developed with the RPIOSL-UBM dataset is the most effective
when the regularization parameter is 2−10 and the RMSEreal is 4.5924; the LAI estimation
model developed with the PROSAIL dataset is the most effective when the regularization
parameter is 2−5 and the RMSEreal is 4.9139. The LCC estimation model developed with
the RPIOSL-UBM dataset is the most effective when the RMSEreal is 20.9618 µg·cm−2; and
the LCC estimation model developed with the PROSAIL dataset is the most effective when
the RMSEreal is 12.3398 µg·cm−2, when the regularization parameter is 2−5. In conclusion,
the BLS model, the LAI estimation model based on RPIOSL-UBFM dataset and the LCC
estimation model based on PROSAIL dataset have the best results.
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Figure 12. BLS-based estimation of LAI and LCC result plots, where (a–d) are the LAI result plots
based on the RPIOSL-UBM model, with regularization parameters from 2−10 to 2−40, respectively;
(e–h) are the LCC result plots based on the RPIOSL-UBM model, with regularization parameters
from 2−10 to 2−40, respectively; (i–l) are the LAI result plots based on the PROSAIL model to estimate
LAI resultant plots, with regularization parameters from 2−5 to 2−10 to 2−30; and (m–p) are PROSAIL
model based to estimate LCC resultant plots, with regularization parameters from 2−10 to 2−40,
respectively.

Table 7. Table of results of estimating LAI and LCC evaluation indexes based on BLS.

Model Evaluation Indicator 1 2 3 4

LAI

RPIOSL-UBM

Train set R2 0.7448 0.8294 0.8697 0.8922
Test set R2 0.6449 0.7127 0.8223 0.8777

Train set RMSE 0.9539 0.7789 0.6830 0.6186
Test set RMSE 1.1550 1.0377 0.8176 0.6796
Real set RMSE 4.5924 4.8772 6.2856 13.6650

PROSAIL

Train set R2 0.9994 0.9999 0.9997 1.0000
Test set R2 0.9990 0.9998 0.9994 1.0000

Train set RMSE 0.0438 0.0201 0.0293 0.0083
Test set RMSE 0.0533 0.0266 0.0413 0.0104
Real set RMSE 4.9139 5.098 19.1130 69.1963
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Table 7. Cont.

Model Evaluation Indicator 1 2 3 4

LCC

RPIOSL-UBM

Train set R2 0.6193 0.6523 0.5987 0.7067
Test set R2 0.6026 0.6676 0.5885 0.7019

Train set RMSE 6.6385 6.3224 6.7917 5.8070
Test set RMSE 6.4649 5.9309 6.5804 5.6870
Real set RMSE 20.9618 24.4485 49.3468 56.2261

PROSAIL

Train set R2 0.9993 0.9998 1.0000 1.0000
Test set R2 0.9991 0.9998 1.0000 1.0000

Train set RMSE 0.2631 0.1280 0.0488 0.0092
Test set RMSE 0.2944 0.1506 0.0476 0.0107
Real set RMSE 12.3398 13.2870 31.0316 95.7500

4. Discussion
4.1. Discussion of the Accuracy of the Spectral Simulation

The RPIOSL model is a leaf RTM developed with the PROSPECT model, combined
with the layered optics assumption and improvements to the rice leaf structure. It was
shown that the RPIOSL model was better than the PROSPECT model in simulating the
reflectance of rice leaf. Canopy reflectance is mainly composed of leaf reflectance and back-
ground reflectance, so the accuracy of the canopy RTM depends not only on the accuracy
of leaf reflectance and transmittance but also on whether the simulation mechanism of
the canopy RTM is reasonable [50,51]. In this study, the RPIOSL-UBM model, constructed
by applying the RPIOSL model coupled with the UBM model, and the PROSAIL model
were applied to simulate the hyperspectral reflectance of the rice canopy, respectively, and
compared with the measured data. The simulation accuracy of the RPIOSL-UBM model
was found to be better than that of the PROSPECT model. In the 500–700 nm band range,
the spectra simulated by the RPIOSL-UBM model were closer to the measured data. This is
because the RPIOSL model takes into account the actual physiological characteristics of
the leaf and the distribution of chlorophyll within the leaf by layering, which makes its
simulation better in the visible light range. In the 750–1000 nm band, the spectra simulated
by the RPIOSL-UBM model are also closer to the measured data. This is primarily due
to the UBM model’s more precise consideration of the impact of background reflectance
on canopy reflectance. In the SAIL model, only the soil can be selected as wet or dry, and
the specific reflectance of the soil cannot be input. On the contrary, rice, unlike dryland
crops, spends most of its growing period above a shallow water layer, so it is crucial to
input accurate background reflectance in the RTM. Moreover, the SAIL model is based on
the assumption of uniform distribution in the canopy, whereas rice, a crop with a ridge
structure, is unsealed at the tillering stage and pre-tillering and tasseling stage, and is not
uniformly distributed in the canopy, so the simulation results of the SAIL model are not as
good as those of the UBM model at the tillering stage and pre-tillering and tasseling stage.
The advantage of the coupled canopy radiative transfer model is that it takes into account
both the multilayer characteristics of the internal structure of rice leaves and the canopy
structure characteristics of rice, a crop with monopoly row structure, thus improving the
simulation accuracy. In conclusion, the RPIOSL-UBM model shows higher accuracy in
simulating the canopy reflectance of rice by taking the leaf structure, canopy structure, and
background reflectance into fine consideration.

4.2. Discussion of Feature Wavelength Extraction

In this study, sensitivity analyses of two canopy RTMs were conducted, revealing that
the LCC and LAI exhibited different distributions of sensitivity regions across the two mod-
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els. The RPIOSL-UBM model included more physicochemical parameters compared to
the PROSAIL model. Since the RPIOSL-UBM model divides the LCC into two layers and
introduces the parameter of the stratified proportion of LCC, the contribution of th eLCC
was divided into the contribution of LCC and the stratified proportion of LCC in the LCC
sensitivity analysis. Overall, the results of the LCC sensitivity analysis in the two models
did not differ much. Since the UBM model and the SAIL model are not based on the same
evolutionary model, there are differences in the sensitive bands of the LAI in the sensitivity
analysis. In this study, hyperspectral reflectance was interpolated to 5 nm intervals in
order to improve the running speed of the algorithm, so the results of the characteristic
wavelength screening basically do not have the problem of covariance between neighboring
wavelengths. The characteristic wavelengths of chlorophyll are predominantly concen-
trated in the 400–700 nm range, a distribution determined by the light absorption properties
of chlorophyll molecules. In this wavelength range, chlorophyll has strong absorption in
the blue-violet (430–470 nm) and red (640–660 nm) regions, while it has weak absorption in
the green region, which is the reason for the green color of the plant leaves. In the results
of the characteristic band screening for LCC, bands within the range of 430–470 nm and
640–660 nm bands appeared, which is consistent with the results of Ban et al. [52] indicating
that the characteristic band screening results retained most of the information related to the
LCC, and the estimation model of the LCC can be developed with these characteristic band
screening results.

The LAI is a critical parameter for quantifying vegetation canopy density and vege-
tation cover. In the red light band (620–700 nm), chlorophyll absorbs light more strongly,
the reflectance of leaves is lower, and the overall reflectance of red light decreases with
increasing leaf density, so the reflectance of red light is generally negatively correlated with
the LAI [53]. In the near-infrared band (700–1300 nm), the reflectance of leaves is very high
due to the strong scattering of near-infrared light by the cellular structure of leaves, and
the canopy reflectance increases with an increasing LAI. The red-edge band (680–750 nm)
encapsulates the combined effects of chlorophyll absorption and cellular structure scatter-
ing. The position and slope of the red edge are highly sensitive to variations in the LAI,
making it a crucial band for monitoring the LAI. The reflectance of the green light band
(500–570 nm), although less affected by chlorophyll absorption, can still provide some
information related to the LAI, which in turn improves the estimation accuracy. Therefore,
mechanically speaking, the sensitive band range of the LAI should basically cover the
500–1300 nm band. It is evident that the characteristic wavelength selection results of the
RPIOSL-UBM model retain LAI-related information more comprehensively than those of
the PROSAIL model.

4.3. Discussion of Model Accuracy Results

In this study, the BPNN, ELM, and BLS methods were used to construct LAI and
LCC inversion models, respectively. The specific parameters in the models are shown in
Table 8, and the computation times of the training and test sets are shown in Figure 13a
and Figure 13b, respectively. Various numbers of hidden layers were utilized to construct
the rice phenotypic parameter estimation model based on the BPNN. Analysis of the
results indicates that the LCC estimation model, developed using the RPIOSL-UBM dataset,
progressively enhanced its validation accuracy on the real dataset as the depth of hidden
layers increased. However, the accuracy of the training and validation sets is lower than
that of the model with fewer hidden layers. This phenomenon may be attributed to the fact
that additional hidden layers enhance the model’s ability to capture complex patterns, while
simultaneously increasing the risk of overfitting. The LAI estimation model developed
with the PROSAIL dataset increases the validation accuracy of the model on the real dataset
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as the depth of hidden layers decreases. As can be seen from the subplot of Figure 10m,
the model validates better on the real dataset, mainly because the output results are all
between 0 and 1, resulting in a lower overall RMSE. However, the results of the model are
not distributed around the 1:1 line, indicating that the model is not optimal despite the
low RMSE. The LAI estimation model developed with the RPIOSL-UBM dataset showed
oscillations in model accuracy, and the R2 of the training and validation sets did not show
a monotonic change with the depth of hidden layers. The model performs better with a
medium number of hidden layers. This is because too few hidden layers cannot capture
complex patterns, while too many hidden layers tend to lead to overfitting. Therefore, a
moderate number of hidden layers strikes a balance between complexity and generalization
ability. The LCC estimation model developed with the PROSAIL dataset showed little
change in the R2 and RMSE for the validation and training sets as the depth of hidden
layers was changed. Although the results of the validation and training sets look good, the
RMSE is larger when validated on the real dataset, and the RMSE of the optimal model
for the real dataset is still larger than 14. For LCC estimation, such an error is large and is
not suitable to be applied in practical scenarios. In summary, different numbers of hidden
layers have different effects on model accuracy. A moderate number of hidden layers can
strike a balance between complexity and generalization ability, thus showing better results
on the training set, validation set, and real dataset. However, the performance of the model
on real datasets needs to be considered comprehensively to ensure the practical application
of the model.

Table 8. Model parameter list.

Static Parameters Variation Parameters

BPNN Number of training: 1000; Target
error: 0.0001; Learning rate: 0.05.

Number of neurons in the hidden
layer: LAI: 1–6; LCC: 10–60.

ELM Activation function: sig;
Regularization factor: 0.

Number of neurons in the hidden
layer: RPIOSL-UBM:10–60; PROSAIL:

1–5, 10.

BLS
Shrinkage parameter for

enhancement nodes: 0.8; Number of
iterations: 200.

Regularization parameter:
RPIOSL-UBM: 2−10–2−40;

PROSAIL-LAI: 2−5, 2−10–2−30;
PROSAIL-LCC: 2−10–2−40.

In developing rice phenotypic parameter estimation models using the ELM, various
numbers of hidden layers were employed for analysis. The results indicate that for models
estimating the LCC and LAI based on the RPIOSL-UBM dataset, the precision of both
the training and validation sets increases with the depth of hidden layers. However, the
validation accuracy on the real dataset deteriorates as the depth of hidden layers increases.
The best validation performance on the real dataset is observed with the fewest hidden
layers, resulting in an RMSE of 0.6357 for LAI estimation and 6.0101 µg·cm−2 for LCC
estimation. At this point, the R2 values for both the training and validation sets are low,
both below 0.5. As the depth of hidden layers increases, the R2 values for the training
and validation sets gradually rise, reflecting the sensitivity of the ELM method to the
depth of hidden layers and neuron selection. However, the validation accuracy on the real
dataset continues to decrease. Similarly, for LCC and LAI estimation models developed
with the PROSAIL dataset, the accuracies of the training and validation sets improve with
an increasing number of hidden layers. Nevertheless, the accuracy on the real dataset
decreases with more hidden layers. Although the RMSE for both training and validation
sets is less than 1 when the depth of hidden layers is 10, the RMSE for the real dataset is
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very high, indicating that the model performs well on the training and validation sets but
poorly in real-world scenarios. The reason for this is that as the depth of hidden layers
increases, the complexity of the model also increases, leading to good performance on the
training and validation sets but poor performance on the real dataset. This is a typical
overfitting phenomenon, where the model overfits the noise and details in the training
data and lacks generalization. The model performs well on the training and validation sets
but does not generalize effectively on the real dataset, leading to a decrease in validation
accuracy. The ELM has the advantage of fast training but is more sensitive to the number
of hidden layers and the choice of neurons. Too many hidden layers may lead to excessive
model complexity and increase the risk of overfitting. In summary, although the ELM
model performs better on the training and validation sets, the validation accuracy on the
real dataset decreases, mainly due to overfitting and dataset differences. By introducing
techniques such as regularization, cross-validation, and data enhancement, the effectiveness
of the model in real scenarios can be improved.

Figure 13. Model runtime graph. Subfigure (a) shows the training set runtime heatmap and subfigure
(b) shows the validation set runtime heatmap, where 1–6 denotes sets 1–6 of parameters.
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Different regularization parameters were used for modeling when constructing the
rice phenotypic parameter estimation model based on the BLS (broad learning system). The
results of the analysis showed that the accuracy of the model in the training and validation
sets gradually increased as the regularization parameter was reduced. However, in the
model developed with the PROSAIL dataset, the RMSE of the real dataset is very high,
despite the R² of both training and validation sets being equal to 1, indicating that the
model undergoes a serious overfitting phenomenon and has a very poor generalization
ability. Furthermore, the RMSE of the LAI and LCC in all models constructed using the
BLS method were higher than those constructed using the BP neural network and ELM
methods, showing that the BLS method is much inferior to the other two methods in
terms of generalizability. The overfitting problem is mainly due to the increase in model
complexity caused by the regularization parameter being too small, which makes the model
perform well in the training data but poorly on the real dataset. Discrepancies between
datasets may also lead to a model performing well on the training and validation sets, yet
failing to generalize effectively to the real dataset.

In terms of inversion accuracy, Zhang et al. [54] performed LAI inversion based on
RGB and multispectral data, and the results showed that the RMSE ranged from 0.810 to
0.881, whereas the LAI inversion in this study resulted in an RMSE of 0.6357. To analyze
the reason for this, this study simulated the effect of LAI changes on the spectra in the
range of 700–1000 nm more efficiently by means of the radiative transfer model. In contrast,
RGB and multispectral data have less information in the near-infrared band, which leads to
a lower accuracy of their inversion. Xu et al. [55] inverted the chlorophyll content of rice
leaves based on the PROSAIL radiative transfer model look-up table, and the RMSE of
the model was 9.2 µg·cm−2, while the LCC inversion in this study resulted in an RMSE of
6.0101 µg·cm−2, which showed a higher accuracy. This enhancement may be attributed
to the coupling of the RPIOSL model and the UBM model in this study, which is able to
simulate the rice canopy reflectance more accurately compared to the PROSAIL model, thus
improving the data accuracy of the look-up table and the inversion accuracy. In summary,
further improvement of the simulation accuracy of the radiative transfer model will help
to improve the accuracy of the inversion model, which is a direction worthy of in-depth
research. The improvement of the model lies not only in the technical innovation, but also
in the finer processing of the spectral data, with a view to achieving superior performance
in future applications.

In summary, the overfitting phenomenon occurred in both the rice phenotypic pa-
rameter estimation models developed with the RPIOSL-UBM dataset and the PROSAIL
dataset. The reasons for the overfitting phenomenon can be summarized in two points:
First, the models did not select appropriate parameters, such as the quantity of hidden
layers and the tuning of regularization parameters; second, there are differences between
the model datasets. By observing the construction results of the two RTMs, it can be found
that although an overfitting phenomenon exists in both models, the degree of overfitting in
the training results based on the RPIOSL-UBM model is better than that of the PROSAIL
model, which should be attributed to the fact that the simulation accuracy of the rice canopy
hyperspectral spectrum of the RPIOSL-UBM model is better than that of the PROSAIL
model. When constructing the model based on the ELM method, setting the number of
implied layers to 30 can obtain a more ideal estimation model, and at the same time, the
results in the real data validation will not be too bad, and the RMSE is within the acceptable
range, which can be applied in the actual production. Therefore, to develop an accurate rice
phenotype estimation model based on the RTM, it is imperative to further refine the RTM to
ensure that the simulated hyperspectral data closely align with the measured hyperspectral
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data; on the other hand, it is necessary to find the appropriate parameters of the model to
improve the generalization ability of the model and reduce the risk of overfitting.

4.4. Discussion of Limitations

In this study, an inverse model of LAI and LCC in rice was constructed by coupling
leaf and canopy radiative transfer models and based on a machine learning approach.
Although the model showed some accuracy in validation, there are still some limitations
that need to be further explored. First, in the coupling part of the leaf and canopy radiative
transfer models, certain leaf radiative transfer model parameters rely on the results of the
optimization algorithm rather than the measured data [27]. This limitation suggests that
future research should be devoted to exploring how these parameters can be obtained from
measured data to enhance the reliability of the model. In addition, the simulation results
of the current radiative transfer model in the 700–1000 nm band still have errors, which
may lead to a decrease in the accuracy of LAI inversion. For this reason, future studies
should further optimize the canopy radiative transfer model, especially considering the
effect of shallow water background on canopy radiative transfer and reflectance when rice
is a non-dryland crop. In terms of the inversion model, this study only relied on machine
learning, neural network, and wide learning methods to construct the model and did not
use optimization algorithms for further optimization. The introduction of optimization
algorithms in future studies is expected to improve the model accuracy, thus providing
more accurate and reliable data support for field production. In addition, the present model
has not been tested in other rice varieties and growing areas, and its generalizability still
needs to be further verified and discussed. These limitations provide a clear direction
for subsequent research with a view to enhancing the application value and promotion
potential of the model.

5. Conclusions
In this study, the RPIOSL model and the UBM model were coupled for the first time

to construct a canopy RTM. The accuracy of canopy spectral reflectance simulated by
the RPIOSL-UBM model was compared with that of the PROSAIL model. Characteristic
wavelengths were extracted using the Sobol sensitivity analysis method and the CARS
method. A simulated dataset was selected based on measured data, and rice phenotype
estimation models were constructed using BP neural networks and ELM and BLS meth-
ods.The results demonstrated that the rice LAI and LCC estimation models, constructed
using the RPIOSL-UBM dataset and the ELM method, were optimal. The validation RMSE
for the measured dataset was 0.6357 for LAI and 6.0101 µg·cm−2 for LCC, indicating that
the model is suitable for estimating rice phenotypic parameters from UAV hyperspectral
data. Compared to models using the PROSAIL dataset, the RMSE for the measured dataset
improved by 0.1076 for LAI and 6.3297 µg·cm−2 for LCC. Future research should focus on
selecting the appropriate number of hidden layers to prevent overfitting and improve the
accuracy of the RTM simulation. Enhancing the simulation accuracy of the RTM will make
it more closely aligned with actual data, thereby improving the precision of rice phenotypic
parameter estimation models based on the canopy RTM.
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