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Abstract

:

In order to plan suitable navigation operation paths for the characteristics of rice fields in the middle and lower reaches of the Yangtze River and the operational requirements of straw rotary burying, this paper proposes a combination of the Hough matrix and RANSAC algorithms to extract the starting routes of straw boundaries; the algorithm adopts the Hough matrix to extract the characteristic points of the straw boundaries and remove the redundancies, and then reduces the influence of noise points caused by different straw shapes using the RANSAC algorithm to improve the accuracy of the starting route extraction. The algorithm extracts the starting routes of straw boundaries and the characteristic points of the straw boundaries and removes the redundancies, so as to improve the accuracy of the starting route extraction. The extraction test shows that under different scenes, the recognition accuracy of the path extraction method combining the Hough matrix and RANSAC algorithm is above 90%, and the algorithm takes no more than 0.51 s. Finally, the road test shows that the method meets the characteristics of tractor operation with a large turning radius and without reversing and satisfies the unmanned operation requirements of straw rotary burying in the field.
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1. Introduction


Machine vision captures the image information of the environment by using the camera to simulate the human visual function, and its biggest advantage is that the acquired information is more complete and has advantages in extracting relative navigation paths [1,2,3]. Image segmentation [4,5,6], target detection [7,8,9], image alignment [10,11,12], and other methods are often used for path extraction in agricultural visual navigation, image segmentation algorithms can divide plants and land into different regions, and the acquisition of navigation paths is greatly affected by the effect of image segmentation [13]. The commonly used algorithms for image segmentation are mainly traditional algorithms based on feature selection and machine learning algorithms [14,15,16]. Traditional image segmentation often uses the Otus method to obtain the threshold required for image segmentation based on the histogram [17], but it is difficult to achieve accurate image segmentation when the difference in the gray value of the image is not obvious [18]. In the study of Yao et al., the average image of pixel values in five channels (R, G, B, S, and V) was used as an inspection image, and the feature points of the inspection image were extracted by the Canny algorithm, which were made as reliable paths for visual navigation [19]. Sumesh et al. used an RGB camera for the estimation of sugarcane yield using the horizontal projection method to detect the region of interest for field trials to extract the trunk [20]. For row-grown crops, roads between crops can usually be detected using image segmentation, and navigation lines can be extracted using the centerline of the road, but some crops or certain periods in crop growth are not characterized enough, making it difficult to extract the paths.



In addition to the uncertainty of crop growth, the weeds around the crops are also one of the key factors affecting the extraction of navigation lines. In order to accurately extract the navigation line, scholars at home and abroad have carried out a lot of research, and the commonly used navigation route fitting and extraction methods are mainly the Hough transform, least squares, and random sample consistency algorithms [21]. Ma et al. use the least squares method to fit the contour points of the wolfberry trunk to obtain the navigation line to improve the real-time performance of the system; the static image test shows that the algorithm’s average accuracy is more than 90%, and the average time consumed is about 162 ms, which has good real-time performance with good robustness [22]. The least squares method is fast in detecting centerline fitting, but it is sensitive to noise, so it is difficult to accurately extract navigation routes in the case of high environmental noise [23]. Compared to the least squares method, the outstanding advantage of the Hough transform for path extraction in agricultural environments is its robustness [24,25]. Chen et al. proposed the prediction point Hough transform to fit navigation paths, and greenhouse experiments showed that the average error of this method in fitting navigation paths for cucumber crop rows was less than 0.5°, which is better than the 10.25° lower than the average error of the least squares method. The computation time of the proposed Hough transform is 17.92 ms, which saves 35.20 ms compared with the traditional Hough transform and can solve the problem of poor real-time performance of the traditional Hough transform due to the large range of traversal angles and intersection points [26]. Compared with the above two methods, Randomized Sample Consistency (RANSAC) can improve computational efficiency, reliability, and accuracy in high-noise environments [27]. Zhou et al. used the RANSAC algorithm to fit the breast diameter of trees in the plane. The RANSAC algorithm was used to fit and extract the diameter at the breast height of 71 trees in the forest area, and the overall error met the requirements of forestry mapping [28]. In order to improve the robustness and accuracy of feature extraction, Sun et al. investigated an accelerated segmentation test (FAST) feature extraction method based on the improved RANSAC method to remove mismatched points. The results show that the fast feature extraction algorithm based on the improved RANSAC method not only significantly reduces the mismatch points, but also improves the positioning accuracy of the combined vision/SINS navigation system with less computational effort [29]. In summary, the appropriate path-fitting algorithm is key in determining the effectiveness of navigation path extraction. This paper uses a combination of the Hough matrix and RANSAC algorithms to extract the accurate starting path of straw boundaries. This path can ensure the effectiveness of navigation operations for straw burying and returning to the field.




2. Materials and Methods


To ensure the quality of straw rotary burying and returning to the field operations, the straw rotary burying and returning machine set was used in this study, which is powered by a wheeled tractor (Dongfanghong LX954, China Yituo (Luoyang, China)) and is equipped with a V-shaped dual-purpose rotary tiller for stubble burying developed by the project team. Long-term field applications have shown that this machine set is suitable for straw rotary burying operations in diverse rice cultivation areas with flexible and rigid straw in the middle and lower reaches of the Yangtze River, demonstrating strong versatility. The specific technical parameter indicators are shown in Table 1 [30]. To achieve precise control over the operation unit, the navigation and operation system designed by our team consists mainly of a GNSS receiving antenna, GNSS mobile station, onboard computer, steering controller, steering angle sensor, electronic proportional hydraulic steering valve, industrial camera, rotary tiller for stubble burying, electronic proportional hydraulic lifting valve, lifting angle sensor, and lifting controller, as depicted in Figure 1.



The structure of the auxiliary navigation control system for rotary burying and returning to the field operations is shown in Figure 2, which is mainly composed of four parts: Dongfanghong LX954 power equipment, sensor, control system, and steering system. The auxiliary navigation control system obtains the position status information of the operating unit and field environment information through the sensors, and the control system controls the steering system to realize the auxiliary navigation operation according to the incoming information from the sensors.



The hardware used for the sensors includes an industrial camera (VCHY300 color industrial camera, Micro Valley Technology, Luoyang, China), a steering angle sensor (ANG1 series non-contact angle sensor, range −45°~45°, accuracy 0.05%, resolution 0.025%, Luoyang Mita Electric Control Technology, Wuhan, China), and an RTK-GNSS positioning system (K726-OEM type). Other parameters include a dual-antenna satellite positioning and orientation system, plane accuracy of 1 cm, elevation accuracy of 2 cm, and a heading angle accuracy better than 0.2°/R (R is the length of dual-antenna baseline, m), (Shanghai Sinan Satellite Navigation Technology Co., Shanghai, China). The industrial camera is equipped with a fixed-focus low aberration industrial 6 MM lens to acquire working picture information in real time, which is installed on the right side of the tractor, maintaining the same heading as the vehicle, and acquires the field boundary information as shown in Figure 3. The specific parameters of the camera lens are shown in Table 2, and the specific parameters of the industrial camera are shown in Table 3. From the parameters, it can be seen that the industrial camera has an adjustable focal length, an exposure time that can be set artificially, and a certain anti-noise performance, which can effectively reduce the influence of the complex environment in the outdoor field shooting and obtain accurate field image information; the positioning and directional antennas of the mobile station of the RTK-GNSS positioning system are placed on the left and right sides of the rear part of the roof of the tractor, respectively (the length of the baseline is 1.38 m), the positioning antenna of the base station is installed on the roof of the Rice and Aquatic Vegetable Laboratory of Huazhong Agricultural University, and the U300 radio module and the high-power CDL5 radio are used to realize the real-time acquisition of accurate differential positioning, orientation, and roll angle information of the operating unit within a range of up to 3 km in real time. The controller mainly consists of an onboard computer (Win10 system laptop computer, Intel(R) Core(TM) i7-7500U CPU @ 2.70 GHz 2.90 GHz and 8 GB RAM, Dell), a CAN analyzer (USBCAN/CANalyst-II, Zhuhai Chuangxin Technology, Zhuhai, China), and a steering controller. The above sensors can be adapted to the outdoor farm environment.



2.1. Camera Calibration


After the camera captures the image, the object is projected from the right-angle coordinate system of the 3D world to the 2D right-angle coordinate system of the image. In order to match the position information of the image acquired from the actual field, this paper converts the coordinates of the industrial camera in the pixel (u, v) plane to the real-world coordinate system (X, Y, Z), so as to restore the position of the object in the image to the real position, and the conversion formula is as shown in Equation (1):


      X     Y     Z     =      X c       Y c       Z c      1            R   T       0 T     1        − 1   =     u     v     1               1  d x       0     u 0       0      1  d y         v 0       0   0   1        − 1            f x     0   0   0     0     f y     0   0     0   0   1   0        − 1    Z c  − 1          R   T       0 T     1        − 1    



(1)




where R is the rotation matrix and T is the translation matrix.



In order to obtain the internal parameter information of the camera for calibration, this paper uses a 16 × 16 black and white checkerboard grid as the calibration plate of the camera for calibration, and the length of a single small checkerboard grid is 15 mm. In total, 30 calibration images are acquired in this paper as shown in Figure 4. The calibration images are imported into the Camera Calibrator toolbox in MATLAB2019a for the pinhole model camera calibration, and the calibration results are shown in Figure 5; the toolbox can obtain the relative position map of each calibration plate to the camera and the overall reprojection error and the internal parameters of the camera as shown in Table 4.



In order to improve the response speed of the software and retain the complete information of the image, this paper adopts the MATLAB2017a videoinput (‘winvideo’, 1, ‘MJPG_320 × 240′) camera call command to obtain the real-time image acquisition information of the VCHY300 color industrial camera, and the effective pixels of the image in the MJPG format are 320 pixels × 240 pixels. The raw image acquired is shown in Figure 6.




2.2. Border Area Determination


The color images directly acquired by industrial cameras are RGB color pictures. The field image is generally more green and yellow, and with the changing weather and light in the field, the RGB components in the image will change. Using the Ostu method of segmentation, which is commonly used in the RGB color space, to segment the original image, the segmentation effect is messy and fails to achieve the field segmentation, as shown in Figure 7.



In this paper, in order to accurately extract the field boundary information, an image segmentation method based on HSV color space is proposed by combining the characteristics of H, S, and V of the HSV (hue, saturation, and value) color space which are independent of each other. The H-channel, which reacts to the hue of the image, represents the color of light, which is transformed from the RGB color space by Equation (2) as follows:


  H =     0 °   ,   max    R ′  ,  G ′  ,  B ′    − min    R ′  ,  G ′  ,  B ′    = 0     60 ° ×       G ′  −  B ′    max    R ′  ,  G ′  ,  B ′    − min    R ′  ,  G ′  ,  B ′       + 0        ,    max    R ′  ,  G ′  ,  B ′    =  R ′      60 ° ×       B ′  −  R ′    max    R ′  ,  G ′  ,  B ′    − min    R ′  ,  G ′  ,  B ′       + 2        ,    max    R ′  ,  G ′  ,  B ′    =  G ′      60 ° ×       R ′  −  G ′    max    R ′  ,  G ′  ,  B ′    − min    R ′  ,  G ′  ,  B ′       + 4        ,    max    R ′  ,  G ′  ,  B ′    =  B ′       



(2)







Since the HSV color space separates the components H and V independently, it reduces the influence of environmental weather in outdoor field operations. In this paper, an image segmentation method based on HSV color space is proposed for accurately extracting the rice stubble information under different light conditions outdoors. Figure 8a shows the histogram of the R, G, and B components of the original image, which can be clearly seen in which the distribution of the green G component is not clearly distinguished, and the parameters of the color are affected by the light. Figure 8b shows the histogram of the H, S, and V components of the original image; from the color hue H component, it can be clearly seen that the H component in the original image has high numerical dispersion, indicating that the distinction between rice stubble and the boundary in the original image of the field in the hue of the H component is larger, which is convenient for later extraction. From the above, it can be seen that the hue H component in the HSV color space accurately shows the color information under different light and dark conditions, so it is suitable for the starting route extraction requirements of outdoor rotary burying in and returning to the field in this paper.



Rice post-harvest residues and stubble are more concentrated in the H domain, and the hue H component is independent of the luminance V component so that the H component is adaptable to the effects caused by shadows and uneven illumination in the image. It is known through the test statistics of the trial-and-error method that when the hue H is between the upper limit Hmax = 0.118 and the lower limit Hmin = 0.22, it can accurately distinguish the rice stubble after harvesting from other environments, such as the surrounding field mounds, as shown in Figure 9. In this paper, the selection of the hue H component can effectively segment the boundary features of the post-harvest rice fields and meet the recognition requirements of the starting route of the rotary burying.



The preliminary segmented image has more noise and voids, which will cause some interference to the effect of the later path extraction, so it is necessary to perform image filtering on the preliminary segmented binarized image. Since most of the noise and voids in the image are polygonal irregular images, this paper adopts morphological filtering by selecting the appropriate structural elements for filtering processing, so as to achieve the ideal segmented image. Morphology represents a kind of filter processing in image processing. It identifies and analyzes the processing objects in the original image similarly by self-defined structural elements at the pixel points of the original image, and it finally performs the prescribed logical operations with the structural elements so as to output the ideal image after processing. From the above, it can be seen that the selection of structural elements and logical operations is the key to determining the effect of morphological processing.



For the image segmentation of the binary image, there are many black noises and white voids along with irregular shapes of the field boundaries and other disturbances; in order to meet the requirements of effectiveness and real-time analysis, through a number of experiments, the octagonal structural elements and the distance of the side of the length of the 3-pixel points were finally constructed, as shown in Figure 10.



In order to eliminate the voids and noise in the segmented image and retain the basic feature information, this paper adopts the octagonal structure elements shown in Figure 10 to perform open and closed operations on the segmented image to remove the noise, fill the voids, and make the segmented edges smooth, and the final image obtained is shown in Figure 11b.




2.3. Design of Starting Route Extraction Method


In order to obtain the boundary information, this paper first extracts the edge information of the binarized image after morphological filtering, as shown in Figure 12, which completely retains the boundary information of the region. From the figure, it can be seen that there is interference edge information in the image that has nothing to do with the target region; in order to remove the interference of these error messages, this paper extracts the 100 pixels × 120 pixels part of the bottom center of the image with more boundary information as the interval of interest and uses it to make the key information region of the start route extraction.



The useful boundary information is retained in the interval of interest, and the interference factors such as other trees and fences in the background are excluded. If row scanning is used as shown in Figure 13, the number of strips of the interval of interest for horizontal scanning is 100, and when the pixel value at column j of row i acquiring (i, j) is 1, this pixel point is the pixel coordinate point P(i, j) of the feature edge, and its calculation formula is shown below.


         P x  = i      P y  = j     ,   P ( i , j ) = 1     i = [ 220 , 320 ] ,   j = [ 60 , 180 ]    



(3)







After completing the row-by-row scanning operation in the interval of interest, the feature points of the key starting route are retained, as shown in Figure 14. Via line scanning, it is possible to exclude the interference information while extracting the field boundary information completely.



Hough transform is used to determine whether a line segment can make the target point in the image match the number of points through the straight line to the maximum peak; that is, it can determine the most crossed-over target point of the line segment. Hough transform is implemented through the global characteristics of the image to determine the straight line and to avoid the impacts of the breakpoints and local error points, and has global, robust, a certain degree of anti-noise abilities. Hough transform process, first of all, is used to establish a two-dimensional array A(a, b); one dimension represents the possible values of the slope of the target line segment in the image coordinates, and the second dimension represents the possible values of the intercept moment of the target line segment in the image coordinates. The array A(a, b) is initialized by assigning it as a zero matrix, and then for each target point (xi, yi) in the image coordinates, it is substituted into Equation (4) as follows to derive the possible values of the intercept of the possible line segments.


  b = −  x  i     a +  y i     



(4)







For every slope and intercept value that agrees with the elements of array A(a, b), the corresponding array value is increased by 1, i.e., A(a, b) = A(a, b) + 1. After all the operations are completed, the largest peak value of A(a, b) is found in the result of the parameter computation vote, and the corresponding a0 and b0 values are the slopes and intercepts of line equations for the line segments with the most covariant target points (a total of A(a, b) covariant points) in the original image. Other sub-peak points correspond to the slope and intercepts of line segments with slightly fewer covariant points in the original image’s intercept; the other sub-peak points correspond to the slopes and intercepts of the line segments with slightly fewer co-linear points in the original image. The final partial Hough matrix obtained after accumulation is shown in Figure 15.



After the peak is identified, the values of the other elements in the neighborhood are set to 0 in order to remove other interfering points and duplicate points near the key peak. The peaks, which are smaller than half of the maximum peak, were removed, and only the key feature points were retained, ultimately leaving the coordinate points marked with a yellow “*” as shown in Figure 16. Through the Hough matrix, the field boundaries are screened for peaks, and some of the peaks that have a greater impact on the acquisition of the starting route are retained. This method not only retains the basic features of the field boundaries but also reduces the number of feature points so that the running speed of the program is improved while ensuring the accuracy of the starting route.



In order to address the impact caused by the disorderly edges of the field, this paper introduces the Random Sampling Consensus Algorithm (RANSAC) to determine the boundary starting route equation. RANSAC mainly searches for the optimal straight line through randomness and assumptions. Firstly, a preset result is obtained through random sampling, and then the satisfaction of this preset result is obtained by comparing it with the hypothesis. Finally, the optimal linear equation with a higher proportion of correct data is obtained iteratively based on the law of large numbers. In this study, the probability of a union within the entire fitted line dataset is assumed, and its calculation formula is shown in Equation (5) below:


      t =     n  i n l i e r s      n  i n l i e r s   +  n  o u t l i e r s          P = 1 −   ( 1 −  t n  )  m      m =    log ( 1 − P )   log ( 1 −  t n  )         



(5)




where ninliers is the number of internalities of the most supported model; noutliers is the number of externalities for the most supported models; tn is the probability that n points are interior points; n is the number of points required for the model; m is the number of iterations; and t is a prior value that can be set.



By increasing the number of iterations m, P can be improved. After determining the optimal values of n, t, and m, key feature points can be introduced into the calculation to obtain the desired model equation. From this, the angle θ0 between the starting route and the due north direction within the image coordinates can be obtained, as shown in Figure 17, and its calculation formula is as follows:


   θ 0  =     90 ° − arctan  k 0  ,   0 ≤  k 0  < + ∞     − 90 ° − arctan  k 0  ,   − ∞ <  k 0  ≤ 0      



(6)




where k0 is the slope value of the fitted line.




2.4. Design of the Operation Path


Figure 18 below shows the experimental base field of Huazhong Agricultural University (longitude 114.35423254966736, latitude 30.477018207629307), from which it can be seen that the fields in the middle and lower reaches of the Yangtze River are basically convex polygons such as rectangles, parallelograms, and right-angle trapezoids. Moreover, in the straw rotary burying operation, the operation unit needs to lift the rotary burying machine to avoid damage to the operation unit when turning around, and the general field head and field tail are reserved for turning around in the area, so sets of rows are generally used for rotary burying operation of the straw field.



Due to the need for cross-row operations during actual rotary burying operations, it is necessary to design corresponding path planning to achieve rotary burying and field nesting operations when choosing the cross-row bow-turning method. In order to ensure the smooth turning operation of the tractor, this article adopts a zigzag path with the maximum number of crossings for the design of the nesting path. The calculation formula for the maximum number of crossings Nk is shown in Equation (7) below:


   N k  =       U l    2  L k       − 1  



(7)




where Ul is the length of operational field width, m; Lk is the operational width of rotary burying units, m.





3. Results and Discussion


3.1. Tests of Start Route Extraction


Images of outdoor fields with different lights in different scenes were collected to verify the effectiveness of the algorithm. Scene 2 has a different light intensity from scene 1, and scene 3 is a different field scene. Under the conditions of different backgrounds, the light intensity and color temperature are different, so, in this study, the trial-and-error method is used to obtain the appropriate threshold of 0.15~0.42 for the H component. As shown in Figure 19, because the Hough transform method is more concerned about the uniform covariance of the local feature points in detecting the line features, some of the regional points in the path become separate lines, and thus, the error of the path obtained by the Hough transform method is larger. Compared with the Hough transform, the least squares method can obtain incomplete linear equations. The least squares method is a direct global minimum derivation, which has better global properties, but it is also susceptible to the influence of error points. In this study, redundant points are first eliminated using the Hough matrix and then outliers (error points) are eliminated using the RANSAC algorithm. Finally, as can be seen in Figure 19, the path fitting of the Hough matrix and RANSAC can reflect the information of field boundaries more comprehensively, and the experimental results using different backgrounds show that the method can accurately obtain the starting routes in different backgrounds and has strong robustness.



In different scenarios, the Hough transform continuously searches for peaks by means of a two-dimensional cumulative array created by slopes and intercepts and finally obtains the straight line with the highest number of co-linear points. The least squares method determines the optimal straight line equation by calculating the least square sum of the errors in the distances from the feature points to the straight line. Table 5 shows the equations and time consumed for fitting lines for different methods used for navigation path fitting. The average time to fit the navigation path is 0.31 s for the least squares method, 0.73 s for the traditional Hough transform, and 0.49 s for the Hough matrix and RANSAC method proposed in this paper, which saves 0.24 s compared to the traditional Hough transform.



The experimental samples are 60 pictures with three different backgrounds as shown in Figure 19. Four parameters such as target pixel ratio, navigation path acquisition elapsed time, average navigation path acquisition elapsed time, and average recognition accuracy are calculated for different pictures. The recognition accuracy is defined based on the degree of agreement between the slope of the obtained straight line and the slope of the straight line under normal sunlight intensity. The target pixel ratio is the percentage of the number of pixels to the total number of image pixels. The statistical results of the method for 20 samples in each scene are summarized and shown in Table 6. The starting route extraction method takes less than 0.51 s to recognize different scenes, and the average recognition accuracy is above 90%. The results show that different scenarios have a certain effect on the accuracy of the Hough matrix and RANSAC method for extracting the starting route, but it still has a certain degree of stability and meets the requirements of the starting route extraction for rotary burying and returning to the field operations.




3.2. Field Experiment


The relevant field trials were conducted in the rice test field of the State Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, under sunny weather conditions. The soil type of the selected test field was the common rice soil in the middle and lower reaches of the Yangtze River, the soil was a clay texture, and the field was post-drying; the parameters of the test plots are shown in Table 7.



In order to ensure the quality of rotary burying and returning to the field operations, this article sets the operating speed of the tractor to about 0.61 m/s, equipped with two sets of RTK-GNSS systems, with a satellite acquisition frequency of 10 Hz. One set provides real-time monitoring of surface height changes to provide input signals for controlling tillage depth changes, and the other set monitors the height changes in the rotary burying machine in real time. The experimental steps are as follows: (1) The status of the work tools is checked to ensure that the path tracking system and plowing depth control system are working properly. (2) The heading of the assigned unit is adjusted to the due north direction, the field boundary starting route recognition system is activated to obtain the starting route of the rotary burying and returning operation, and the maximum number of crossings is planned for the loop-shaped nesting path. Figure 20a shows the result of extracting the starting route through the Hough matrix and RANSAC algorithm.



The equation of the route is y = −1.277x + 180; that is, the angle between the initial route and the due north direction is θf = 90 + θ0 = 38.064. Due to the required field length of 21.22 m and width of 27.51 m, the total number of rows for the maximum cross-row nesting path planning is shown in Equation (8), and the number of rows for cross-row nesting operations is shown in Figure 9. The final nesting path planning diagram is shown in Figure 20b. (3) The initialization adopts the variable-gain single-neuron PID path tracking control algorithm and the variable-gain single-neuron PID plowing depth control system. (4) The GNSS positioning coordinate origin and communication port are initialized based on the altitude and system communication port of the RTK-GNSS base station and mobile station, and the automatic control system for plowing depth is started. (5) The assigned unit is started and the rotary burying and returning to the field operation is begun.


   N 1  =      27.51   2.3      = 12  



(8)








    N  k 1   =      27.51   2 × 2.3      − 1 = 5   



(9)





Figure 21 shows the results of the variable-gain single-neuron PID path tracking navigation control system and variable-gain single-neuron PID tillage depth control system tests. Due to the wet and soft soil at the time of harvesting, there were not only a large number of bumps caused by piling up after the harvesting operation but also a large number of potholes in the field left by the traveling harvester. Finally, as shown in Figure 21a, the three-dimensional trajectory of the operation was completed, and the height of the ground surface varied irregularly within the range of 2.714~3.119 m during the rotary burying operation. The geomorphologic surface of the field as shown in Figure 21b can be obtained by linearly fitting the operation trajectory and the corresponding height points.



As can be seen from the three-dimensional diagram of the trajectory of the rotary burying and returning operation, the variable-gain single-neuron PID path tracking control algorithm controls the steering of the entire rotary burying operation unit to realize the auxiliary navigation operation in the whole operation process. In the rotary burying operation, the rotary burying and returning operation machine uses a variable-gain single-neuron PID tillage depth control system to control the height of the tractor’s rear suspension to realize adaptive control of the tillage depth operation when the operation field is running. However, in the field head turning area, the electronically controlled hydraulic tillage depth control system will raise the rotary burying operation machine by 15 cm; the specific field rotary burying operation when the height changes between the tractor and the operation machine is shown in Figure 22.



After the experiment, the effect of the rotary burying operation is shown in Figure 23, after which the measurement of postoperational tillage depth and burying rate was carried out. The final measured results of the system test are shown in Table 8. Due to the rugged surface, the maximum deviation of the auxiliary navigation system is 0.133 m, the average absolute deviation is 0.047 m, and the standard deviation of the deviation is 0.052 m. The average plowing depth of the measured rotary burying operation is 13.3 cm, the stability coefficient of the plowing depth is 88.35%, and the burying and covering rate is 91.41%. From this, it can be seen that the test of the rotary buried field path tracking and plowing depth control system has achieved a more stable operating effect, and all the measured items have met the requirements of the evaluation index, which meets the technological requirements of the rotary burying field operation, and it is suitable for the plowing depth control of the automatic rotary burying field operation under unmanned driving controls.





4. Conclusions


In this paper, aiming to examine the phenomenon that only the driver’s subjective feeling can lead to retillage and missed tillage, the research group selected the Hough matrix and RANSAC to obtain the optimal navigation starting path, the bow-shaped turning mode, and the maximum interbank nesting path planning mode suitable to complete the unmanned straw rotary burying and returning operation. The main conclusions are as follows:



(1) Regarding the starting route, which is one of the key points in the path planning of nesting paths, this paper proposes an algorithm for extracting the starting route of the field boundary by combining the Hough matrix and RANSAC algorithm. The algorithm uses the H component to segment the image and extracts the boundary of residual straw as the target path. Then, after denoising and smoothing the image via morphological operation, the midpoint of the target path is determined by line scanning. Finally, the Hough matrix is used to extract feature points and remove redundant points, and the RANSAC algorithm is used to reduce the influence of noise points caused by different straw shapes and improve the accuracy of initial route extraction. Experiments show that this method takes less than 0.51 s to identify the initial route in different scenes, and the average recognition accuracy is over 90%, which meets the requirements of extracting the initial route of returning straw to the field by rotary burying.



(2) For the polygonal field, this paper chooses the bow-turning mode. Because the rotary burying operation distance is fixed, in order to reduce the turning paths, this paper makes a hypothetical analysis of the number of turning paths starting from different positions of convex polygonal fields. The results show that the starting operation along one side of the boundary of the fields is the initial route with the least turning paths for the rotary burying and returning operation unit.



(3) Regarding the field rotary burying operation of the straw rotary burying machine set, this paper adopts the maximum number of cross-line operation paths to design the nesting path, which ensures the smooth running of the nesting rotary burying operation on the premise of avoiding the reversing of the machine set as much as possible. Finally, the road test of the nesting path was carried out. The test shows that the nesting path designed by the research group conforms to the characteristics of a large turning radius with no reversing when the straw rotary burying machine is working, and the path design is suitable for the auxiliary navigation operation of the straw rotary burying machine.




5. Patents


One patent has been applied in China for a control system based on machine vision in this manuscript (Application No. ZL202110878640.2).
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Figure 1. Composition of auxiliary navigation and tillage depth control systems for straw rotary burying and returning: 1. GNSS receiving antenna; 2. GNSS mobile station; 3. onboard computer; 4. steering controller; 5. steering angle sensor; 6. electronic proportional hydraulic steering valve; 7. industrial camera; 8. rotary tiller for stubble burying; 9. electronic proportional hydraulic lifting valve; 10. lifting angle sensor; 11. lifting controller. 
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Figure 2. Structure diagram of the auxiliary navigation control system. 
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Figure 3. Installation diagram of industrial camera. 
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Figure 4. Camera calibration images. 
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Figure 5. Camera calibration images. (a) Relative position of the calibration plate to the camera. (b) Reprojection error. 
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Figure 6. Original image. 
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Figure 7. The segmentation result of Ostu. 
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Figure 8. Histograms of RGB and HSV models. (a) RGB components. (b) HSV components. 
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Figure 9. HSV image and its H-channel segmentation image. (a) Original HSV image. (b) Segmented image of the H-channel. 
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Figure 10. Octagonal structural elements with side length 3. 
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Figure 11. Morphological operations: (a) open operation; (b) closed operation. 
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Figure 12. Area of interest selection. 
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Figure 13. Line scan boundary feature points. 
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Figure 14. Feature points of the starting route. 
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Figure 15. Hough matrix with 467–532 rows and 77–104 columns. 
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Figure 16. Key feature points of the starting route. 
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Figure 17. Acquisition of starting routes. 
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Figure 18. Aerial view of the experimental field at Huazhong Agricultural University. 
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Figure 19. Identification results of starting route by three different methods. 
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Figure 20. Path planning for the full coverage operation. (a) Starting route recognition. (b) Diagram of path planning. 
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Figure 21. Three-dimensional information of fieldwork. (a) 3D diagram of assigned trajectory. (b) Linear fitting of field height surface. 
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Figure 22. Satellite altitude change diagram of the operating unit. 
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Figure 23. Measurement of tillage depth after rotary burying operation. 
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Table 1. Main technical parameters of the straw rotary burying and returning unit.
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	Parameters
	Values





	Working width/mm
	2300



	Deep plowing/mm
	120~180



	Overall quality/kg
	4820



	Calibrated power/kW
	70



	Power output shaft speed/r·min−1
	540/720 (adjustable)



	Power output shaft power/kW
	56.52



	Overall dimensions/(mm × mm × mm)
	5660 × 2500 × 2900



	Front wheelbase/mm
	1760~2000 (adjustable)



	Rear wheelbase/mm
	1632~2132 (adjustable)



	Minimum ground clearance/mm
	430



	Minimum turning circle radius/m
	5.6 ± 0.3










 





Table 2. Parameters of the camera lens.
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	Parameter
	Value





	monitoring range/mm
	6–12



	image size/inch
	1/2″



	horizontal field of view/°
	53~28



	close-up distance/m
	0.3



	dimensions/mm
	32×45



	weights/g
	75



	operating temperature/°C
	−20~+60










 





Table 3. Parameters of the camera.
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	Parameter
	Value





	pixels/dpi
	3 × 106



	signal-to-noise ratio/dB
	43



	dynamic range/dB
	>61



	exposure time/ms
	0.0556~683.8



	dimensions/mm
	28 × 28 × 46



	weights/g
	82



	operating temperature/°C
	0~+50










 





Table 4. Main calibration results of camera internal parameters.
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	Internal Parameter
	Value





	fx/pixels
	1245.26



	fy/pixels
	1245.15



	u0/pixels
	161.72



	v0/pixels
	122.23










 





Table 5. Results of field tests with different scenarios.
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Method

	
Scenes

	
k

	
b

	
Time/s






	
The least squares method

	
1

	
2.36

	
−27.27

	
0.33




	
2

	
2.08

	
12.92

	
0.28




	
3

	
5.85

	
−91.63

	
0.34




	
Hough transform

	
1

	
2.17

	
0.12

	
0.81




	
2

	
2.37

	
−29.85

	
0.66




	
3

	
5.27

	
−50.67

	
0.73




	
The Hough matrix and RANSAC method

	
1

	
1.88

	
46.43

	
0.46




	
2

	
1.71

	
71.29

	
0.48




	
3

	
7.01

	
−172.10

	
0.53











 





Table 6. Time consumption for starting route recognition for different scenes.
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Scenes

	
Picture No.

	
Percentage of Rice Stubble in the Picture/%

	
Elapsed Time for Starting Route Extraction/s

	
Average Elapsed Time/s

	
Average Accuracy Rate/%






	
Scenes 1

	
1–10

	
21–30

	
0.43–0.47

	
0.42

	
98.41




	
11–20

	
31–40

	
0.46–0.49

	
0.45

	
98.15




	
Scenes 2

	
21–30

	
21–30

	
0.49–0.52

	
0.51

	
96.21




	
31–40

	
26–40

	
0.42–0.55

	
0.47

	
95.33




	
Scenes 3

	
41–50

	
31–40

	
0.41–0.47

	
0.43

	
91.31




	
51–60

	
41–50

	
0.44–0.50

	
0.48

	
90.45











 





Table 7. Field parameters before experiment.
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	Parameters
	Values





	Stubble height/cm
	38



	Coverage/g·m−2
	1073



	Soil capacity/(g·cm−3)
	1.46



	Soil density/kPa
	1729



	Soil moisture content/%
	26.71










 





Table 8. Lateral deviation results of tracking in field.
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System

	
Parameters

	
Value






	
Auxiliary navigation systems

	
Maximum deviations/m

	
0.133




	
Average absolute deviation/m

	
0.047




	
Standard deviation/m

	
0.052




	
Depth of tillage control system

	
Average plowing depth/cm

	
13.3




	
Tillage depth stability factor/%

	
88.35




	
Burying rate/%

	
91.41
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