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Abstract: Grain storage temperature prediction is crucial for silo safety and can effectively
prevent mold and mildew caused by increasing grain temperature and condensation due
to decreasing grain temperature. However, current prediction methods lead to information
redundancy when capturing temporal and spatial dependencies, which diminishes predic-
tion accuracy. To tackle this issue, this paper introduces an adaptive multi-scale feature
fusion transformer model (AMSformer). Firstly, the model utilizes the adaptive channel
attention (ACA) mechanism to adjust the weights of different channels according to the
input data characteristics and suppress irrelevant or redundant channels. Secondly, AMS-
former employs the multi-scale attention mechanism (MSA) to more accurately capture
dependencies at different time scales. Finally, the ACA and MSA layers are integrated
by a hierarchical encoder (HED) to efficiently utilize adaptive multi-scale information,
enhancing prediction accuracy. In this study, actual grain temperature data and six publicly
available datasets are used for validation and performance comparison with nine existing
models. The results demonstrate that AMSformer outperforms in 36 out of the 58 test cases,
highlighting its significant advantages in prediction accuracy and efficiency.

Keywords: grain storage temperature prediction; information redundancy; adaptive chan-
nel attention mechanism; multi-scale attention mechanism; hierarchical encoder

1. Introduction
China is the world’s most populous developing country and the world’s largest food

producer, consumer, and importer [1], with 20% of the world’s population and less than 9%
of its arable land [2]. China’s food supply faces challenges due to limited food production
resources and growing domestic food consumption. According to the Food and Agriculture
Organization of the United Nations (Oliveira), the loss of food exceeds 35 billion kilograms
per year, with the largest percentage of loss occurring during the storage stage, at a rate of
about 7% [3]. This means that the loss of food in the storage stage is 2.45 billion kilograms,
and such a huge loss has had a serious impact on China, significantly increasing the burden
on the land. In addition to this, China’s food production is faced with challenges such
as rising costs of agricultural production, localization of water use [4], and arable land
constraints. To address these challenges, there is a need to shift the focus from increasing
food production to reducing food losses. Reducing losses during the grain storage phase
is one of the most realistic and effective ways to ensure food security in China [5]. The
grain storage period is most affected by temperature; too low a temperature will lead to
condensation phenomena, while too high a temperature will lead to the rapid reproduction
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of pests and molds, posing a serious threat to food security. Therefore, to prevent the
hazards of grain storage, it is essential to predict the temperature change of grain storage
in advance. In Chinese grain silos, real-time monitoring of the temperature of grain storage
piles has been initially realized by deploying sensor arrays in grain silos [6]. However, the
judgment of the future trend of grain temperature often relies on the experience of the staff,
which may lead to errors in judgment and potentially cause irreparable consequences to the
safety of grain storage. Recent studies have shown promising applications of agricultural
intelligence models in precision agriculture, such as precision irrigation, pest and disease
prediction, and crop growth management [7]. However, these models mainly focus on field
management, and research on intelligent predictive modeling for the storage phase of grain
bins is still scarce. To this end, we propose AMSformer, which utilizes the transformer
structure of multi-scale feature fusion to solve the problem of redundant information in the
prediction of grain bin temperature and improve the generalization ability of the model.
Therefore, accurate grain temperature prediction is crucial to ensure grain storage safety.

In the field of grain temperature prediction, three challenges still stand in the way
of achieving higher prediction efficiency and accuracy. (1) Existing models struggle to
efficiently and accurately predict multi-sensor data due to the single output limitations.
(2) Most models overlook the spatial topology of the sensor network, restricting a compre-
hensive examination of temperature variations in stored grains. (3) The discrete distribution
of sensors results in the inability to construct a continuous temperature field, hindering com-
prehensive visualization. However, with the advancement of deep learning, several neural
network models have been proposed for stored grain temperature prediction. Transformer-
based methods, in particular, have shown great potential due to their ability to capture
long-term temporal dependence (trans-temporal dependence) [8]. Besides trans-temporal
dependence, trans-dimensional dependence is also crucial for temperature prediction. That
is, for a given dimension, information from related series in other dimensions may enhance
the prediction. For instance, SageFormer utilizes a series perceptual graph structure to
efficiently capture and model dependencies between dimensions [9], and Crossformer
introduces dimension segmentation (DSW) embedding and a two-stage attention layer
(TSA) to effectively capture cross-temporal and cross-dimensional dependencies [10]. How-
ever, existing models are prone to redundant information when capturing cross-time and
cross-dimensional dependencies, while redundant information could disrupt the model
training process, limiting the model’s effectiveness in practical applications and reducing
the accuracy of forecasts.

To address the problems mentioned above, this paper proposes an AMSformer model
that explicitly exploits cross-dimensional dependencies and mitigates channel redundant
information. We design the adaptive channel attention (ACA) mechanism based on DSW
embedding, which suppresses the information of irrelevant channels and reduces the
model’s attention to redundant information. Then, we propose the multi-scale attention
(MSA) mechanism, which can flexibly adapt to the changes of different time scales in
the time series data. Whether it is the long-term trend, seasonal changes, or short-term
fluctuations, the MSA can efficiently capture the important features in the data, thus
improving the accuracy of the prediction. The contributions of this paper are as follows:

(1) This paper delves into the existing variants of transformer-based temperature pre-
diction and finds that these models bring redundant information when utilizing
cross-dimensional dependencies, which, if not handled, can impact the accuracy of
grain temperature prediction.

(2) An adaptive channel attention mechanism and a multi-scale attention mechanism are
designed. The former is able to adaptively adjust the weights of different channels
according to the characteristics of the input data while suppressing those irrelevant
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or redundant channels. The latter is used to capture cross-time dependencies more
accurately, and by computing attention at different time scales, the model is able
to understand the features and structures in the data more comprehensively, thus
improving the accuracy and generalization ability of the prediction.

(3) We utilize a hierarchical encoder to feature-fuse the adaptive channel attention mech-
anism and the multi-scale attention mechanism, which realizes the effective use of
adaptive multi-scale information. Experimental results show that our model achieves
state-of-the-art performance on both real-world datasets and synthetic datasets.

2. Related Works
This paper reviews previous storage temperature prediction as well as multivariate

time series prediction models. In order to detail the benefits of AMSformer for storage
temperature prediction, this section briefly describes the core features of each method,
sample implementations, and the strengths and weaknesses of the key findings.

Temperature prediction models can be broadly categorized into statistical models and
neural network models. Statistical models can be categorized into vector autoregressive
(VAR) models [11] and vector autoregressive moving average (VARMA) models, which
assume a linear relationship between the variables and linear prediction by the past val-
ues of that variable and other variables. However, as the amount of data increases, deep
learning shows better performance than statistical models [12]. For example, Ge et al.
used multiple convolutional kernels with shared weights based on convolutional neural
networks (CNNs) to capture temperature features at different locations [13], making full
use of the temperature information around the target point. Qu et al. combined multiple
outputs and spatiotemporal modeling with graph convolutional networks (GCNs) and
transformers [14], where GCNs captured the spatial correlation of the sensors in the grain
silo and the sensor network, and transformers captured the long-term and short-term tem-
poral features and described the temporal dependencies. Mao et al. proposed temperature
prediction algorithms with gated recurrent units (GRU) and multivariate linear regression
(MLP), as well as wavelet filtering techniques [15], which efficiently deal with the problem
of data sparsity and noise. It can be seen that grain storage temperature is influenced by
a variety of complex factors intertwined. In order to achieve more accurate temperature
prediction, we can skillfully use the multivariate time series prediction model. This method
can comprehensively consider the dynamic relationship of multiple variables over time
to grasp the trend of grain storage temperature more comprehensively and improve the
accuracy of prediction.

Multivariate time series (MTS) prediction, also known as multivariate time prediction,
focuses on the presence of multiple time-dependent variables in a system. Fan et al. combine
temporal convolutional networks (TCNs) with spatio-temporal attention mechanisms to
capture spatial and temporal dependencies [16]. Jiang et al. decomposed time series into
temporal and spatial terms to integrate global and local multivariate information [17]. Li
et al. modeled topological relationships between instances using the BERT model and
attention mechanism [18]. Jin et al. combined graph neural networks (GNN) and attention
mechanisms to capture spatial dependencies through hierarchical signal decomposition on
graphs [19]. Lu et al. proposed the complementary time series (CATS), which generates
the complementary time series from the original time series and merges the relationships
between the series for prediction [20]. Miao et al. designed a progressive quadratic
decomposition architecture to extract time series patterns, learn to represent the spatial
topology through graph structure, and gate the augmented representation input to GNNML
to integrate temporal and spatial information [21]. Guo et al. proposed a matrix attention
mechanism that constructs a frequency domain module and a time domain module with
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equal weighting of the previous data points to capture the local dynamics and the long-term
change patterns, respectively [22]. Wang et al. utilized two self-attention strategies, spatial
and temporal self-attention, to focus on the most relevant information in a time series,
the former for discovering dependencies between variables and the latter for capturing
relationships between historical observations [23]. These models capture both temporal
and dimensional dependencies but do not take into account the fact that dimensional
dependencies already potentially include the influence of historical data, which can affect
the accuracy of MTS predictions.

While transformers are widely used in natural language processing (NLP), vision
(CV), and speech processing, variants based on the transformer model for MTS prediction
show great potential. Informer [24] exploits the sparsity of the attention scores through KL
scatter estimation and proposes the ProbSparse self-attention and distillation techniques.
Autoformer [25] renovates transformers into a deep decomposition architecture and con-
catenates autocorrelation mechanisms. Pyraformer [26] proposes a pyramid attention
module to achieve linear time and space complexity. FEDformer [27] argues that the time
series has a sparse representation in the frequency domain and proposes frequency domain
augmentation structures. Preformer [28] divides the embedded feature vector sequence
into multiple segments and utilizes segment-based correlation attention for prediction.
STFormer [29] combines a two-stage transformer, which captures spatio-temporal rela-
tionships and solves the noise problem, and an adaptive spatio-temporal graph structure,
which solves the problem of disordered data. These models mainly focus on capturing tem-
poral dependencies and spatial dependencies, often ignoring the information redundancy
between spatio-temporal dependencies. Different from the above approaches, we propose
AMSformer, which utilizes adaptive channels and multi-scale feature fusion to suppress
redundant channels and capture cross-scale dependencies more accurately.

3. Methodology
In grain storage temperature prediction, the assumption denotes the past 1-T time

steps of the temperature datasets, which we aim to predict, where τ denotes the future time
step to be predicted, T denotes the past time step, and D denotes the data dimension. In
order to utilize the cross-dimensional dependence and reduce the impact of information
redundancy, we make the following contributions: in Section 3.1, we collect temperature
and humidity, as well as air temperature and air humidity data inside the silo by arranging
temperature measurement cables and temperature and humidity sensors inside the silo,
and we access these data through a centralized data acquisition system for processing to
remove the outliers and missing values. The processed data are stored in a database to
construct the grain temperature prediction dataset. In Section 3.2, the adaptive channel
attention (ACA) mechanism is used to extract global features, capture global dependencies
between channels, and mitigate information redundancy. In Section 3.3, the multi-scale
attention layer (MSA) is proposed to capture multi-level information to efficiently capture
the dependencies between different time dimensions. In Section 3.4, a hierarchical encoder–
decoder module is constructed utilizing the ACA mechanism and the MSA layer to integrate
features from different scales in order to generate the final output sequence.

3.1. Datasets

The dimensions of the grain silo involved in this study are 42 m long and 24 m wide,
the height of the grain stacking line is 6 m, and the total silo capacity is 4838.4 tons. The
cable layout consists of 10 columns and 6 rows, with 7 layers of sensors in each row and
column, and the total number of cables is unknown. The sensor buried line standard is
0.5 m from the wall; the top sensor is 0.5 m from the grain surface; the distance between
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the sensor columns is 4.56 m; the row spacing is 4.6 m; and the layer height is 0.78 m. The
distribution of the temperature-sensitive cables is shown in Figure 1.
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Figure 1. In the grain silo, temperature data from 420 sensors were collected over a time span
of 365 days, from 1 January 2021 to 31 December 2021, with each sensor collecting 6 data points
per day, for a total of one session of data collection. Sensor acquisition of data may lead to the
problem of missing data because the trend of grain storage temperature data is relatively smooth. It
is assumed that the data points before and after the missing values have a linear relationship, and the
missing values are estimated using linear equations to interpolate the missing data and correct the
anomalous data. The data from 42 sensors in one of the cross sections, as well as bin temperature, bin
humidity, air temperature, air humidity, and other data, are selected for integration, and the final
tensor size represents 46 sensors collecting 6 data points per day for 365 days, ultimately obtaining its
own dataset.

3.2. Adaptive Channel Attention

To motivate our approach, we first analyze the embedding methods of the transformer-
based models previously used for MTS prediction. Informer and autoformer, among others,
embed data points of the same time step into a vector:

Xt → ht , Xt ∈ RD, ht ∈ Rdmodel (1)

where Xt denotes all data points in D-dimension with step size of t. In this way, the inputs
X1:T are embedded into the t-vectors {h1, h2, . . .; hT}. Dependencies between t-vectors
are then captured for prediction, while cross-dimensional dependencies are not explicitly
captured during embedding, which limits their predictive power. Crossformer proposed
dimensional segmentation embedding, where nearby points on each dimension are divided
into segments of length L and then embedded into the following:

Sd
i =

[
Xd

i , Xd
i+1, . . . , Xd

i+l−1

]
(2)

where Sd
i is the i-th segment of length 1 in the d dimension. Each segment is then em-

bedded into a vector: hi = Wsi + b using linear projection and positional embedding.
A two-dimensional vector array is obtained, where hi denotes a univariate time-series
segment, explicitly capturing cross-dimensional dependencies. However, data of different
dimensions can also introduce information redundancy. To address this problem, we
propose the adaptive channel attention (ACA) mechanism, which aims to automatically
learn and adjust the weights of different channels based on the characteristics of the input
data in order to capture and utilize the important features in the data more efficiently. This
attention mechanism allows the model to dynamically adjust the weights of the channels
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when dealing with different samples, which improves the model’s representational and
generalization performance.

Suppose we have a multivariate time series dataset where each sample contains
multiple channels of time series data. We can represent these data as a three-dimensional
tensor X ∈ RN×T×D, where N is the number of samples, T is the time series length, and D is
the number of channels. First, we need to compute the adaptive channel attention weights.
Assuming we have q attention heads, we start with a parameter transformation for each
attention head:

Qi = XWQ
i + bQ

i , Ki = XWK
i + bK

i , Vi = XWV
i + bV

i (3)

where WQ
i , WK

i , WV
i is the parameter matrix and bQ

i , bK
i , bV

i is the bias vector corresponding
to the i attention head. Attention weights are then calculated for each attention head:

Ai = softmax

(
QiK

T
i√

dk

)
(4)

where dk is the dimension of the key vector. Attention weights are applied to a linear
combination of each value to generate the attention output: Oi = AiVi. We connect the
outputs of each head together to form the attention output tensor:

Y = concat
(
O1, O2, . . . , Oq

)
WO (5)

where WO is the output weight matrix. Finally, the attention output is used as an input
to the dimensional segmented embedding (DSW), yielding a two-dimensional array of
vectors. The illustrative architecture of the adaptive channel attention mechanism is shown
in Figure 2.
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Figure 2. The left side of this figure shows the positional relationship between the sensors. The
stored grain temperature data collected by the sensors and the spatial information of the data are
used as the input features, then the global spatial information of the input features is compressed.
After compression, the excitation part of the input features learns the dimensions of the channels
and obtains the weights of the individual channels; finally, the input features are multiplied by the
weights to obtain the final output feature map.

3.3. Multi-Scale Attention Mechanisms

The output of the dimensional segmented embedding is multiple univariate time
series segments, denoted as H: H ∈ Ri×d, where i is the number of time steps and d is the
output dimension of the dimensional segmented embedding. Consider that time-series
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patterns for storage temperature prediction often contain multiple different time scales,
such as daily, weekly, monthly, and other cycle-specific patterns. For feature representation
at each time scale, the multiple attention mechanism is applied. Suppose there is an
attention head at the s-th scale. For an attention head h at the s-th scale, the attention

weights are calculated as follows: A(s,h) = softmax
(

1√
dk

(
Q(s,h)

)(
K(s,h)

)T
)

V(s,h), where

Q(s,h) = Z(s)W(s,h)
Q , K(s,h) = Z(s)W(s,h)

Q , V(s,h) = Z(s)W(s,h)
V is the query, key, and value

matrix obtained by linear permutation of the input feature Z(s); W(s,h)
Q ∈ RM×dk , W(s,h)

K ∈
RM×dk , W(s,h)

V ∈ RM×dv is the weight matrix obtained by learning, dk is the dimension
of the query/key, and dv is the dimension of the value;

√
dk is the normalization factor

used to scale the range of values of the dot product attention; and the softmax function
is used to normalize the attention weights obtained. After computing the multi-scale
attention weights A(s,h), the feature representations at different time scales are weighted
and fused with the corresponding attention weights. The fusion result Z(s) at the s scale
is computed as follows: Z(s) = ∑Hs

h=1 A(s,h)V(s,h). The fusion results Z(s) at all scales are
stitched together to obtain the final output of the multi-scale attention mechanism. The
illustrative architecture of the multi-scale attention mechanism is shown in Figure 3.
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Figure 3. The architecture of the multi-scale attention mechanism for time series analysis, which
contains a multi-head attention mechanism, residual connections, layer normalization, and a multi-
scale fusion module, aiming to effectively capture and process the information in time series data.
First, the input data are shaped as (batch_size, time_steps, input_dim), and each time step contains
multiple features. Then, multi-scale feature extraction is performed through different time windows
(e.g., 1 day, 1 week, and 1 month); then, the multi-head attention mechanism is applied to compute
the importance weight of each time scale, and the specific steps include mapping the input features as
query (Q), key (K), and value (V) vectors, calculating the attention weights and performing weighted
summation. Subsequently, layer normalization is performed on the output of the multi-head attention
mechanism to improve the stability of the model training. Residual connections are added between
the input of the multi-head attention mechanism and the output of the layer normalization to prevent
the gradient from disappearing. The weighted summation is performed on the features at each time
scale according to the attention weights to ensure the features are effectively integrated. Stitching
and processing of the weighted fused features of all time scales is performed through the multi-
scale fusion module to form a comprehensive feature representation. Further processing the output
of the multi-scale fusion module is performed through the feature fusion layer to form the final
feature representation.

3.4. Hierarchical Encoder–Decoder

In the layered encoder, we focus on how to effectively integrate the adaptive channel
attention (ACA) and multi-scale attention (MSA) layers. In integrating the ACA and MSA
layers, we devise an effective strategy that allows the two to work together and fully utilize
their respective advantages. The ACA layer is first applied to capture channel correlations
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in the input data, then the output of the ACA is used as the input to the MSA layer. Doing
so allows the MSA layer to better understand the multi-scale features of the input data,
thus improving the model’s characterization capability. The specific architecture of the
hierarchical encoder is designed as a sequence of stacked modules, each containing an
ACA layer and an MSA layer. Such an architecture enables feature extraction of input data
at multiple levels and efficiently integrates information from the ACA and MSA layers.

Specifically, each module can contain the following steps: adaptive channel attention
(ACA) layer: used to capture the channel correlations in the input data and weigh the
important information between channels to improve the model’s understanding of the
input data; multi-scale attention (MSA) layer: utilizes the output of the adaptive channel
attention layer as the input to capture the feature information at different times through
the mechanism of multi-head attention to achieve the effective fusion and interaction
of features at different scales. Residual connection and layer normalization: in order to
enhance the gradient propagation and training effect of the model, residual connection and
layer normalization operations can be added in each module to improve the stability and
convergence speed of the model.

Through the hierarchical encoder–decoder (HED) structure in the hierarchical encoder,
we can realize the effective utilization of adaptive multi-scale information. Specifically, the
ACA layer can help the model automatically learn the channel correlations in the input
data, which makes the model pay more attention to the important feature channels, while
the MSA layer can capture the correlations of the features at different scales, promoting
the effective fusion of feature information. Through this combination, the model is able to
better understand the feature structure of the input data and achieve better performance in
prediction tasks. The illustrative architecture of the layered encoder is shown in Figure 4.

Agriculture 2024, 14, x FOR PEER REVIEW 8 of 17 
 

 

important information between channels to improve the model’s understanding of the 
input data; multi-scale attention (MSA) layer: utilizes the output of the adaptive channel 
attention layer as the input to capture the feature information at different times through 
the mechanism of multi-head attention to achieve the effective fusion and interaction of 
features at different scales. Residual connection and layer normalization: in order to en-
hance the gradient propagation and training effect of the model, residual connection and 
layer normalization operations can be added in each module to improve the stability and 
convergence speed of the model. 

Through the hierarchical encoder–decoder (HED) structure in the hierarchical en-
coder, we can realize the effective utilization of adaptive multi-scale information. Specifi-
cally, the ACA layer can help the model automatically learn the channel correlations in 
the input data, which makes the model pay more attention to the important feature chan-
nels, while the MSA layer can capture the correlations of the features at different scales, 
promoting the effective fusion of feature information. Through this combination, the 
model is able to better understand the feature structure of the input data and achieve bet-
ter performance in prediction tasks. The illustrative architecture of the layered encoder is 
shown in Figure 4. 

 
Figure 4. The hierarchical encoder integrates adaptive channel attention and multi-scale attention. 
The input historical temperature data are filtered for important channels by adaptive channel atten-
tion, then the multi-scale attention mechanism is utilized to capture the dependencies between dif-
ferent time scales, and the obtained results are summed to obtain the final output. 

4. Experiments 
4.1. Spatial and Temporal Correlation Analysis 

In the time dimension, the autocorrelation function is used to measure the correlation 
of time series at different time lags and to determine how one time series affects another. 
For the time series dataset, the autocorrelation coefficients for the intervals are calculated 
as follows: ρ୪ = ∑ ሺr୲ − r‾ሻ୘୲ୀ୪ାଵ ሺr୲ି୪ − r‾ሻ∑ ሺr୲ − r‾ሻଶ୘୲ୀଵ , 0 ൑ l ൑ T − 1 (6)
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The input historical temperature data are filtered for important channels by adaptive channel attention,
then the multi-scale attention mechanism is utilized to capture the dependencies between different
time scales, and the obtained results are summed to obtain the final output.
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4. Experiments
4.1. Spatial and Temporal Correlation Analysis

In the time dimension, the autocorrelation function is used to measure the correlation
of time series at different time lags and to determine how one time series affects another.
For the time series dataset, the autocorrelation coefficients for the intervals are calculated
as follows:

ρl =
∑T

t=l+1(rt − r)(rt−l − r)

∑T
t=1(rt − r)2 , 0 ≤ l ≤ T − 1 (6)

where rt and rt−l denote the grain temperature observations at time t and t − l, respectively,
r is the average temperature of the sensor over 365 days, and l is the time span. This equation
is used to calculate the autocorrelation coefficient corresponding to the temperature data
for each layer at different lag times. In Figure 5, as the lag time increases, it is observed that
the autocorrelation coefficient decreases at a relatively slow rate from 1 to 0. Since six data
points are collected per day, it can be seen that this effect gradually decreases to zero over
a period of more than three months, at which time seasonal effects play a dominant role,
with different seasons negatively correlating with each other.
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Figure 5. Temporal correlation analysis. The y-axis is the autocorrelation coefficient, which is stronger
as it approaches 1 and weaker as it approaches 0, and the x-axis is the time variation.

In the spatial dimension, the global Moran index is used to judge the correlation
between spatially adjacent regions to explain that the value of a region’s variable is not
only determined by its own characteristics, but also influenced by its neighboring regions.
Moran I > 0 indicates positive spatial correlation, and the larger the value, the stronger the
spatial correlation. The formula is as follows:

I =
n

∑n
i=1 ∑n

j=1 Wij
•

∑n
i=1 ∑n

j=1 Wij(xi − x)
(
xj − x

)
∑n

i=1(xi − x)2 (7)

where n denotes the number of subregions divided, xi and xj are the temperature values
of sensors i and j, x is the average of the temperatures of all subregions, and W is the
weight matrix of the sensor neighborhoods. W values of 0 or 1 indicate whether a sensor is
disconnected or not, respectively. After constructing the coordinate system, the correlation
heat map is shown in Figure 6.
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Figure 6. The results shown in the above figure illustrate that the spatial correlation is negatively
correlated with the distance between the sensors, and the correlation between (3,3) and (3,4) is
stronger than the correlation between (3,3) and (4,3). There is a relatively weak correlation between
the layers. From this, it can be obtained that the temperature difference in the horizontal direction is
smaller, while the temperature difference in the vertical direction is larger. In conclusion, the above
analysis verifies the spatial correlation between temperatures.

4.2. Experimental Setup and Results

The dataset is partitioned into a training set, a validation set, and a test set with
a partition ratio of 0.7:0.1:0.2. The hidden layer dimension is set to 256, the number of
multiple notes is set to 4, the segment length is set to 6, the input length is T, the output
length is τ, and the window size is set to 2. The training is performed using the Adam
optimizer, with the batch size set to 32, the number of training rounds set to 20, and the
learning rate set to 1 × 10−4. The training process is stopped early if the validation loss is
not reduced within three cycles. We use Mean Squared Error (MSE) and Mean Absolute
Error (MAE) as evaluation metrics, and all the experiments are repeated five times, with
the average of the five experiments used as the reporting metric. The error range was also
set, and to make it easier to understand the error range, we used the square root of the
MSE, RMSE. The magnitude of the RMSE was consistent with the original data. The results
of different predicted lengths for a particular sensor in the grain bin are shown in Figure 7,
where the y-axis is in degrees Celsius, and True and Pred represent the actual and predicted
temperatures, respectively.
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high-frequency data, seasonal variations, and joint forecasts of multidimensional data. 
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Figure 7. (a). Predicting the next 1 data point, MSE is 0.001 and MAE is 0.032. (b). Predicting the next
2 data points, MSE is 0.000 and MAE is 0.015. (c). Predicting the next 3 data points, MSE is 0.002 and
MAE is 0.047. (d). Predicting the next 6 data points, MSE is 0.010 and MAE is 0.096. (e). Predicting
the next 12 data points, MSE is 0.033 and MAE is 0.172. (f). Predicting the next 24 data points, MSE is
0.260 and MAE is 0.507.

4.3. Comparative Analysis of Experiments

We chose six publicly available datasets to validate the model in this paper:
1. ETTh1 (electricity transformer temperature—hourly); 2. ETTm1 (electricity transformer
temperature—minute); 3. WTH (weather); 4. ECL (electricity consumption load); 5. ILI
(influenza-like illness); 6. traffic. These datasets were selected to comprehensively evaluate
the performance of the AMSformer model on different types of time-series data, including
high-frequency data, seasonal variations, and joint forecasts of multidimensional data. The
first four datasets have the same tra/val/test split as the informer, and the last two datasets
are split according to the autoformer’s ratio of 0.7:0.1:0.2. This split ratio is widely used
in time series forecasting tasks and can ensure that the model can use sufficient historical
data during training while also ensuring the independence of the validation and test sets to
avoid overfitting. During the training of the AMSformer model, we used a grid search to
tune the key hyperparameters to ensure optimal performance of the model on different
datasets. The following are the key hyperparameters we tuned: 1. Learning rate: We tested
different learning rates to find the optimal value that minimizes the loss during the training
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process. We selected the range of [1 × 10−3, 5 × 10−4, 1 × 10−4, 5 × 10−5] and selected
the optimal learning rate based on the performance on the validation set. 2. Hidden layer
dimensions: we tried different dimensions of hidden layers (e.g., 64, 128, 256) and evaluated
the impact of each setting on the model performance through the validation set. 3. Batch
sizes: we tried different batch sizes (e.g., 16, 32, 64), and finally chose a batch size of 32, as
this performed optimally in most of the experiments. 4. Number of multi-head attention
heads: We chose different numbers of heads of [2,4,8] and adjusted the dimensionality of
the multi-head attention to optimize the information extraction process. After validation,
four heads were chosen as the optimal configuration.

We performed multiple rounds of testing on the validation set via a grid search
combined with cross-validation to select the optimal hyperparameter combination. For each
dataset, we performed five experiments, calculated the average performance metrics (e.g.,
MSE and MAE) for each experiment, and finally selected the hyperparameter combination
with the smallest validation error.

We use the following popular MTS prediction models as baselines: LSTMa [30],
LSTNet, MTGNN [31], transformer, informer, autoformer, pyraformer, FEDformer,
and crossformer. We use the same setup as above with the same setups: the train-
ing/validation/testing sets were normalized using the mean and standard deviation of the
training set for zero-mean normalization. On each dataset, we evaluated the performance
over a changing future window size τ and used the mean squared error (MSE) and mean
absolute error (MAE) as evaluation metrics.

As shown in Table 1, our model showed a leading performance on most datasets as well
as different prediction length settings, with optimal results in 36 out of a total of 58 cases.
On the ETTh1 dataset, AMSformer predicts seasonal and trend changes more accurately
than other models such as LSTM by capturing the correlation of multidimensional time
series data more efficiently. In a 24 h forecasting task on the WTH dataset, AMSformer
accurately captures daytime temperature variations through MSA, while the traditional
transformer may have missed some important features. In the traffic dataset, AMSformer
outperforms pyraformer and FEDformer in cross-level information fusion. The ILI dataset
has a small amount of data and weak temporal features, which causes AMSformer’s multi-
scale attention mechanism and channel attention mechanism to fail to give full play to its
advantages. In addition to this, our model generally outperforms the other baselines in
short-term forecasting.
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Table 1. MSE/MAE for different models with different prediction lengths. At the top of the table are the different models, and on the left side are the publicly
available datasets and the different prediction lengths. Underlining indicates that the previous model is the best, and bolding indicates that it is better compared to
the previous results.

Models LSTMa LSTnet MTGNN Transformer Informer Autoformer Pyraformer FEDformer Crossformer AMSformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Th

1

24 0.650 0.624 1.293 0.901 0.336 0.393 0.620 0.577 0.577 0.549 0.439 0.440 0.493 0.507 0.318 0.384 0.305 0.367 0.299 0.365
48 0.720 0.675 1.456 0.960 0.386 0.429 0.692 0.671 0.685 0.625 0.429 0.442 0.554 0.544 0.342 0.396 0.352 0.394 0.347 0.395
168 1.212 0.867 1.997 1.214 0.466 0.474 0.947 0.797 0.931 0.752 0.493 0.479 0.781 0.675 0.412 0.449 0.410 0.441 0.413 0.441
336 1.424 0.994 2.655 1.369 0.736 0.643 1.094 0.813 1.128 0.873 0.509 0.492 0.912 0.747 0.456 0.474 0.440 0.461 0.444 0.462
720 1.960 1.322 2.143 1.380 0.916 0.750 1.241 0.917 1.215 0.896 0.539 0.537 0.993 0.792 0.521 0.515 0.519 0.524 0.510 0.520

ET
T

m
1

24 0.621 0.629 1.968 1.170 0.260 0.324 0.306 0.371 0.323 0.369 0.410 0.428 0.310 0.371 0.290 0.364 0.211 0.293 0.199 0.283
48 1.392 0.939 1.999 1.215 0.386 0.408 0.465 0.470 0.494 0.503 0.485 0.464 0.465 0.464 0.342 0.396 0.300 0.352 0.288 0.343
96 1.339 0.913 2.762 1.542 0.428 0.446 0.681 0.612 0.678 0.614 0.502 0.476 0.520 0.504 0.366 0.412 0.320 0.373 0.317 0.364
288 1.740 1.124 1.257 2.076 0.469 0.488 1.162 0.879 1.056 0.786 0.604 0.522 0.729 0.657 0.398 0.433 0.404 0.427 0.392 0.418
672 2.736 1.555 1.917 2.941 0.620 0.571 1.231 1.103 1.192 0.926 0.607 0.530 0.980 0.678 0.455 0.464 0.569 0.528 0.529 0.510

W
TH

24 0.546 0.570 0.615 0.545 0.307 0.356 0.349 0.397 0.335 0.381 0.363 0.396 0.301 0.359 0.357 0.412 0.294 0.343 0.292 0.343
48 0.829 0.677 0.660 0.589 0.388 0.422 0.386 0.433 0.395 0.459 0.456 0.462 0.376 0.421 0.428 0.458 0.370 0.411 0.366 0.407
168 1.038 0.835 0.748 0.647 0.498 0.512 0.613 0.582 0.608 0.567 0.574 0.548 0.519 0.521 0.564 0.541 0.473 0.494 0.469 0.490
336 1.657 1.059 0.782 0.683 0.506 0.523 0.707 0.634 0.702 0.620 0.600 0.571 0.539 0.543 0.533 0.536 0.495 0.515 0.498 0.517
720 1.536 1.109 0.851 0.757 0.510 0.527 0.834 0.741 0.831 0.731 0.587 0.570 0.547 0.553 0.562 0.557 0.526 0.542 0.521 0.537

EC
L

48 0.486 0.572 0.369 0.445 0.173 0.280 0.334 0.399 0.344 0.393 0.241 0.351 0.478 0.471 0.229 0.338 0.156 0.255 0.150 0.254
168 0.574 0.602 0.394 0.476 0.236 0.320 0.353 0.420 0.368 0.424 0.299 0.387 0.452 0.455 0.263 0.361 0.231 0.309 0.223 0.307
336 0.886 0.795 0.419 0.477 0.328 0.373 0.381 0.439 0.381 0.431 0.375 0.428 0.463 0.456 0.305 0.386 0.323 0.369 0.301 0.353
720 1.676 1.095 0.556 0.565 0.422 0.410 0.391 0.438 0.406 0.443 0.377 0.434 0.480 0.461 0.372 0.434 0.404 0.423 0.408 0.426
960 1.591 1.128 0.605 0.599 0.471 0.451 0.492 0.550 0.460 0.548 0.366 0.426 0.550 0.489 0.393 0.449 0.433 0.438 0.436 0.441

IL
I

24 4.220 1.335 4.975 1.660 4.265 1.387 3.954 1.323 4.588 1.462 3.101 1.238 3.970 1.338 2.687 1.147 3.041 1.186 2.926 1.139
36 4.771 1.427 5.322 1.659 4.777 1.496 4.167 1.360 4.845 1.496 3.397 1.270 4.377 1.410 2.887 1.160 3.406 1.232 3.154 1.160
48 4.945 1.462 5.425 1.632 5.333 1.592 4.746 1.463 4.865 1.516 2.947 1.203 4.811 1.503 2.797 1.155 3.459 1.221 3.256 1.158
60 5.176 1.504 5.477 1.675 5.070 1.552 5.219 1.553 5.212 1.576 3.019 1.202 5.204 1.588 2.809 1.163 3.640 1.305 3.396 1.208
24 0.668 0.378 0.648 0.403 0.506 0.278 0.597 0.332 0.608 0.334 0.550 0.363 0.606 0.338 0.562 0.375 0.491 0.274 0.481 0.270

Tr
af

fic

24 0.668 0.378 0.648 0.403 0.506 0.278 0.597 0.332 0.608 0.334 0.550 0.363 0.606 0.338 0.562 0.375 0.491 0.274 0.481 0.270
48 0.709 0.400 0.709 0.425 0.512 0.298 0.658 0.369 0.644 0.359 0.595 0.376 0.619 0.346 0.567 0.374 0.519 0.295 0.506 0.285
168 0.900 0.523 0.713 0.435 0.521 0.319 0.664 0.363 0.660 0.391 0.649 0.407 0.635 0.347 0.607 0.385 0.513 0.289 0.512 0.287
336 1.067 0.599 0.741 0.451 0.540 0.335 0.654 0.358 0.747 0.405 0.624 0.388 0.641 0.347 0.624 0.389 0.530 0.300 0.528 0.299
720 1.461 0.787 0.768 0.474 0.557 0.343 0.685 0.370 0.792 0.430 0.674 0.417 0.670 0.364 0.623 0.378 0.573 0.313 0.572 0.310
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4.4. Ablation Experiment

In our approach, there are three components: the ACA layer, the MSA layer, and the
HED. We use the transformer as a baseline to compare the two ablation versions: (1) ACA,
(2) MSA, (3) ACA + MSA.

We analyze the results shown in Table 2. (1) When only the ACA layer is retained, the
model is able to capture local contextual information. The ACA layer mainly enhances the
local attention mechanism, which makes the model outperform the baseline transformer
to a certain extent, but its overall performance enhancement is limited due to the lack of
support for multi-scale information aggregation and hierarchical decoding. (2) When only
the MSA layer is retained, the model is able to aggregate information at different scales,
enhancing the ability to understand the global context. Although the MSA layer improves
the aggregation of multi-scale information, without the local context aggregation of the
ACA layer and the hierarchical decoding of HED, the model still has limited performance
enhancement. (3) With the addition of the MSA layer to the ACA layer, the model is able to
capture local context information as well as to aggregate information at different scales. This
version significantly improves the overall performance of the model, indicating that the
ACA layer and the MSA layer play an important synergistic role in information aggregation
and context understanding. (4) The full model integrates the ACA layer and the MSA
layer into the HED, which enables the model to better utilize the hierarchically embedded
information in the decoding stage. The addition of the HED significantly improves the
model’s ability to capture details and overall performance, resulting in the best model
performance being optimal.

Table 2. Ablation studies of the ETTh1 dataset, preserving the results of the ablation experiments for
the ACA layer, MSA layer, ACA + MSA and ACA + MSA + HED.

Models Transformer ACA MSA ACA + MSA ACA + MSA + HED

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Th

1

24 0.620 0.577 0.612 0.571 0.615 0.573 0.331 0.387 0.299 0.365
48 0.692 0.671 0.684 0.665 0.687 0.669 0.381 0.423 0.347 0.395

168 0.947 0.797 0.941 0.791 0.932 0.783 0.461 0.465 0.413 0.441
336 1.094 0.813 1.089 0.806 1.074 0.793 0.728 0.632 0.444 0.462
720 1.241 0.917 1.238 0.914 1.219 0.897 0.869 0.706 0.510 0.520

5. Conclusions
We propose AMSformer, a transformer-based model that utilizes adaptive multi-

scale feature fusion for grain storage temperature prediction. Specifically, adaptive channel
attention (ACA) assigns different weights to each channel, allowing the model to adaptively
focus on those channels that are more important to the prediction task. A multi-scale
attention (MSA) mechanism was designed to compute attention weights at different time
scales and weighted fusion of features at different scales. Then, a hierarchical encoder–
decoder (HED) was designed to synthesize the temporal and dimensional dependencies
using ACA and MSA. The results show that it is very effective.

We analyze the limitations of our work. First, although AMSformer has achieved
significant results in grain storage temperature prediction, its performance may be affected
by the quality and quantity of data. In practice, the presence of noise or missing values
in the dataset may have some impact on the prediction results of the model. Secondly,
the complexity and computational cost of the model are also issues to be considered.
AMSformer employs multi-scale attention and adaptive channel attention mechanisms,
which increase the complexity and computational requirements of the model. With limited
resources, the structure and parameters of the model may need to be further optimized to
reduce computational costs and improve efficiency.
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To address these limitations, we plan to conduct further exploration and improvement
in our future work. First, we will investigate how to deal with noise and missing values in
the data more effectively to improve the robustness and generalization ability of the model.
Second, we will try to optimize the structure and parameters of the model to reduce the
computational cost and improve the prediction performance. Adaptive filtering methods,
such as Kalman filtering, are introduced to dynamically estimate and correct the noisy
data. The introduction of masked self-encoders will allow the model to directly process
input data containing missing values. The introduction of sparse attention mechanisms will
also be explored to further reduce the computational complexity, and we will use mixed-
precision training to speed up computation and reduce graphics memory requirements. In
addition, we will explore the application of AMSformer to other related fields to verify its
generalization and scalability.
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