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Abstract: Potato, a vital food and cash crop, necessitates precise identification and area esti-
mation for effective planting planning, market regulation, and yield forecasting. However,
extracting large-scale crop areas using satellite remote sensing is fraught with challenges,
such as low spatial resolution, cloud interference, and revisit cycle limitations, impeding the
creation of high-quality time–series datasets. In this study, we developed a high-resolution
vegetation index time–series by calculating coordination coefficients and integrating re-
flectance data from Landsat-8, Landsat-9, and Sentinel-2 satellites. The vegetation index
time–series were enhanced through using linear interpolation and Savitzky–Golay (S-G)
filtering to reconstruct high-quality data. We employed the harmonic analysis of NDVI
time–series (HANTS) method to extract features from the time–series and evaluated the
classification accuracy across five feature sets: vegetation index time–series features, band
means, vegetation index means, texture features, and color space features. The Random
Forest (RF) model, utilizing the full feature set, emerged as the most accurate, achieving
a precision rate of 0.97 and a kappa value of 0.94. We further refined the feature subset
using the SHAP-SFS feature selection method, leading to the SHAP-SFS-RF classification
approach for differentiating potato from non-potato crops. This approach enhanced accu-
racy by approximately 0.1 and kappa value by around 0.2 compared to the RF model, with
the extracted areas closely aligning with statistical yearbook data. Our study successfully
achieved the accurate extraction of potato planting areas at the county level, offering novel
insights and methodologies for related research fields.

Keywords: potato; planting area extraction; remote sensing; feature extraction; machine
learning

1. Introduction
As the fourth most significant food crop globally and the only tuber crop used as a

staple, the potato not only has significant economic value, but also demonstrates excellent
adaptability [1,2]. Drawing from the latest statistics, the global potato planting area has
exceeded 17.8 million hectares, with an annual output of 374 million tons, while China
leads globally in terms of the cultivation area and output [3]. Given its strong adaptability,
high productivity, and rich nutritional value, the potato is essential for guaranteeing food
security and promoting sustainable agricultural development in a context faced with
global challenges such as population explosion, climate change, and frequent natural
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disasters [4]. China possesses a rich historical background in potato cultivation, with a
widespread distribution across the country, divided into four major agro-ecological regions
based on natural conditions, with each region complementing the other through seasonal
differences to form a large-scale production pattern. Wuchuan County in Inner Mongolia,
as a representative of the northern one-season crop area, has become one of the main
advantageous potato production areas in the country by virtue of its suitable climatic
conditions for potato growth. Therefore, precise identification of potato-growing areas is of
great significance for market regulation, policy formulation, and food security guarantee at
the national and regional levels.

Traditional crop acreage statistics usually use remote sensing images combined with
spatial sampling techniques to select survey samples, and grass-roots investigators measure
the crops in the sample plots on the ground and then synthesize the data to estimate
the acreage of major food crops [5]. However, this traditional statistical method, which
relies on manual labor and reporting level by level, encounters the dual problems of
timeliness and accuracy in the implementation process, posing difficulties in ensuring
the validity and reliability of the data. Satellite remote sensing technology, with its wide
coverage, strong real-time monitoring capability, and rich information, can quickly and
conveniently obtain surface observation information on a regional scale, providing an
efficient means of extracting potato planting area in a large region [6]. Utilizing satellite
remote sensing technology for identifying and extracting crop planting areas represents a
key aspect of precision agriculture, which to a certain extent promotes the development
of intelligent agriculture 4.0. At the same time, fast and accurate large-scale extraction of
potato planting area is fundamentally important in monitoring the growth condition of
potato and predicting the yield. Using a combination of bands 5, 6, and 4 of the Landsat-8
satellite, Li, D. et al. [7] conducted a comprehensive analysis of five periods of imagery
during the period from June to August 2017, and accurately extracted and analyzed potato
cultivation in Keshan Farm, Heilongjiang Province; the calculated cultivated area was
highly consistent with the actual data, demonstrating a high extraction accuracy. Ashourloo,
D. et al. [8] identified four unique spectral properties of potato, including near-infrared
reflectance values at cultivation and harvest dates, changes in near-infrared reflectance
at peak greenness, and the ratio of near-infrared reflectance values to red reflectance
values at peak greenness, which were used to differentiate potato from other crops; the
overall accuracy of the method in tests conducted at four research sites in Iran and the
U.S. was over 90% and the kappa coefficient was also higher than 0.8, showing excellent
differentiation ability. In 2023, Zhao, L.H. et al. [9] utilized Google Earth Engine (GEE)
and Sentinel-2 (S2) remote sensing data to extract spectral, index, and textural features of
potato fields in Shandong Province, China. Through their extraction and monitoring efforts,
they achieved a classification accuracy of 92.5%, and the kappa coefficient, a measure of
inter-rater reliability, reached an impressive 0.916. Although these studies have achieved
remarkable results, the application of satellite remote sensing technology in large-scale
potato crop extraction still faces challenges. The spatial and temporal resolution of satellite
remote sensing data limits the ability to obtain detailed information when planning large-
scale crop cultivation and resource allocation. In addition, uncertainties in the acquisition
and resolution of satellite remote sensing data and in feature extraction may affect the
market’s judgment and regulation of crop supply and demand. The relationship between
satellite remote sensing data and yield exhibits variability across years and regions, so
exploring stable large-area potato crop extraction models across regions and years is critical
to improving the accuracy and stability of yield estimation models.

The methods employed for recognizing crops and measuring their cultivation areas via
satellite remote sensing are mainly categorized into three types: based on single-temporal-
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phase images, based on multi-temporal-phase images, and based on time–series images.
Single-time-phase images refer to remote sensing images captured at a single specific
moment, and researchers analyze the spectral information and image features of these
images to identify crops and extract planting areas. However, due to the cyclical nature
of crops, single-time-phase data cannot fully capture the growth dynamics of crops and
are susceptible to factors such as light, growth stage, and shooting angle, which limits
the accuracy of identification results. Multi-temporal remote sensing imagery involves
sequences of crop images collected at different points in time, and this method can capture
the growth cycle and morphological changes of crops, providing richer information for
crop identification [10]. Time–series imagery, on the other hand, focuses on analyzing
continuous changes in crop remote sensing images over time, and is more focused on
revealing the evolutionary trend of a variable over time than multi-temporal data [11]. In
the field of agriculture, the sequential Normalized Difference Vegetation Index (NDVI)
data are extensively utilized because they provide a robust indication of the growth cycle
and climatic characteristics of crops [12]. Nevertheless, the construction of satellite remote
sensing-based time–series datasets faces multiple challenges, including frequent cloud
cover; the limitations of remote sensing technology are often evident in the realms of
temporal, spatial, and spectral resolution. All these factors may have an influence on the
quality of the dataset and conclusions drawn from the analysis [13].

Remote sensing satellites that provide high-temporal-resolution image data are of-
ten accompanied by coarse spatial resolution. An example is the Moderate-Resolution
Imaging Spectroradiometer (MODIS) instrument on the Terra and Aqua satellite platforms;
this offers a revisit interval ranging from 1 to 2 days, but the spatial resolution is only
between 250 and 1000 m. The Landsat series of satellites, on the other hand, provide a
spatial resolution of 30 m, but have an Earth-visit cycle of up to 16 days. High-resolution
multispectral imaging satellites such as S2, featuring a 5-day revisit period, are capable of
spatial-resolution-based monitoring at 10, 20, and 60 m. In order to enhance the temporal
continuity of clear-resolution images, researchers often fuse remote sensing data from
multiple satellites. The combination of Landsat and S2 sensors offers an extensive array of
multispectral data with medium–high resolution, finding significant utility across various
domains. The commonality in the design of these sensors further enhances the compati-
bility of their data. Li et al. [14] achieved a mean global revisit frequency of 2.9 days by
combining Landsat-8 (L8) and S2 satellite data. Army et al. [15] improved the accuracy of
vegetation phenology monitoring by coordinating reflectance and fusing vegetation index
(VI) data using L8, S2A, and GF-1 satellite data. Landsat-9 (L9) was successfully deployed
on 27 September 2021; this provided additional opportunities for processing time–series
of multispectral moderate resolution images. However, due to the differences in orbit,
illumination, and viewing angle during data acquisition of different satellite sensors, the
acquired surface reflectance values may differ; therefore, the uniform calibration of these
differences is required. Trevisiol, F. et al. [16] introduced the ideal linear transformation
factors for the European region, achieving compatibility between L9 and L8 as well as S2
across Europe, which provides an important reference for cross-sensor data fusion.

It has been demonstrated that machine learning (ML) and deep learning (DL) method-
ologies are efficacious for enabling crop classification, acreage, and the retrieval of pivotal
data from remote sensing sources, including unmanned aerial vehicles (UAVs) and satel-
lites [17]. The performance of ML models relies heavily on extracting, constructing, and
filtering useful features from raw data. And DL models can automatically capture deep
features in the data through their multi-level neural network structures. Nevertheless, DL
model training process necessitates an extensive dataset, and it is a challenge to collect
multi-year wide-area crop data in the face of large-scale areas, complex cropping structures,
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and variable terrain; these factors limit the application of DL models in these scenarios.
Therefore, ML methods have been more widely applied in large-scale crop area extraction
from satellite remote sensing [18–20]. For feature extraction, ML models rely on spectral
and spatial features extracted from remotely sensed data, which can be either original
or derived, with the aim of enhancing the separability between targets. Spectral feature
extraction includes methods such as Principal Component Transform, Minimum Noise
Separation, Tassel Hat Transform, and VI, while spatial feature extraction involves texture,
shape, and spatial relationship features. These features are essential in enhancing the
precision of remote sensing image categorization.

In the domain of advancing remote sensing technology, there is a substantial gener-
ation of remote sensing data [21], which puts higher requirements on downloading and
processing [22]. To solve these problems, several online processing platforms for remote
sensing data have emerged, among which GEE is the most prominent platform, which de-
livers powerful cloud computing capability, massive data sources, efficient data processing
and multiple programming language support, and finds broad application in a spectrum of
research fields, encompassing land cover [23], crop classification [24] and mapping spatial
distribution of crops [25] and other research fields.

The majority of prior research has concentrated on the regions where crops like maize,
rice, and wheat are cultivated; however, the importance of potato as a key crop in some
specific regions, such as cold zones at high latitudes, should not be ignored, and studies on
the extraction and distribution of potato crop area are still in the developmental stages. In
this study, Wuchuan County in Hohhot City, Inner Mongolia, the main production area of
potato, was taken as the study area. The aims were as follows: (1) Calculate the best linear
transformation coefficient to harmonize the time–series satellite imagery from L8, L9, and
S2 over the research region. (2) Calculate and reconstruct the vegetation index time–series
(VI time–series) data; time–series features were extracted based on harmonic analysis.
(3) Calculate the multi-temporal band reflectance means, multi-temporal vegetation index
means (VI time means), texture features, and color space features as additional features.
(4) Evaluate the accuracy of ML models and feature extraction algorithms for potato crop
classification.

2. Materials and Methods
2.1. Study Area

Wuchuan County, situated within the heart of the Inner Mongolia Autonomous Region,
falling under Hohhot City’s governance, is the core area of agricultural production and eco-
logical functions in the northern part of the city. The county is situated at the northern base
of the Yinshan Mountains, with geographic coordinates ranging from 40◦47′~41◦23′ north
latitude to 110◦31′~111◦53′ east longitude, and altitudes ranging from 1219 m to 2259 m
(Figure 1). The climate features a mid-temperate continental monsoon type, marked by
frequent sunny conditions, abundant sunshine, and obvious seasonal changes, with a
yearly average temperature that hovers around 4.2 ◦C. Yearly precipitation amounts fall
within the range of 360 to 366 mm, which is predominantly focused between June and
August, constituting over 63% of the yearly precipitation totals. The duration of the frost-
free season spans between 90 and 120 days, with the predominant soil type being sandy
chestnut–calcic.

Thanks to its unique geographical and climatic conditions, Wuchuan County has
become a major producer of highland specialty crops, especially potatoes. Potato cultiva-
tion occupies a central position in the county’s agriculture and has a significant impact
on promoting the rural revitalization strategy, facilitating economic development and im-
proving people’s livelihoods. Therefore, accurate identification of potato-growing areas in
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Wuchuan County is important for optimizing agricultural production management, policy
formulation, and food security assessment.
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2.2. Data
2.2.1. Multi-Source Satellite Remote Sensing Image Data

S2 is divided into two satellites, S2A and S2B, each carrying a multispectral im-
ager (MSI). S2A and S2B have an orbital altitude of 786 km and are capable of capturing
13 spectral bands (including 3 red-edge bands) with a width of 290 km. The spatial res-
olution on the ground measures 10 m, 20 m, and 60 m. Each satellite has an individual
revisit cycle of 10 days; yet, when their coverage is combined, the effective revisit cycle
is reduced to 5 days, and the atmospherically and radiometrically corrected S2B dataset
can be obtained by accessing the “COPERNICUS/S2_SR_HARMONIZED” dataset on
the GEE platform. L8 is equipped with a pair of sensors: the Operational Land Imager
(OLI) and the Thermal Infrared Sensor (TIRS), which are labeled in the GEE as “LAND-
SAT/LC08/C02/T2_L2”. Launched in September 2021, L9 represents the latest in the
Landsat series, equipped with a second-generation Operational Land Imager (OLI-2) and
Thermal Infrared Sensor (TIRS-2). Both Landsat satellites have an orbital altitude of 705 km
and a revisit period of 16 days, which can be shortened to 8 days if they are used jointly,
and the data are identified in GEE as “LANDSAT/LC09/C02/T1_L2”. Table 1 provides a
compilation of the spectral bands for the MSI, OLI, and OLI-2 sensors. The comparison
shows that these imagers overlap in some spectral bands, which provides a possibility for
data integration [26,27].

Table 1. Introduction of the three spectral bands of the imager.

L8 (OLI)/L9 (OLI-2) S2 (MSI)

Bands Wavelength
(µm)

Resolution
(m) Bands Wavelength

(µm)
Resolution

(m)

Coastal (Band1) 0.430–0.450 30 Coastal (Band1) 0.433–0.453 60
Blue (Band2) 0.450–0.510 30 Blue (Band2) 0.458–0.523 10

Green (Band3) 0.533–0.590 30 Green (Band3) 0.543–0.578 10
Red (Band4) 0.636–0.673 30 Red (Band4) 0.650–0.680 10

- Red Edge (Band5) 0.698–0.713 20
- Red Edge (Band6) 0.733–0.748 20
- Red Edge (Band7) 0.773–0.793 20
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Table 1. Cont.

L8 (OLI)/L9 (OLI-2) S2 (MSI)

Bands Wavelength
(µm)

Resolution
(m) Bands Wavelength

(µm)
Resolution

(m)

NIR (Band5) 0.851–0.879 30 NIR (Band8) 0.785–0.900 10
- Red Edge (Band8a) 0.855–0.875 20
- Water Vapor (Band9) 0.935–0.955 60

Cirrus (Band9) 1.360–1.380 30 Cirrus (Band10) 1.360–1.390 60
SWIR-1 (Band6) 1.566–1.651 30 SWIR-1 (Band11) 1.565–1.655 20
SWIR-2 (Band7) 2.107–2.294 30 SWIR-2 (Band12) 2.100–2.280 20

PAN (Band8) 0.500–0.680 15 -

2.2.2. Sample Data

The dataset employed in this research was divided into two main parts: data from field
surveys and data obtained after visual interpretation and labeling based on high-resolution
Google historical images. The field survey data originated from a field survey in Wuchuan
County throughout the period of potato cultivation, starting May–September 2023. With
the aim of complying with the principles of accuracy and scientificity of the collected
samples, the study selected large areas (greater than 50 acres) with uniform growth of each
type of crop in individually planted areas and tried to cover the whole county as much
as possible. The collected sample data predominantly documented the types of crops,
along with the GPS-derived latitude and longitude coordinates of the central points of the
extensive fields. The total number of sampling points for various crops was 593 (including
268 for potatoes and 325 for other crops). Field collection images of field potato data in
June, July, and August are shown in Figure 2.
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2.2.3. Mask Data

For the purposes of this research, the foundational land cover map for Wuchuan
County was sourced from the outcomes generated by the research group led by Professor
Yang Jie and Huang Xin at Wuhan University. The data download can be found at https:

https://zenodo.org/records/12779975
https://zenodo.org/records/12779975
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//zenodo.org/records/12779975, accessed on 10 September 2024. The results utilized
335,709 views of Landsat data on the GEE platform to produce the China Land Cover
Dataset (CLCD), which started in 1985 and has been updated to 2023. The CLCD contains
nine different land use types, including farmland, shrub, forest, watershed, grassland,
snow and ice, bare ground, impervious surface, and wetland. The snow and ice land cover
category is likely to be extremely limited in this region, given the high temperatures and
low snowfall potential in Wuchuan County during the potato-growing season. This study
used 2023 30 m resolution land cover raster data with non-farmland types within Wuchuan
County, removed through a masking process.

2.3. Methods

The research introduces an approach aimed at potato crop cultivation area extraction
based on ML model and multi-source medium- and high-resolution satellite images. The
approach is structured into three primary stages (Figure 3): The first stage is to select three
satellite remote sensing images obtained during the potato fertility period from May 2023
to October 2023 for preprocessing, respectively; then, the linear coefficients are calculated to
unify and harmonize the surface reflectance values of different satellite remote sensing data
to construct a time–series dataset of remote sensing images at 10-day intervals. The second
stage is grounded in the feature extraction of the time–series dataset, and five different
input feature sets are constructed for assessing the impact of varying feature combinations
on classification precision. The third stage is the assessment of potato and non-potato crop
classification accuracies based on the feature extraction algorithm and machine learning
classification model. The fourth stage is to conduct the pixel potato planting area calculation
to obtain an distribution map of the potato planting area in Wuchuan County.
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2.3.1. Calculation of the L9 Coordination Factor with S2 and L8

Between 1 May 2023 and 30 September 2023, covering the entire study area, 3-view
images from the three satellites with the closest temporal separation were selected and
stacked together, and GEE performed nearest-neighbor resampling by default during
reprojection. Comparative cross-sensor analysis was performed by randomly sampling a
large number of pixels within the boundaries of the research locale. The sampling approach
was grounded in a stratified sampling method for the eight land use types in the 2023
CLCD data, except for the snow and ice category, to obtain a sample that is characteristic of
each category. A cap of 5000 was established for the maximum random sampling of pixel
points within each category. Subsequent filtration removed any null samples, culminating
in a final count of 29,755 valid pixels in the sample set. Six similar band reflectance values
were extracted for each pixel. The linear regression equations involving S2 and L9, and L8
and L9, were derived using ordinary least squares (OLS) methodology, with subsequent
calculations of the equations’ slopes and intercepts as detailed in Table 2.

Table 2. Slope and intercept of linear regression equations for similar bands of MSI to OLI-2 and OLI
to OLI-2.

Bands
S2 (MSI) and L9 (OLI-2) L8 (OLI) and L9 (OLI-2)

Slope Intercept R2 RMSE Slope Intercept R2 RMSE

Blue 0.6864 −0.0007 0.8348 0.0145 1.0444 −0.0014 0.9008 0.0112
Green 0.8441 0.0025 0.8861 0.0159 1.0492 −0.0038 0.9387 0.0117
Red 0.8637 0.0044 0.9179 0.0187 1.032 −0.0003 0.9503 0.0146
NIR 0.9133 0.0131 0.8862 0.0356 0.9595 0.0132 0.943 0.0252

SWIR-1 0.923 −0.0055 0.9 0.0302 1.0084 0.0049 0.9333 0.0245
SWIR-2 0.8611 −0.0011 0.9245 0.0268 1.0164 0.0047 0.9377 0.0243

When comparing the data from the OLI and OLI-2 sensors, a high degree of similarity
and small differences are clearly observed. Specifically, the model’s fitting efficacy is
particularly pronounced within the red spectral band. All band-specific fitting coefficients
surpass the threshold of 0.9, while the root mean square error (RMSE) is maintained below
0.252, indicating a good fit. Despite the relatively large differences between MSI and
OLI-2, the fitting coefficients of the two remain above 0.8, showing a strong correlation.
In the fitting of S2 and L9, the linear regression of the SWIR-2 band showed the highest
significance, which may imply that this band has an important reference value in the
comparative analysis of data between the two sensors.

2.3.2. Preprocessing of Satellite Remote Sensing Images

For the remote sensing image analysis, the image data covering the study area were
first screened by setting a time range (1 May 2023–30 September 2023). For S2 images,
images with more than 80% cloud coverage were excluded; for L8 and L9 images, images
with more than 50% cloud coverage were excluded. Subsequently, clouds and shadows
within the imagery were detected and obscured to enhance the precision of derived surface
data. Similar bands were selected and renamed for ease of analysis. Next, the reflectance
data of the L8 and S2 images were uniformly converted to the L9 scale using the previously
computed conversion coefficients (slope and intercept) to enable comparative analyses
between the different datasets. On the GEE platform, most of the image data have already
undergone official preprocessing, including steps such as atmospheric correction, radiomet-
ric correction and topographic correction. On this basis, further de-clouded preprocessing
was carried out on the L8, L9, and S2 images; finally, 125 views of high-quality remote
sensing images were obtained. To address the issue pertaining to missing image data po-
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tentially arising from the de-clouding process, the image synthesis technique was adopted
to reconstruct the complete image in a specific time period. By comparing the 10-day and
15-day synthesis intervals, the 10-day interval was chosen, which not only ensured the
completeness of the image data, but also maintained the high-density characteristics of
the time–series. Eventually, we constructed a time–series dataset containing 16 views of
synthesized images, which provides a solid data base for subsequent feature extraction
and classification.

2.3.3. Reconstruction of VI Time–Series

Time–series analysis of VIs is important for revealing crop growth cycles and pheno-
logical characteristics [28]. In previous studies, the NDVI is extensively applied within
area extraction studies for major grain crops such as rice, maize, and wheat because of
their robustness [29–32]. However, NDVI tends to reach saturation at higher vegetation
densities, resulting in a decrease in its sensitivity [33]. Since different VIs have their own
advantages in practical applications and are affected by factors such as month, sampling
site environment, climatic conditions, and field management, single reliance on a particular
VI may lead to confusing analysis results. Therefore, in this study, six different VIs were
extracted from 16-scene remote sensing images and the corresponding time–series data
were constructed. There were significant correlations between these indices and crop physi-
ological parameters, and they covered different spectral bands and influencing factors. The
name of each VI, its calculation formula, and its references are detailed in Table 3.

Table 3. The research employed a set of spectral indices.

Abridge Name Calculation Formula Bibliography

NDVI Normalized Difference Vegetation Index ρNIR−ρRed
ρNIR+ρRed

[34]

EVI Enhanced Vegetation Index 2.5×(ρNIR−ρRed)
ρNIR+6×ρRed−7.5×ρBlue+1

[35]

SAVI Soil-Adjusted Vegetation Index 1.5×(ρNIR−ρRed)
ρNIR+ρRed+0.5

[36]

GNDVI Green Normalized Difference Vegetation Index ρNIR−ρGreen
ρNIR+ρGreen

[37]
LSWI Land Surface Water Index ρNIR−ρSWIR

ρNIR+ρSWIR
[38]

NDPI Normalized Difference Phenology Index ρNIR−(0.74×ρRed+0.26×ρSWIR)
ρNIR+(0.74×ρRed+0.26×ρSWIR)

[39]

Although the remotely sensed image dataset integrates images from three satellites,
the sequential data of VIs continue to possess discontinuities in time due to the limitations
of the revisit period and cloud shading. In addition, influenced by sensor performance,
cloud cover and shading, atmospheric sols, and other environmental factors, remotely
sensed time–series data often contain noise, which may affect the accuracy of the VIs and
thus interfere with data analysis [40]. To solve these problems, Chen et al. [41] devised an
innovative approach for reconstructing high-quality Landsat–MODIS NDVI time–series
data, which is referred to as the Gap Filling and Savitzky–Golay filtering method (GF-SG).
This study borrows from this technique to generate high-quality VI data series using linear
interpolation and S-G filtering. The linear interpolation window is set to 60 days, which
means that each image will look for images within 60 days from the target image; for the
blank pixels in the image, their values will be interpolated using the average of the before
and after images. The specific interpolation formula is as follows (1):

y = y1 (y2 − y1 )× ((t − t1)/(t2 − t1)) (1)

where y: interpolated image; y1: pre-interpolation image; y2: post-interpolation image; t:
interpolation date; t1: pre-interpolation image date; t2: post-interpolation image date.
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Among many time–series data reconstruction techniques, the S-G filtering algorithm
is widely favored for its excellent stability and efficiency [42]. The key parameters of this
algorithm include the window half-width (m) and polynomial coefficients (d), which have
a decisive impact on the filtering performance. If m is assigned a value that is too minimal,
it could result in the model becoming overly fitted to the data, thus failing to capture the
long-term trend effectively; meanwhile, too large a value of m may ignore critical changes
in the time–series. The polynomial coefficient d generally ranges between 2 and 4. Lower
values of d tend to produce smoother outputs but may introduce some bias; conversely,
higher values of d, while reducing bias, may overfit the data and lead to noisier results. To
balance smoothness and accuracy, we chose to set the window half-width m to 4 and the
polynomial coefficient d to 3. The reconstruction roadmap is depicted in Figure 4.
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2.3.4. Extraction of VI Time–Series Features Based on HANTS

The importance of deriving potent phenological data regarding potatoes from intricate
time–series satellite imagery cannot be overstated [43]. Past studies have analyzed features
from both time and frequency domain perspectives. The time domain focuses on the
relationship of the signal over time and reveals the trend of crop cover by fitting a linear
function. Frequency domain analysis focuses on the frequency characteristics of the signal
and analyzes the seasonal phenology of crops by decomposing the time–series, which helps
in crop classification and area estimation. The time–series and frequency spectrum are
interconverted by Fourier transform. In this research, HANTS was used to decompose
VIs time–series data into multiple harmonic components to achieve the extraction of
meaningful periodic and trend information from complex time–series [44]. The time–series
is decomposed into infinite sine and cosine waves of different frequencies by Equation (2).

y(t) = a0 +
n

∑
i=1

[ai cos(2π fit) + bi sin(2π fit)], t = 1, 2, · · ·, N (2)
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where a0 is the average value of the VI time–series; ai and bi denote the sine and cosine
parameters, respectively; t denotes the number of sampling points; N denotes the length of
the time–series; and n denotes the number of harmonics, 2n + 1 ≤ N.

Time variables were added to the computed images of the six VIs, and cosine and sine
harmonic terms were computed from the time variables. Multiple linear regression was
performed using the harmonic terms (e.g., constant, t, cos, sin) as independent variables
and the different VIs as dependent variables, and the phase, amplitude, and harmonic fitted
mean of the time–series of the six VIs were calculated using the built-in reducer (Reducer)
on the GEE.

2.3.5. Color Space Feature and Texture Feature Extraction

In addition to spectral features, spatial features should not be neglected; color space
and texture features are two important concepts in image processing and computer vision.
Because converting the color space model and performing texture feature extraction both
operate on a single image, the preprocessed set of time–series remote sensing images is
synthesized into a single image by calculating the mean value. The color space of an
image is the mathematical model or coordinate system that describes the colors in the
image. Common color spaces include RGB, HSV, and HSI. Conversion from RGB to HSV
is performed by selecting the three bands of RGB from the synthesized image data from
the loaded image data. In GEE, this is usually performed by image.select(‘red_mean’,
‘green_mean’, ‘blue_mean’), where “red_mean” stands for the red band average of the
time–series image, “green_mean” stands for the green band average, and “blue_mean”
stands for the blue band mean. Using the ee.Image.rgbToHsv() method of the GEE platform
to convert the RGB image to HSV image, three new bands were generated: hue, saturation,
and luminance. The values of these bands were located in the floating-point type [0, 1]
range, which were used as the features for the subsequent studies.

If the Gray-Level Co-occurrence Matrix (GLCM) and its corresponding texture features
are individually calculated for each band within an image on the GEE platform, the compu-
tation will produce huge texture data bands, which are beyond the computational memory
of GEE. To avoid this phenomenon, the grayscale layer is computed before the texture
features are computed, and the grayscale maps are synthesized according to Equation (3).

gray = (0.3 × Red)+(0.59 × Green)+(0.11 × Blue) (3)

After calculating the grayscale layer, you can directly call the .glcmTexture() function,
and the dimension of the textural window is configured as 4; then, you obtain an image
containing 18 texture feature bands.

In this study, five types of input feature sets were constructed to assess the importance
of VI temporal features, texture features, and color spatial components for potato crop
classification: (1) phase, amplitude, and mean values after harmonic fitting of 6 VIs, totaling
18 features (VIsTC); (2) VI mean values of 16 views of remotely sensed imagery (VIsmean);
(3) band mean values of 16 views of remotely sensed imagery (Bandsmean); (4) 18 texture
features based on the synthetic imagery (TFs); (5) 3 color spatial component features (HSV).
There is then a total of 51 input features.

2.3.6. Selection of Models and Assessment of Their Performance

The training and test datasets are first extracted from the final image (final_img)
containing all the features. The sampleRegions() function is used to extract the sample data
from the specified bands; then, the null sample data is filtered out; subsequently, the dataset
is divided into training and validation subsets with an 8:2 proportion. Next, a new category
label is set, and each feature is buffered by 20 m, which is equivalent to expanding two
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pixels outward; this both enlarges the sample area and ensures that, in the training and test
datasets, it captures sufficient spatial information, thereby enhancing the model’s predictive
accuracy. Finally, the split data are merged into the global training and test set feature
sets. After constructing the training and test datasets, four classifiers, namely Random
Forest (RF), Support Vector Machine (SVM), Classification and Regression Tree (CART), and
Gradient-Boosted Decision Tree (GBDT), were selected to classify potato and non-potato
crops. On the GEE platform, the “ee.Classifier.smile” function can be called directly to
create different classifier objects. RF, CART, and GBDT are all based on decision trees, so the
number of decision trees is the most important parameter in this type of algorithm, and it
can be debugged through several tests. The remaining parameters within the classification
model are typically assigned their default settings, with the comprehensive feature set
being utilized for iterative testing within the model. The number of RF decision trees is
determined to be 110, the maximum depth of decision trees in CART is 50, and the number
of GBDT decision trees is 60. SVM is also a powerful classification method that is especially
suitable for classification problems in high-dimensional spaces. Applying the Radial Basis
Function (RBF) to the SVM classifier, the gamma is set, where the dataset feature number
is 51.

2.3.7. Feature Screening

The process of feature selection holds significant importance within the realm of ML.
High-dimensional raw feature datasets often contain redundant and irrelevant features
that reduce computational efficiency and model accuracy. SHAP (SHapley Additive exPla-
nations) is a method grounded in game theory designed to interpret the outputs of any ML
model [45]. In this study, SHAP values are calculated for measuring how features affect
the dependent variable, which can be used to calculate the marginal contribution value of
each feature and measure the importance of the features in the feature selection task. The
51 features were exported from GEE and implemented on Python 3.9 software to construct
a binary classification model, and the ML test was used to obtain the feature contribution
using SHAP to interpret the model, because SHAP can only provide the contribution
ranking but cannot determine the optimal feature subset dimensions, so the optimal feature
subset was determined based on this and combined with the Sequential Forward Selection
(SFS) method. The first feature is selected as the independently optimal feature, and the
second feature is ranked second in terms of feature contribution in combination with the
first feature; one feature is added at a time, and a curve is generated to determine the
optimal feature subset dimension based on the overall accuracy change.

3. Results and Analysis
3.1. Reconstructed Time–Series of VIs and Analysis of Potato Phenological Period

Two satellite images were required to achieve full coverage of the Wuchuan County
area. S2, L8, and L9 satellite images with less than 50% cloudiness were screened be-
tween May and October 2023 to synthesize complete Wuchuan County images. A total of
21 complete S2 images, 7 L8 images, and 8 L9 images were retrieved, with few individual
satellite remote sensing image data and some of them had severe cloud pollution. After
analyzing the sensors carried by the three satellites, S2, L8 and L9, it was found that they
have similar bands, and that the band fitting coefficients are above 8.3; the images from
the three satellites are integrated. This strategy not only enhances the spatial and temporal
resolution of the data, but also minimizes the impact of cloud pollution on the data quality,
thus improving the accuracy and reliability of the monitoring results. After the de-clouded
preprocessing of the integrated images, which resulted in a serious lack of pixel informa-
tion, we used linear interpolation and filtering techniques for the reconstruction of the VI
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time–series. As shown in Figure 5, taking the image with severe missing pixel information
after preprocessing on 30 June as an example, the effect was significantly improved after
the reconstruction process. By this method, we successfully filled in the blank pixel values
in the image and reduced the noise interference, which not only improved the overall
quality of the image but also increased the information content. These improvements laid
the foundation for the construction of VIs time–series, ensuring the accuracy and reliability
of the subsequent analysis.
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Utilizing the spatial coordinates from the potato sampling locales, VI data were derived
from both the pristine imagery and from each perspective image post the application of
linear interpolation and S-G filtering. This process resulted in the generation of six time–
series curves of VIs, illustrating the temporal dynamics of these indices throughout the
potato cultivation period, as presented in Figure 6.
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The pattern of the curves’ average values corresponded to the phenological trends
observed for potatoes within the research region. Combined with the analysis of the
general spectral characteristics of green vegetation, in early May, the time node of the
minimum value of NDVI represented the sowing period of potato. Potato in Wuchuan
County began to be sown around May 11, and was in the seedling stage in early June.
With the increase in vegetation cover, NDVI continued to rise, and from July to August,
potato reached a peak of 0.822 in the NDVI value about 90 days after planting. This
indicated that, from late August to early September, the potatoes entered the ripening
period, and the NDVI values gradually decreased. The potatoes were harvested in most
areas of Wuchuan County from mid–late-September. The trend of the NDPI was similar
to that of the NDVI, but the peak appeared a little later, which might reflect some kind of
correlation or hysteresis regarding the relationship between short-wave infrared reflectance
and vegetative growth. The values of LSWI were negative from May to June, and the
absolute value increases gradually, which may indicate that there are fewer surface water
bodies or that the reflectance characteristics of the water bodies are weaker in this period.
The trend of EVI is similar to that of NDVI, but the value is relatively higher, which may be
due to the fact that EVI takes into account the factors of soil background and atmospheric
influence, which makes it more accurate in assessing the vegetation cover. The trend of
SAVI is similar to that of NDVI and EVI, but the value is slightly lower, which may be due
to the fact that SAVI takes into account the soil brightness and atmospheric influence, which
may be the result of a delay in the vegetation growth. Due to the fact that SAVI accounts for
the impact of soil luminance on the VI, the trend of GNDVI is similar to those of the other
VIs, but the value is relatively higher. This is probably due to the fact that GNDVI focuses
more on the assessment of green vegetation. The imputed dataset addressed gaps within
the original data, resulting in a trend of the VI that closely mirrored the original dataset’s
pattern, with the locations of the peaks and valleys largely unchanged. The variability
and standard deviation for the regenerated NDVI time–series were approximately 0.1 and
0.19 less than those of the initial time–series, whereas the correlation coefficient with the
original series reached 0.95. The findings suggest that the image reconstruction technique
employed in this research successfully addresses image gaps, substantially mitigating noise
interference and enhancing data integrity.

3.2. Optimal Classification Model Determination and Classification Accuracy Assessment for
Different Input Feature Sets

The full-featured data were input into the four classification models to obtain the
confusion matrix and two evaluation metrics (Figure 7). It is easy to see from the metrics
evaluation that the RF model has the best performance with OA above 0.9 and the highest
kappa coefficient being found for both RF and CART. GBDT performance is followed by
the SVM model with the worst performance. The next different feature datasets inputs and
feature selection are based on the best model RF. RF, CART, and GBDT are all built on a
decision tree foundation, and their model performance is usually superior compared to
SVM. In comparison with CART and GBDT, RF utilizes an integrated learning strategy
that significantly reduces the risk of overfitting and enhances the generalization ability of
the model by constructing and fusing the prediction results from multiple decision trees.
In the crop classification task, RF exhibits high accuracy in line with the existing findings
in the literature [46,47]. In addition, RF can effectively handle common problems such as
high-dimensional features and missing values, and shows strong robustness to noise and
irrelevant features.
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Within the scope of this research, a comparison of the five feature sets’ accuracy was
conducted utilizing the RF model (Figure 8), where the overall accuracy OA of VIsCT was
0.958. This is a very high accuracy, indicating that the VI time–series feature performs very
well in potato crop classification. This is followed by the band reflectance mean and VI
mean. Spectral features are the most effective features in the classification task compared to
image features.
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3.3. Ranking of Feature Contribution and Determination of Optimal Feature Subset Based on
SHAP Value

Through the model evaluation, the RF model performs the best, and the method of
SHAP-SFS feature selection is combined with the RF classifier to filter the optimal feature
subset, which is ranked based on the SHAP value for the feature contribution (Figure 9).
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As shown in Figure 9, the top five features in terms of importance are the mean of the
NDVI harmonic fit, the mean of the GNDVI harmonic fit, the mean of SAVI, the differential
entropy, and the mean of the SAVI harmonic fit, respectively. Only the SHAP of saturation
is positive in the color spatial features. The contribution of the LSWI time–series features in
the VIs was relatively low in potato classification, indicating that the terrestrial water body
indices of potato and other crops did not differ much. The NDVI time–series features were
the VIs with the highest contributions. It can be proved that NDVI time–series can recognize
potato crops well. All other VIs make contributions. This provides a good index for crop
classification. The top five texture feature contributions are differential entropy, cluster
prominence, sum entropy, angular second moments, and sum mean. Based on the feature
importance ranking, the optimal feature subset dimension was determined by combining
SFS; according to the curve describing the overall accuracy change (Figure 10), the results
indicated that the SHAP-RF model achieved peak accuracy with a feature dimension of 41.
By inputting the optimal feature subset into RF, OA, kappa coefficient, and F1-score were
improved; so, in this study, the SHAP-SFS-RF model was selected to extract potato planting
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areas in Wuchuan County. The SHAP value, as a model prediction interpretation tool, fuses
global and local feature importance assessment to accurately identify the features that have
a significant impact on the prediction results. Applying the SHAP-SFS technique enables
the retention of attributes that are critical in modeling prediction by recursively screening
out those features that have less impact. This process not only optimizes the size of the
feature set but also excels in maintaining or improving model accuracy.
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As shown in Table 4, the accuracy of the original RF model is 0.97, indicating that the
model performs well in correctly classifying the samples. The accuracy of the model (SHAP-
SFS-RF) after SHAP-SFS feature selection was improved to 0.98, showing the positive effect
of feature selection in improving the model performance. The F1 score of the SHAP-SFS-RF
model was improved to 0.98, which further proves the optimizing effect of the feature
selection on the performance of the model. The increase in the kappa coefficient from 0.94
to 0.96 may mean that the model becomes more accurate and reliable in distinguishing
different categories, especially in the extraction of potato planting areas. Improvement
could mean that the model became more accurate and reliable in distinguishing between
potato and non-potato crops, especially in the extraction of potato-growing areas. This may
be due to the fact that the feature selection process helped the model to reduce the effect of
noise and irrelevant information, thus improving the accuracy of the classification.

Table 4. Model evaluation before and after feature selection.

Indicators RF SHAP-SFS-RF

Accuracy 0.97 0.98
F1-score 0.97 0.98
Kappa 0.94 0.96

3.4. Extracted Potato Area Compared to Statistics

Initially, each pixel in the synthetic image was categorized into two groups: potato
and non-potato crops. This resulted in the creation of mask images for both categories; the
area covered by each pixel (in square kilometers) was calculated, and the vector map of
Wuchuan County was used for masking; then, the CLCD dataset was used to mask the
non-agricultural data in the image to generate the highlighted area. The highlighted area
was merged regionally. Masking was performed to generate highlighted areas, and area
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merging was performed on the area images of the highlighted areas. The areas of potato and
non-potato crops were calculated using the summation reducer ee.Reducer.sum, possessing
a spatial resolution of 10 m. The maximum number of pixels processed was 1 × 1013, and
the tile scaling ratio was 16 times, to obtain the spatial distribution map of potatoes in
Wuchuan County (Figure 11). The distribution of potato cultivation in Wuchuan County is
greatly influenced by topography. The eastern, southern, and western parts of Wuchuan
County are surrounded by mountain ranges on three sides; here, the mountainous sector
makes up 47% of the total area, and the terrain is gradually low and slow from the south to
the north. The soil is fertile and well-drained, which provides high-quality soil conditions
for the growth of potatoes. From Figure 11, we can also see that potato cultivation is also
mainly concentrated in the northern lower altitude areas. In addition to topographic factors,
crop distribution is also affected by temperature, precipitation, irrigation, and other factors.
Follow-up studies can analyze other factors affecting potato distribution.
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To validate the accuracy of the identified potato planting area in Wuchuan County,
the calculated potato planting area was compared with the data in the 2023 Hohhot City
Statistical Yearbook. The categorized area of potato was 244.043 km2, i.e., 24,404.3 ha, and
the statistical area was 23,302 ha. The results of the comparison with the statistical area
showed high consistency with the statistical area. The relative error was less than 5%, and
the classification results, compared with the statistical data, demonstrated reliable accuracy,
while the extraction results were consistent and trustworthy. To confirm the model’s
adaptability, the area extraction was conducted in the principal potato cultivation region
of Chahar Right Rear Banner in Ulanqab City. Without the need for sampling, the model
determined the area to be 111.286 km2, equivalent to 11,128.6 ha, with the statistical data
showing 10,677 ha. This yields a relative error of 4.6%. When juxtaposed with the Ulanqab
City Statistical Yearbook, the model’s extraction outcomes demonstrate a dependable level
of precision, affirming the model’s transferability.
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4. Discussion
The revisit intervals of various satellites, the spatial resolution of onboard sensors,

and cloud cover in the study area all influence the development of time–series data. In
this paper, data from different satellites are converted to the same reflectance standard
to facilitate the construction of time–series data. This approach improves the availability
and analysis of remote sensing time–series data; satellite fusion also uses mathematical
algorithms to merge data from different satellites so as to increase the resolution, coverage,
or continuity of the data or time–series, in order to obtain higher quality remote sensing
images. However, satellite fusion requires a large amount of computational resources and
time, which may increase the cost of data processing. The uniform reflectance method is
simple to operate and facilitates rapid data processing and analysis, but in some extreme
cases, such as cloud cover or complex terrain areas, uniform reflectance may miss some
important details and fail to provide sufficient information.

It is especially important to extract effective time–series features about different crops
from inside the time–series data with complex features. Previous researchers have ex-
plored analyzing the features from different perspectives of time domain and frequency
domain. The time domain describes the mathematical function or physical signal ver-
sus time and reveals trends in crop cover by analyzing the fitted linear function. The
frequency domain is a coordinate system that describes the signal in terms of frequency
characteristics. Decomposition of the time–series using spectral analysis helps to analyze
the different phenological characteristics of different crops due to seasonality, so as to carry
out crop classification and area extraction. The time domain and frequency domain are
converted to each other by Fourier transform and inverse Fourier transform. Current time
domain feature extraction algorithms are prone to overfitting problems at the peak of crop
growth. In this study, the temporal features were also extracted from the frequency domain
perspective, demonstrating the applicability of frequency domain temporal features.

The GEE platform is highly portable in many aspects such as data, code, platform,
results, and collaboration, enabling users to conduct geospatial data analysis and research
more flexibly and efficiently. However, it also has some limitations. Firstly, many processing
algorithms of GEE are not transparent, so it is difficult for users to find the root cause of
the problem and the solution when they encounter problems. Secondly, the GEE cloud
platform itself does not support deep learning model training, requiring locally trained
models to be uploaded into GEE Assets.

By integrating multi-source satellite data, the spatial and temporal resolution of the
data can be effectively improved. In this way, more detailed surface coverage information
can be obtained, so as to accurately capture the subtle dynamic changes in the potato
planting area. In the process of data processing, the fusion of spectral, texture, and color
multi-dimensional features, and in-depth feature selection is conducted; this will signif-
icantly improve the accuracy of the classification model, so that the extraction of potato
planting areas is more accurate. In addition, the combination of meteorological data, soil
data, and field management data lays a solid foundation for the construction of a large-scale
potato yield prediction model and market forecasting tools; this helps in making scientific
and reasonable decisions in agricultural production and market planning. Collecting crop
sample data in the field is often time-consuming and labor-intensive, and future research
trends may shift towards using smaller datasets to enable crop area estimation. However,
variability in crop rotation systems and satellite imagery may make it difficult for models
to overcome the effects of inter-annual variability. Future work will utilize transfer learning
to validate how the model performs in different regions in different years.
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5. Conclusions
This study addresses the critical need for precise potato crop area estimation by

developing a high-resolution VI time–series from L8, L9, and S2 satellites. We enhanced the
data through linear interpolation and S-G filtering, and employed the HANTS method to
extract multi-dimensional features, leading to a robust classification system. The RF model,
augmented with SHAP-SFS feature selection, achieved significant accuracy improvements,
with a precision rate of 0.97 and a kappa value of 0.94, outperforming previous models. This
methodology not only advances potato crop area extraction but also provides a detailed
spatial distribution map for Wuchuan County, offering valuable insights for agricultural
planning and research.

While this research marks a significant step forward, there is scope for further en-
hancement. Future work will explore additional machine learning algorithms to refine
crop classification accuracy and incorporate more environmental factors and crop growth
models for a deeper understanding of agricultural dynamics. The approach will also be
generalized to other crops and regions to assess its broader applicability, ensuring the
methods developed here can contribute to a wider array of agricultural monitoring and
research initiatives.
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