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Abstract: In protected agriculture, accurately identifying the key growth stages of tomatoes
plays a significant role in achieving efficient management and high-precision production.
However, traditional approaches often face challenges like non-standardized data collec-
tion, unbalanced datasets, low recognition efficiency, and limited accuracy. This paper
proposes an innovative solution combining generative adversarial networks (GANs) and
deep learning techniques to address these challenges. Specifically, the StyleGAN3 model is
employed to generate high-quality images of tomato growth stages, effectively augmenting
the original dataset with a broader range of images. This augmented dataset is then pro-
cessed using a Vision Transformer (ViT) model for intelligent recognition of tomato growth
stages within a protected agricultural environment. The proposed method was tested
on 2723 images, demonstrating that the generated images are nearly indistinguishable
from real images. The combined training approach incorporating both generated and
original images produced superior recognition results compared to training with only
the original images. The validation set achieved an accuracy of 99.6%, while the test
set achieved 98.39%, marking improvements of 22.85%, 3.57%, and 3.21% over AlexNet,
DenseNet50, and VGG16, respectively. The average detection speed was 9.5 ms. This
method provides a highly effective means of identifying tomato growth stages in protected
environments and offers valuable insights for improving the efficiency and quality of
protected crop production.

Keywords: StyleGAN3; ViT; deep learning; tomato

1. Introduction
As one of the most important economic crops globally, the tomato’s growth stages

require careful monitoring and identification to safeguard both yield and quality [1]. The
accurate recognition of critical developmental periods—such as the sapling, flowering, fruit-
ing, and maturity stages—offers essential insights for precise management and decision-
making regarding crop growth. This process is vital for improving agricultural efficiency
and maximizing economic returns [2].

At present, the identification and monitoring of tomato growth stages primarily
depend on manual observations based on the experience of practitioners. This method
is not only inefficient and costly, but it is also highly vulnerable to the subjectivity of
the observer and the influence of activities within the facility, which can compromise
both the quality and yield of tomatoes. While technologies like inspection robots and
smart imaging systems have emerged, their high costs and the difficulty of maintaining
such equipment have hindered their widespread application, particularly in facilities with
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limited financial resources. Consequently, there is an increasing need for research into
digital technology-based methods for identifying tomato growth stages, which would offer
real-time, convenient, and efficient solutions for monitoring.

Deep learning, an essential branch of machine learning, was introduced by
Hinton et al. [3,4] in 2006, sparking a significant wave of research within the neural network
domain. Due to its exceptional capabilities in feature learning and classification, deep
learning has become a foundational tool in several fields, including object detection, natu-
ral language processing [5], text information matching [6], medical image segmentation
and classification [7,8], and video semantic segmentation [9,10]. In recent years, deep
learning has also seen growing applications in the agricultural sector, particularly in the
identification and classification of crop diseases and pests [11,12]. Convolutional neural
networks (CNNs) [13], which are among the most widely adopted and effective models in
this context, were successfully applied to crop recognition and classification tasks, with
well-known networks like AlexNet [14] and GoogLeNet [15] leading the way.

The introduction of the Vision Transformer (ViT) model [16] in 2020 marked a break-
through in the field of crop monitoring and classification. Compared to traditional CNN-
based approaches, ViT offers enhanced accuracy in tasks like crop disease recognition
and classification. Bai Yupeng et al. [17] developed a wheat disease recognition algo-
rithm based on ViT, which achieved an impressive average recognition accuracy of over
95% for three different types of wheat diseases. This performance surpassed that of the
AlexNet and VGG16 [18] models by 6.68% and 4.94%, respectively. In another study,
Wang Yang et al. [19] addressed the poor robustness of deep convolutional neural net-
works (DCNNs) to noise by incorporating additional modules, such as augmented block
serialization and masked multi-head attention, into the standard ViT model for tomato
disease classification. Their modified ViT model achieved a classification accuracy of 99.63%
on a tomato dataset, improving over 6% compared to classic models like ResNet50 [20].
However, despite these advancements, the use of ViT models in crop growth stage recog-
nition remains limited. Most researchers still rely on more established deep learning
models for such tasks. Rasti et al. [21] explored three machine learning approaches for
identifying the growth stages of 11 wheat and 10 barley species: a five-layer Conver Net
self-training model, a transfer learning-based VGG19 model, and support vector machines.
Their findings indicated that the transfer learning-based model was the most effective, with
an accuracy rate exceeding 99% and a substantial reduction in training time. Meanwhile,
Tan et al. [22] conducted a comparative experiment using traditional machine learning
methods and deep learning approaches to recognize the growth stages of rice. Their results
showed that deep learning methods outperformed traditional methods, with the Efficient-
NetB4 model achieving the highest recognition accuracy, surpassing 99% in both accuracy
and average precision.

Due to practical constraints, the amount of manually collected image data is limited.
The tomato dataset suffers from issues such as class imbalance. However, the Vision Trans-
former (ViT) model requires a sufficient amount of data to achieve optimal recognition per-
formance [23]. Traditional data augmentation techniques, such as rotation, translation, and
cropping, are inefficient and only generate images with low signal-to-noise ratios and lim-
ited diversity. To address overfitting and other challenges, generative adversarial networks
(GANs) [24] can produce clearer and more realistic samples, but traditional GANs suffer
from issues such as training instability and model collapse [25]. StyleGAN3 [26], an im-
proved version of GAN introduced by NVIDIA in 2021 based on StyleGAN2 [27], resolves
problems like feature entanglement and is capable of generating higher-resolution, higher-
quality images. However, StyleGAN3 also requires substantial computational resources to
achieve satisfactory training results, typically necessitating more than 5000 iterations. This
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process imposes high demands on hardware performance and requires significant time
and computational power to allow the model to adequately learn and capture the complex
distributional characteristics of the data thereby generating high-quality images. Consid-
ering these factors, this work initially employs transfer learning by using a pre-trained
model as the foundation for our custom StyleGAN model, which significantly reduces
the training time. By further training the model on the existing dataset to generate more
realistic synthetic images, we alleviate the data scarcity issue commonly faced by the ViT
(Vision Transformer) model. This approach not only enhances the quality of the synthetic
images but also expands the diversity of the training dataset, providing the model with a
larger variety of learning samples. Ultimately, this contributes to improving the accuracy
of tomato growth stage recognition. Through this optimization strategy, we aim to enhance
the model’s generalization ability and robustness, particularly in practical scenarios where
data are limited.

The paper is organized into the following four sections: Section 1 provides an in-
troduction, outlining the current state of tomato growth stage recognition in protected
agriculture, along with a review of recent advancements in deep learning models for crop
recognition and classification. Section 2 describes the dataset used in this work, as well as
the StyleGAN3 and ViT models. Section 3 presents the experimental results and a compara-
tive analysis with existing methods. Sections 4 and 5 are dedicated to the discussion and
conclusion, respectively.

2. Materials and Methods
This section provides an overview of the dataset used in this work, along with a

description of the models employed. The main contributions of this paper are divided
into two parts: first, high-quality synthetic images are generated using the StyleGAN3
generative adversarial network; second, the ViT model is applied to tomato growth stage
recognition and classification through transfer learning.

2.1. Dataset

Tomato images were collected from the Modern Agricultural Science and Technology
Innovation Demonstration Park at the Sichuan Academy of Agricultural Sciences. This
facility is located in the Xindu District of Chengdu, Sichuan Province, China, in the central
depression of the Chengdu Plain, with an altitude of 510 m and a subtropical humid climate.
The growth of tomatoes involves four stages, sapling, flowering, fruiting, and maturity,
which occur throughout the year.

In this work, a total of 1200 images were collected across 4 growth stages, sapling,
flowering, fruiting, and maturity, with 300 images for each stage. The collection time of
the tomato images is in 2024. Based on the originally collected data, 2723 synthetic images
were generated using GAN. All images were resized to a final resolution of 224 × 224.
Example images for the four categories, along with specific details, are presented in Figure 1
and Table 1.

Table 1. Class-wise image distribution of growing period tomato dataset.

Category Number of Images (Original) Number of Images (Synthetic)

Sapling 300 450
Flower 300 396

Fructification 300 327
Mature 300 350
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2.2. StyleGAN3

Generative adversarial networks (GANs) operate by introducing two adversarial
neural networks: the generator and the discriminator. These networks are optimized
through adversarial training, where the generator creates realistic data samples, and the
discriminator distinguishes between real and synthetic samples. Due to their robust
generative capabilities and wide-ranging application potential, GANs have become a
pivotal research area in fields such as computer vision, image processing, and machine
learning. Over time, several GAN variants have been proposed, including Conditional
GAN (CGAN) [28], Deep Convolutional GAN (DCGAN) [29], and BigGAN [30], each with
its advantages and drawbacks. For instance, although CGAN and DCGAN are faster to
train, they generate lower-resolution images with visible blurring at the edges, rendering
them unsuitable for high-resolution tasks like generating tomato images. While BigGAN
can produce high-resolution images, its considerable hardware requirements and long
training times make it impractical for the present application. In contrast, StyleGAN3 offers
a significant advantage: it can generate high-resolution images at 1024 × 1024 pixels and
can be trained efficiently on a single GPU, thanks to its optimized CUDA cores, which
enhance training speed and memory utilization.

As previously noted, StyleGAN3 effectively resolves the feature entanglement prob-
lem in StyleGAN2, where the fine details of generated images fail to move coherently with
the object’s shape, leading to inconsistencies in rotation and translation. The root cause of
this issue lies in the generator architecture of existing models, which employs convolutions,
nonlinear activations, and upsampling layers, failing to achieve adequate equivariance.
In contrast, StyleGAN3 takes a signal processing approach, tracing the problem back to
aliasing within the generator network, and proposes a solution. By treating all signals as
continuous, StyleGAN3 introduces minor yet effective architectural modifications that pre-
vent unintended information leakage during the hierarchical synthesis process, enhancing
the model’s overall performance.

StyleGAN3 achieves rotational invariance through two key modifications. First, all
3 × 3 convolution layers across the network are replaced with 1 × 1 convolutions, ensuring
that only downsampling and upsampling operations propagate information between pixels
thus preventing unnecessary information leakage into the hierarchical synthesis process.
Second, the sinc downsampling filters are replaced with radial symmetric jinc filters, except
for two critical layers. These changes significantly improve rotational invariance without
compromising FID. Additionally, during the early stages of training, a Gaussian filter is
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applied to all images seen by the discriminator to prevent early stage training collapse. The
generator may occasionally introduce high-frequency signals with small delays, degrading
the discriminator’s performance. A schematic of the generator is shown in Figure 2.
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In this work, we employ StyleGAN3 to generate images representing different growth
stages of tomatoes to address the limitations of the dataset. To generate these images,
we first train a model on a tomato dataset. The training parameters are as follows: the
configuration is set to stylegan-t (translation equiv); the total batch size is 32; gamma is set
to 32 (R1 regularization weight); and the model is trained for 1000 kimg (total number of
training iterations). Furthermore, to improve the monitoring and tracking of the training
process, the snapshot frequency (snap) is set to 10.

2.3. Vision Transformer (ViT)

In this work, we employ the Vision Transformer (ViT) model to recognize the growth
stages of tomatoes through transfer learning. The ViT architecture introduces the concept
of image patches. Initially, the image is divided into non-overlapping patches of equal
size, which are then encoded into sequence data using a positional encoding function.
These sequence data are subsequently fed into a Transformer encoder. The output from the
Transformer is processed through a fully connected layer followed by a softmax layer to
produce the final classification result. The complete framework of the Vision Transformer
is presented in Figure 3.

For tomato classification, we utilize the ViT-Base model, which segments the input
image into 16 × 16 pixel patches. These patches are then processed through 12 encoder
layers, each consisting of encoder blocks, stacked a total of 12 times. After passing through
the embedding layer, each resulting vector has a dimension of 768. The fully connected layer
includes 3072 units, and the multi-head self-attention mechanism incorporates 12 attention
heads. The model contains 86 M parameters, and its architecture is detailed in Table 2.
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Table 2. Different versions of ViT model.

Model Patch Size Layers Hidden Size D MLP Size Heads Params

ViT-Base 16 × 16 12 768 3072 12 86 M
ViT-Large 16 × 16 24 1024 4096 16 307 M
ViT-Huge 14 × 14 32 1280 5120 16 632 M

2.4. Experimental Platform

The experiment utilized the PyCharm 2024.1.1 development environment alongside
the PyTorch deep learning framework, with Windows 11 as the operating system. The
hardware configuration included an Intel i5-12500 processor and an NVIDIA A5000 GPU
with 24 GB of onboard memory. All comparative experiments were conducted using
identical system specifications.

2.5. Experimental Setup and Evaluation Metrics

This work involved three experimental stages. In the first stage, we employed the
StyleGAN3 model to train on each category of the tomato dataset for 1000 epochs, ultimately
generating models corresponding to four tomato growth stages. Following training, we
generated 1523 synthetic images representing the tomato growth stages and conducted
a quality assessment of these images. The second stage involved training and validating
the ViT-Base model on both the original tomato dataset and an augmented dataset that
included the synthetic images, allowing us to compare the recognition performance of
the two datasets. In the third stage, we selected a set of classic classification models and
compared their recognition accuracy for tomato growth stages against the ViT-Base model.

To evaluate the performance of the models, we utilized a range of metrics, including
accuracy, precision, recall, F1 score, and confusion matrix. The formulas for these evaluation
metrics are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)
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F1 =
2TP

2TP + FP + FN
(4)

In the context of classification tasks, true positive (TP), false positive (FP), and false
negative (FN) are essential metrics for evaluating the performance of predictive models.
More precisely, TP represents the number of instances that are genuinely positive and
are correctly classified as such by the model; FP denotes the number of instances that are
actually negative but are mistakenly classified as positive; and FN indicates the number of
actual positive instances that are erroneously classified as negative. These metrics are of
paramount importance in performance analysis as they provide valuable insight into the
model’s classification accuracy, its ability to discriminate between classes, and the nature of
its errors.

In this work, we use the Peak Signal-to-Noise Ratio (PSNR) to quantitatively evaluate
the quality of the generated images. PSNR is a well established metric in the fields of image
and video processing, primarily used to measure the level of noise in an image and to
assess the quality of the image in comparison to a reference. This metric is also widely
employed to evaluate the performance of image processing algorithms by providing an
objective measure of the image’s fidelity. PSNR is calculated based on the Mean Squared
Error (MSE), which represents the average squared difference between the original and
generated images. The following formulas define the calculations of PSNR and MSE:

PSNR =20· log10

(
MAX1√

MSE

)
(5)

MSE =
1

mn∑m−1
i=0 ∑n−1

j=0 [I (i, j)−K(i, j)]2. (6)

In Equation (5), MSE represents the Mean Squared Error, a measure of the average
squared differences between the original and generated images. MAX refers to the maxi-
mum value of the pixel intensities in the image, which provides an upper bound for the
image’s dynamic range. In Equation (6), I and K are used to denote the original and gener-
ated images, respectively, while m and n correspond to the number of rows and columns in
the images. These parameters are essential for computing the image quality metrics, which
evaluate the fidelity of the generated image relative to the original.

3. Implementation and Result
This section begins by outlining the hardware, software, and evaluation metrics used

in the experiments. It then evaluates the effects of using original and synthetic tomato
images, analyzing the performance of tomato growth stage recognition with and without
synthetic images. The section concludes by comparing the proposed model against several
classical models.

3.1. Performance of StyleGAN3

The images generated using StyleGAN3, alongside the original tomato images, are
presented in Figure 4. As illustrated, the generated images of the four tomato categories
closely resemble the original images, demonstrating the model’s ability to produce highly
realistic results. However, it is important to highlight that StyleGAN3 requires significant
computational resources and energy consumption, and the complexity of the images from
the fruiting and maturity stages is considerably greater than that of the earlier stages.
Achieving optimal training results for these stages necessitates over 20,000 epochs. Further-
more, the constraints of having only one high-performance GPU in our experimental setup
will make the training time longer; the average training time per iteration is 4 min35 s, so
to reduce the total training time, we sought to minimize the impact of background noise on
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the model and enhance the quality of the generated images. To achieve this, we employed
the Rembg tool, based on U2-Net architecture, to remove the background from the images
thereby isolating the foreground object for improved output.
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images of the four tomato growth stages, while the second to fourth rows display the generated
images corresponding to each category.

Table 3 provides a detailed statistical analysis of the PSNR between the original and
generated tomato images. The findings clearly demonstrate that the quality of the images
generated using StyleGAN3 closely approximates the quality of the real, original images.
StyleGAN3 produces images of varying quality depending on the category. For the sapling
and flower categories, the PSNR values are approximately 28 dB, suggesting that the
generated images are somewhat distorted compared to the originals. These distortions
are likely subtle and may not be easily detectable by the human eye. In contrast, the
fructification and mature categories show a notable enhancement in image quality, with
PSNR values increasing to around 39 dB. This significant rise in PSNR indicates that the
generated images preserve more fine details, with minimal distortion, and closely mirror
the original images in terms of visual fidelity.

Table 3. PSNR values (in dB) between original images and GAN-generated images for four categories.

Category PSNR Original Images PSNR Original and StyleGAN3 Images

Sapling 27.903 28.018
Flower 27.925 27.932

Fructification 38.78 39.422
Mature 37.389 38.784

From Table 4, it is evident that StyleGAN3 exhibits varying levels of image quality in
terms of SSIM (Structural Similarity Index) across different categories. SSIM is a metric that
evaluates the structural, luminance, and contrast similarities between two images. A higher
SSIM value, closer to 1, indicates greater structural similarity between the original and
generated images. In the sapling and flower categories, the SSIM values are notably low, at
0.066 and 0.454, respectively. However, these low values do not necessarily indicate poor
image quality, as SSIM primarily evaluates structural aspects of the images. The sapling
and flower categories contain more complex elements, such as leaves and stems, which
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may contribute to lower SSIM values. Therefore, the SSIM values of the sapling and flower
categories should be interpreted in conjunction with the PSNR values and human visual
judgment. On the other hand, in the fructification and mature categories, there is a marked
increase in SSIM values. In the fructification category, the SSIM rises from 0.833 to 0.85,
while in the mature category, it slightly decreases from 0.85 to 0.84. These values indicate
that the generated images in both categories retain a high degree of structural similarity to
the original images. Despite the slight decrease in SSIM in the mature category, the image
quality remains high, with minimal distortion.

Table 4. SSIM values between original images and GAN-generated images for four categories.

Category SSIM Original Images SSIM Original and StyleGAN3 Images

Sapling 0.066 0.068
Flower 0.454 0.384

Fructification 0.833 0.85
Mature 0.85 0.84

3.2. Performance of ViT Model

As previously mentioned, to evaluate the classification performance of the tomato
classification model, we selected accuracy (Acc), precision, recall, and F1 score as the eval-
uation metrics for the model’s quality. Table 5 presents the classification performance of
the ViT-Base model on both the original images and the combined dataset of original and
generated images. The evaluation metrics for the ViT-Base model with the inclusion of
generated images are 98.39%, 98.47%, 98.39%, and 98.39% for accuracy, precision, recall,
and F1 score, respectively. These results represent improvements of 3.81%, 3.48%, 3.81%,
and 3.98% over the performance achieved using only the original images. This demon-
strates that incorporating generated images into the ViT model significantly enhances the
model’s classification ability and generalization, especially under data imbalance, while
also mitigating the risk of overfitting.

Table 5. Impact of synthetic images on Vit-Base.

Model Accuracy Precision Recall F1 Score

ViT-Base 94.58% 94.99% 94.58% 94.41%
ViT-Base + Synthetic images 98.39% 98.47% 98.39% 98.39%

Figure 5 presents the confusion matrix results for the classification task, which was
performed using both original and StyleGAN-generated images. The matrix indicates
that classification performance—particularly in distinguishing true positives from false
positives between the flowering and sapling stages—was notably reduced when only
the original images were used. In contrast, a significant improvement in the model’s
ability to accurately classify these stages was observed with the inclusion of StyleGAN-
generated images, resulting in a marked enhancement in overall classification performance.
Specifically, the confusion matrix for the combined dataset, comprising both original and
generated images, demonstrates a substantial increase in overall accuracy, as well as a more
balanced distribution between true positives and false positives. These results emphasize
the considerable advantages of augmenting the dataset with generated images, highlighting
their critical role in enhancing the robustness and effectiveness of the classification model.
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Figure 5. Confusion matrix of tomato growth classification using proposed method.

Figure 6 illustrates the AUC curves during training for ViT-Base, comparing the
original dataset (Figure 6a) with the dataset augmented by generated images (Figure 6b).
AUC, which assesses the model’s performance at various classification thresholds, provides
a more comprehensive evaluation by minimizing the effect of a single threshold. The results
show that adding generated images significantly improves the performance of ViT-Base
in the four-class classification task, with fewer fluctuations compared to using only the
original dataset, and the VIT model can better perform its performance. This suggests that
images generated by StyleGAN3 can effectively enhance the model’s classification accuracy.
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3.3. Performance Comparison

In this subsection, we first perform a detailed curve analysis of four models, exam-
ining their training and validation performance regarding accuracy and loss. Specifically,
we investigate the ViT-Base model, augmented with generated images, and compare its
four-class classification performance against that of three widely used models—AlexNet,
DenseNet50 [31], and VGG16—enhanced with generated images. As presented in Figure 7,
the curve analysis reveals that the ViT-Base model achieves the most consistent and favor-
able performance. It demonstrates smooth convergence, the fastest reduction in loss, and
an impressive validation accuracy of 99.6%. In contrast, the other models show varying
levels of instability, with AlexNet exhibiting notable overfitting issues. These findings
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suggest that the ViT-Base model not only outperforms the others in terms of accuracy but
also maintains greater stability throughout the training process.
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Table 6 demonstrates that the ViT-Base model achieves the highest performance, with
accuracy improvements of 22.85%, 3.57%, and 3.21% over AlexNet, DenseNet50, and
VGG16, respectively. This superior performance can be largely attributed to the ViT-Base
model requirement for a large dataset to fully realize its classification potential. Notably,
the extensive set of images generated by the StyleGAN3 model plays a crucial role in
compensating for some of the inherent limitations of the ViT-Base model. By augmenting
the training data with these synthetic images, we were able to address the model data
requirements thus enabling it to achieve better results. Furthermore, a comparison with
Table 4 reveals that, when augmented with generated images, the DenseNet50 and VGG16
models perform comparably to, or even outperform, the ViT-Base model trained solely on
the original images. These results underscore the significant impact of data augmentation
in the strategic use of StyleGAN3-generated images and in enhancing the performance of
deep learning models.

Table 6. Performance comparison of different models.

Model Accuracy Precision Recall F1 Score

ViT-Base 98.39% 98.47% 98.39% 98.39%
AlexNet 75.54% 84.88% 75.54% 68.10%

DenseNet50 94.82% 95.61% 94.82% 94.77%
VGG16 95.18% 95.59% 95.18% 95.13%
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4. Discussion
This work presents a method for recognizing the growth stages of tomatoes, leverag-

ing the StyleGAN3 model to generate synthetic images in conjunction with the ViT-Base
model. The experimental results in Section 3 demonstrate that the generated images closely
resemble real images, providing a solid foundation for their use in the recognition task. By
incorporating these generated images into the ViT-Base model, superior performance is
achieved in identifying the various growth stages of tomatoes. Through comparative exper-
iments, it can be seen that the performance of the ViT-Base model combined with generated
images for the identification of the tomato growth stage is significantly better than that of
AlexNet, DenseNet50, VGG16, and other classical models combined with generated images.
ViT-Base was shown to outperform traditional CNN models in some computer vision tasks
such as image classification, object detection, and segmentation, especially when large-scale
datasets are available. ViT’s self-attention mechanism is able to capture global dependen-
cies, which is difficult to achieve with convolutional operations in some tasks. On the other
hand, DenseNet50 and VGG16 benefit more from data augmentation primarily due to their
deeper architectures and greater model complexities. Their ability to learn more detailed
and generalized features, coupled with a larger number of parameters and layers, enables
them to fully leverage the diversity introduced by augmentation. In contrast, AlexNet,
being a shallower network with fewer parameters, is less capable of fully exploiting the
increased data diversity, resulting in comparatively smaller performance gains.

When selecting the ViT model for tomato classification, there was initial uncertainty
regarding whether to opt for the more recent and improved Swin model, which has
demonstrated superior performance in certain tasks. However, following in-depth dis-
cussions among the authors, we determined that ViT was more suitable for our work’s
primary focus on classification. Unlike tasks such as segmentation and detection, which
are prediction-intensive and in which the Swin model excels, our work did not involve
such tasks. Although ViT requires longer training times compared to Swin, it maintains
high accuracy in classification tasks, particularly when enhanced by data. Moreover, the
ViT model’s relatively simple architecture, coupled with the availability of extensive pre-
trained models, made it a more practical choice for training purposes thereby enabling
more efficient model development for classification.

Although the StyleGAN3-generated images in this work are generally close to real
images, their quality in noisy scenes is still insufficient, requiring preprocessing as is typical
in many studies. For instance, the tomato fruiting and maturity stage datasets in this
research were processed to remove background noise. Additionally, the long training times
of StyleGAN3 pose challenges, especially with limited computational resources, leading to
significant time and energy consumption. Transfer learning or cloud-based resources can
be employed to mitigate these issues. Therefore, a critical area for future research will be
developing methods to directly generate high-quality images quickly, without the need
for preprocessing.

For an extended period, our research team has been leveraging computer vision tech-
nology to address practical problems in agricultural production. In the course of our work,
we have also sought to extend our research to more complex production environments,
such as open fields and orchards. As part of this effort, we utilized images collected from
cameras in apple and citrus orchards to create a foundational dataset. By applying the
StyleGAN3 model developed in this study for data augmentation, we successfully built
growth stage recognition models tailored to specific apple and citrus varieties. While the
controlled conditions in facility agriculture create a relatively stable environment, the com-
plexity of orchards presents additional challenges. Although our approach showed some
promising results in orchard environments and demonstrated its potential applicability in
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other scenarios, the actual test outcomes were not as effective as those seen in the controlled
tomato production environment. This gap indicates that further refinements are needed,
and improving this aspect will be a primary focus of our future research efforts.

5. Conclusions
This work begins by leveraging the StyleGAN3 generative adversarial network to

generate images, addressing issues such as limited training data and data imbalances. Fol-
lowing this, the ViT-Base model is employed to recognize the growth stages of greenhouse
tomatoes, producing promising results in terms of classification performance. The primary
conclusions are as follows:

(1) The quality of images generated by StyleGAN3 is nearly identical to that of real
images, with an average generation time of 153 milliseconds per image. This method
proves to be an effective data augmentation solution, especially for cases with limited
training data, such as small sample datasets. However, when computational resources
are limited, transfer learning or background denoising techniques are necessary to
reduce training time.

(2) By generating images through a generative adversarial network (GAN) and then ap-
plying the ViT-Base model for tomato growth stage recognition, this method achieves
superior performance compared to direct recognition using original images. The
combination of ViT with generated images reached an accuracy of 98.39% on the
test set and an average detection speed of 9.5 milliseconds. When compared to
AlexNet, DenseNet50, and VGG16, this method showed improvements in accuracy
by 22.85%, 3.57%, and 3.21%, respectively, demonstrating its enhanced effectiveness
in classification tasks.

(3) In areas with limited access to intelligent devices, the use of images generated by
a generative adversarial network (GAN) significantly reduces the labor demands
and inconsistencies of manual image collection. Furthermore, applying the ViT-Base
model for tomato growth stage recognition can provide crucial data for informed
decision-making and the precise management of tomato growth conditions. This
approach offers considerable economic value by improving the efficiency of tomato
production. Additionally, it can be extended to other similar crop categories, such as
apples and citrus, in addition to tomatoes.
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